高中物理求解带电粒子在有界匀强磁场中运动的临界与极值问题的方法

合集下载

高考物理知识体系总论:带电粒子在匀强磁场中运动的临界极值及多解问题

高考物理知识体系总论:带电粒子在匀强磁场中运动的临界极值及多解问题

PART 2
利用知识体系框架来解题
DREAM OF THE FUTURE
经典例题1
(多选)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。 一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射。这两种 粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含 不同速率的粒子。不计重力。下列说法正确的是(ꢀꢀ) A.入射速度相同的粒子在磁场中的运动轨迹一定相同 B.入射速度不同的粒子在磁场中的运动时间一定不同 C.在磁场中运动时间相同的粒子,其运动轨迹一定相同 D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大
有些题目只告诉了磁感应强度的大小,而未具体指出 磁感应强度的方向,此时必须考虑由磁感应强度方向
多解
不确定而形成的多解。如图所示。
4.运动的往 复性形成多

带电粒子在匀强磁场中运动的临界极值及多解问题
大致框架
1.带电粒子
如图所示,带电粒子在洛伦兹力作用下飞越有界磁场
电性不确定
时,由于粒子运动轨迹是圆弧状,因此,它可能直接
带电粒子在匀强磁场中运动的临界极值及多解问题
大致框架
突破一ꢀ 带电粒子在匀强磁场中 运动的临界极值问题
1.分析方法 2.四个结论
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界相切。 (2)当速率v一定时,弧长越长,圆心角越大,则带电 粒子在有界磁场中运动的时间越长。 (3)当速率v变化时,圆心角大的,运动时间长,解题 时一般要根据受力情况和运动情况画出运动轨迹的草 图,找出圆心,根据几何关系求出半径及圆心角等。 (4)在圆形匀强磁场中,当运动轨迹圆半径大于区域 圆半径时,则入射点和出射点为磁场直径的两个端点 时,轨迹对应的偏转角最大(所有的弦长中直径最长)。

高中物理高频考点《边界磁场问题分析与强化训练》(附详细参考答案)

高中物理高频考点《边界磁场问题分析与强化训练》(附详细参考答案)

边界磁场问题分析与强化训练(附详细参考答案)一、边界磁场问题分析及例题讲解:1.带电粒子在有界磁场中运动的常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)(4)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。

(5)三边形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。

已知边长为2a,D点距A点3a,粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。

2.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点。

(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍。

3.几点注意(1)当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的。

在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件。

(2)当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B 变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件。

4.求解带电粒子在有界匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件(①带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;②射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。

),然后应用数学知识和相应物理规律分析求解。

(1)两种思路一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化(2)轨迹圆圆心一一共线如图所示(图中只画出粒子带正电的情景),速度V。

越大,运动半径也越大可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP,上.2.方法界定以入射点P为定点,圆心位于PP,直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1]如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t。

刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是()A.若该带电粒子从ab边射出,它经历的时间可能为t。

5tB.若该带电粒子从bc边射出,它经历的时间可能为十3C.若该带电粒子从cd边射出,它经历的时间号2tD.若该带电粒子从ad边射出,它经历的时间可能为43[解析]作出从ab边射出的轨迹①、从bc边射出的轨迹②、从cd边射出的轨迹③和从ad边射出的轨迹④.由带正电的粒子从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t o刚好从c点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t o.由图可知,从ab边射出经历的时间一定不大片;从bc边射出经历的时间一定不大于不从cd边射...... . 5t t出经历的时间一定是丁;从ad边射出经历的时间一定不大于可,C正确.3 3[答案]C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为一.一一、 ,.一.一 mv __ _____v,则圆周运动半径为区=”0.如图所示.o qB(2)轨迹圆圆心一一共圆mv 带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=京的圆上. qB2.方法界定mv将一半径为R=氤的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”.qB[典例2]如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T.磁场内有一块平面感光板ab,板面与磁场方向平行.在距ab为l = 16 cm处,有一个点状的a粒子放射源S,它向各个方向发射a粒子,a...................... . .. ....... q . .. ...... . . 粒子的速度都是v=3.0X106 m/s.已知a 粒子的比何m=5.0X107 C/kg,现只考虑在纸面内 运动的a 粒子,求ab 板上被a 粒子打中区域的长度.[解题指导]过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可.[解析]a 粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径, 4 c V 2有 qvB=mR由此得R 瑞代入数值得R=10 cm,可见2R>l>R因朝不同方向发射的a 粒子的圆轨迹都过S,由此可知,某一圆轨迹在下图中N 左侧与 ab 相切,则此切点、就是a 粒子能打中的左侧最远点为确定、点的位置,可作平行于ab 的直线cd, cd 到ab 的距离为R,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的 垂线,它与ab 的交点即为,即:NP=R 2—(1—R) 2 = 8 cm再考虑N 的右侧.任何a 粒子在运动中离S 的距离不可能超过2R,在N 点右侧取一点P 2, 取SP=20 cm,此即右侧能打到的最远点由图中几何关系得NP 2=M (2R) 2 — 12=12 cm所求长度为P 1P 2=NP 1+NP 2代入数值得P 1P 2 = 20 cm.[答案]20 cm考向1带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件 下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3]如图所示,宽度为d 的有界匀强磁场,磁感应强度为B, MM,和NN’是磁场左 右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子 不能从右边界NN,射出,求粒子入射速率的最大值为多少?突破 带电粒子在磁场中运动的多解问题fl 兄 乂尹। x x J V X y K P 2 x b[解题指导]由于粒子电性不确定,所以分成正、负粒子讨论,不从NN,射出的临界条 件是轨迹与NN,相切.[解析]题目中只给出粒子”电荷量为q”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN,相切的(圆弧,则轨道半径R \12 (2+ 2) Bqd ............... 一 一 一一 一 ......3 一 ........... 若q 为负电荷,轨迹是如图所示的下方与NN,相切的工圆弧,则轨道半径又—全解得『=(2-'⑵刎 m…… (2+ 2) Bqd (2— 2) Bqd,[答案] --- 玄 ---- (q 为正电何)或 -- m ----- (q 为负电何)考向2磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考 虑磁感应强度方向不确定而形成的多解.[典例4](多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固mvBq又d=R 解得v=R,mv' Bq M N।■乂 ।1 ।*[典例5](多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强 度为B,板间距离也为1,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从 左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是()定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在 负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重 力)() A. R 瘦 D. m 2qB C .— m D. qB m[解析]根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且 这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力 的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知 _ V2 _ 4BqR v 4Bq4Bqv=m 万,得v= ,此种情况下,负电何运动的角速度为3=5=-;;当负电何所受的R m R m 洛伦兹力与电场力方向相反时,有2B qv=m V2, 丫=等,此种情况下,负电荷运动的角速度v 2Bq为3=R=/",应选A 、C.[答案]AC考向3临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图 m所示.A.使粒子的速度v<Bq15BalB.使粒子的速度v>*C.使粒子的速度丫>平D.使粒子的速度v满足Bq^vV51a1[解析]带电粒子刚好打在极板右边缘,有r2 = (r-1)+12,又因r =%,解得v =誓;i V 12 i Bq i 4m粒子刚好打在极板左边缘,有r=l=M2,解得丫=整,故A、B正确. 2 4 Bq 2 4m[答案]AB考向4带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6]如图所示,在x轴上方有一匀强磁场,磁感应强度为B;x轴下方有一匀强电场,电场强度为E.屏MN与y轴平行且相距L. 一质量m、电荷量为e的电子,在y轴上某点A 自静止释放,如果要使电子垂直打在屏MN上,那么:(1)电子释放位置与原点O的距离s需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?[解题指导]解答本题可分“两步走”:(1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r和L的关系.[解析](1)在电场中,电子从A-O,动能增加eEs=1mv0在磁场中,电子偏转,半径为mv r = o r eB据题意,有(2n+1)r=L一eL2B2 . .所以S=2Em (2n+1)2(n=0,1,2,3,”)⑵在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的2s T T , Ee 2nm运动时间 t=(2n+1)、: w+z+nj,其中 a=%, T=—B-■. । a 乙ui e一— .一 BL , 、nm, 、整理后得 t=^+(2n+1)族("=。

带电粒子在有界匀强磁场中运动的临界问题分析

带电粒子在有界匀强磁场中运动的临界问题分析

带正电粒子如果以相同的方向垂直入射匀强磁 场 , 而 1.
相似之处呢 ? 我们 知 道 , 这 些 带 电 粒 子 以 确 定 的 速 度 方 向, 同, 速度大的半径大 , 但是这些圆的圆 心 在 同 一 条 直 线 上 , 并 且圆心的连线和速度方向垂直 . 这些 圆 逐 个 逐 渐 变 大 , 因此 也称之为膨胀圆 . ʌ ɔ 例1 一足够长的矩形区域a ㊀ 如图所示 , b c d 内充满方
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������
对于学生 ㊀㊀ 带电粒子在有界匀强磁场中运动的 临 界 问 题 , 而言本身就是难点问题 . 第一 , 有界匀 强 磁 场 就 要 确 定 好 磁 场的边界 ; 第二 , 临 界 问 题 就 是 极 值 问 题.因 此 本 文 就 带 电 粒子在有界匀强磁场 中 运 动 的 临 界 问 题 从 以 下 两 种 情 况 进 行分类讨论 . 第一 种 : 给 定 有 界 的 匀 强 磁 场, 研究带电粒子 运动的临界情况 ; 第二种 : 由根据粒子 的 运 动 情 况 , 判断磁场 的边界 . 一 ㊁给定有界的匀强磁场 , 研究带电粒子运动的临界情况

带电粒子在匀强磁场中的运动-临界、极值及多解问题

带电粒子在匀强磁场中的运动-临界、极值及多解问题
• 关键点:1.分成正电荷和负电荷讨论,画图是关 键.2.注意正负电荷受洛伦兹力方向不同,偏转方向 不同.3.最大速度都是轨迹和右边界相切时的速度.

例题
有些题目只告诉了磁感应的大小,而未具体 指出磁感应强度的方向,此时必须要考虑磁
感应强度方向不确定而形成多解
电场力方向一定指向圆心,而洛伦兹力方向可能指向圆心,也可能背离圆心, 从而形成两种情况.
• 2.方法界定将一半径为 的圆绕着入射点旋转, 从而探索出临界条件,这种方法称为“旋转法”.

旋转法”模型示例
带电粒子在磁场中运动的多解问题
• 带电粒子电性不确定形成多解 • 受洛伦兹力作用的带电粒子,可能带正电荷,也可
能带负电荷,在相同的初速度的条件下,正、负粒 子在磁场中运动轨迹不同,导致形成多解.

“放缩圆”模型示例
“旋转法”解决有界磁场中的临界问题
• 1.适用条件(1)速度大小一定,方向不同带电粒子 进入匀强磁场时,他们在磁场中做匀速圆周运动的 半径相同,若射入初速度为v0,则圆周半径为 . 如图所示.(2)轨迹圆圆心——共圆带电粒子在磁 场中做匀速圆周运动的圆心在以入射点P为圆心、 半径 的圆上.
临界状态不唯一形成多解
• 带电粒子在洛伦兹力作用下飞越有界磁场 时,由于粒子运动轨迹是圆弧状,因此, 他可能直接穿过去了,也可能转过180°从 入射界面反向飞出,于是形成了多解.如图 所示.

Байду номын сангаас
带电粒子在匀强磁场中的运动临界、极值及多解问题
• 1.有界磁场中临界问题的处 理方法
• 2.带电粒子在磁场中运动的 多解问题
1.有界磁场中临界问题的处理方法
• “放缩法”解决有界磁场中的临界问题 • 1.适用条件 • (1)速度方向一定,大小不同粒子源发射速度方向一定、大小

带电粒子在匀强磁场中运动的临界极值问题(解析版)

带电粒子在匀强磁场中运动的临界极值问题(解析版)

带电粒子在匀强磁场中运动的临界极值问题由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.1.临界条件的挖掘(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速率v一定时,弧长(或弦长)越长,圆心角越大(前提条件是劣弧),则带电粒子在有界磁场中运动的时间越长。

(3)当速率v变化时,轨迹圆心角越大,运动时间越长。

(4)当运动轨迹圆半径大于圆形磁场半径时,则以磁场直径的两端点为入射点和出射点的轨迹对应的偏转角最大。

2.不同边界磁场中临界条件的分析(1)平行边界:常见的临界情景和几何关系如图所示。

(2)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。

(3)三角形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。

粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。

3. 审题技巧许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.【典例1】如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点。

一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场。

现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,下列说法中正确的是( )A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 【答案】 AC 【解析】 如图所示,【典例2】放置在坐标原点O 的粒子源,可以向第二象限内放射出质量为m 、电荷量为q 的带正电粒子,带电粒子的速率均为v ,方向均在纸面内,如图8-2-14所示.若在某区域内存在垂直于xOy 平面的匀强磁场(垂直纸面向外),磁感应强度大小为B ,则这些粒子都能在穿过磁场区后垂直射到垂直于x 轴放置的挡板PQ 上,求:(1)挡板PQ 的最小长度; (2)磁场区域的最小面积. 【答案】 (1)mv Bq (2)⎝⎛⎭⎫π2+1m 2v 2q 2B2【解析】 (1)设粒子在磁场中运动的半径为R ,由牛顿第二定律得qvB =mv 2R ,即R =mvBq【跟踪短训】1. 在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图8-2-24所示.不计重力的影响,则下列关系一定成立的是( ).A .若r <2mv qB ,则0°<θ<90° B .若r ≥2mv qB ,则t ≥πmqBC .若t =πm qB ,则r =2mv qBD .若r =2mv qB ,则t =πmqB【答案】 AD【解析】 带电粒子在磁场中从O 点沿y 轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x 轴上,轨道半径R =mv qB .当r ≥2mvqB 时,P 点在磁场内,粒子不能射出磁场区,所以垂直于x 轴过P 点,θ最大且为90°,运动时间为半个周期,即t =πm qB ;当r <2mvqB 时,粒子在到达P 点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x 轴的粒子的速度偏转角φ>90°,所以过x 轴时0°<θ<90°,A 对、B 错;同理,若t =πmqB ,则r ≥2mv qB ,若r =2mv qB ,则t 等于πm qB,C 错、D 对. 2. 如图所示,磁感应强度大小为B =0.15 T 、方向垂直纸面向里的匀强磁场分布在半径为R =0.10 m 的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O ,右端跟很大的荧光屏MN 相切于x 轴上的A 点。

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。

1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。

2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。

(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。

(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。

【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。

一带电粒子的质量为m,电荷量为q(q>0)。

粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。

已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。

则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题带电粒子在匀强磁场中的临界问题可以通过“放缩法”解决。

当速度方向一定,大小不同时,带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化。

通过以入射点为定点,将半径放缩作轨迹,探索出临界条件。

另一种解决有界磁场中的临界问题的方法是“旋转法”。

当速度大小一定,方向不同时,带电粒子在磁场中做匀速圆周运动的半径相同。

圆心在以入射点为圆心、半径为mv/qB的圆上。

通过旋转圆心,将问题转化为无界磁场中的问题。

旋转法”是一种探索临界条件的方法,它通过让圆绕着入射点旋转来实现。

在一个真空室内,存在一个垂直于纸面向里的匀强磁场,磁感应强度为B=0.60 T。

在磁场内有一块平面感光板ab,板面与磁场方向平行。

距离ab为l=16cm处有一个点状的α粒子放射源S,它向各个方向发射速度为v=3.0×10m/s的α粒子。

已知α粒子的比荷为5.0×10C/kg,现只考虑在纸面内运动的α粒子,求ab板上被α粒子打中区域的长度。

解题思路是过S 点作ab的垂线,根据左侧最值相切和右侧最值相交计算。

由于带电粒子的电性不确定,可能带正电荷,也可能带负电荷。

在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解。

在一个宽度为d的有界匀强磁场中,磁感应强度为B,MM′和NN′是磁场左右的两条边界线。

现有一质量为m、电荷量为q的带电粒子沿图示方向垂直磁场射入。

要使粒子不能从右边界NN′射出,需要求粒子入射速率的最大值。

由于粒子电性不确定,所以分成正、负粒子讨论,不从NN′射出的临界条件是轨迹与NN′相切。

题目描述:一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd 的中点,如果在a点沿对角线方向以速度v射入一带负电的粒子,恰好从e点射出,则()。

解题思路:根据题目描述,可以画出如下示意图:image.png](/upload/image_hosting/ed6v3v6v.png)由于粒子带负电,所以在磁场中会受到洛伦兹力的作用,从而偏转方向垂直于速度方向和磁场方向的方向。

带电粒子在有界磁场中运动的临界问题的解题技巧

带电粒子在有界磁场中运动的临界问题的解题技巧

带电粒子在有界磁场中运动的临界问题的解题技巧将高中物理中常见的“带电粒子在有界磁场中运动的临界问题”归纳为五类典型题型,总结了这五类题型的通用解法——先根据问题类型确定圆心所在曲线,然后按一定的顺序在该曲线上取点作为圆心作出一系列轨迹圆,于是各种临界和多解情况就在图中一目了然了。

对于前三大类型,绝大部分资料都有涉及,主要对后两大类型进行了举例说明。

标签:有界磁场;临界问题;圆心圆;轨迹圆依据带电粒子进出磁场的参数不同,可将高中物理中常见的“带电粒子在有界磁场中运动的临界问题”(当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态)分为五类如下表(√表示该参数确定,×表示该参数不确定,空着表示该参数待定):■ 所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序尽可能多地作不同圆心对应的轨迹圆(一般至少画5个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。

问题类型四:已知初、末速度的方向(所在直线),但未知初速度大小(即未知轨道半径大小)这类问题的特点是:所有轨迹圆的圆心均在初、末速度延长线形成的角的角平分线上。

【例】在xOy平面上的某圆形区域内,存在一垂直纸面向里的匀强磁场,磁感应强度大小为B。

一个质量为m、带电量为+q的带电粒子,由原点O开始沿x正方向运动,进入该磁场区域后又射出该磁场;后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°(如图所示),已知P到O 的距离为L,不计重力的影响。

(1)若磁场区域的大小可根据需要而改变,试求粒子速度的最大可能值;(2)若粒子速度大小为v=■,试求该圆形磁场区域的最小面积。

【分析】初、末速度所在直线必定与粒子的轨迹圆相切,轨迹圆圆心到两条直线的距离(即轨道半径)相等,因此,圆心必位于初、末速度延长线形成的角的角平分线QC上(如图甲);在角平分线QC上取不同的点为圆心,由小到大作出一系列轨迹圆(如图乙),其中以C点为圆心轨迹是可能的轨迹圆中半径最大的,其对应的粒子速度也最大。

带电粒子在磁场中运动的临界和极值问题动态放缩法的分析和应用

带电粒子在磁场中运动的临界和极值问题动态放缩法的分析和应用

带电粒子在磁场中运动的临界和极值问题动态放缩法的分析和应用摘要:带电粒子在磁场中运动的临界和极值问题是高中磁场部分教学中的难点,在高考中考查的频率很高,本知识点既联系了匀速圆周运动的内容,又承接带电粒子在磁场中所受洛伦兹力的内容,既是力学知识和电磁学知识的综合体现,又是临界极值问题的全新知识模型的建构,对学生的思维能力要求较高,可以很好地考察学生的核心素养。

由于带电粒子往往是在有界磁场中的运动的,粒子在磁场中只运动一段圆弧就飞出磁场,其轨迹不是完整的圆。

这类问题往往根据带电粒子的运动轨迹做出相关图示去寻找几何关系,分析临界条件,然后应用数学知识和相应的物理规律分析求解。

关键词:有界磁场;动态放缩法;临界问题;极值问题1.动态放缩法在空间内存在一个无限大的匀强磁场。

一个带负电的粒子以某一速度垂直进入该磁场,那么该粒子就会在洛伦兹力的作用下做匀速圆周运动。

根据洛伦兹力提供向心力就可以得出R=mv/qB,当粒子速度增大时,轨道半径不断增大,轨迹圆不断变大。

那如果现在限定这个磁场是一个有界磁场。

则粒子在磁场中的运动就存在了临界极值问题。

比如,当磁场边界缩小到与运动轨迹相切时,那么轨迹与边界的切点便是粒子运动的临界点或极值点。

当带电粒子在有界磁场中运动,粒子速度同向不同速时,其做圆周运动的圆心都在磁场边界上,v的大小或者B变化时,轨道半径随即变化。

可以入射点为定点做出半径不同的一系列轨迹。

当轨迹与右边界相切时,粒子恰好能从左边界射出磁场,即恰好不能从右边界射出磁场。

这种以入射点为定点做出半径不同的一系列轨迹,来确定粒子运动的临界和极值问题的方法称为动态放缩法。

画出与边界相切的临界轨迹、找到临界点、极值点,根据几何关系确定临界极值条件是解决问题的关键。

2.双边界磁场的临界极值问题如图1,不同速率的带点粒子垂直进入有界磁场,根据左手定则可以判断带电粒子在磁场中做圆周运动的圆心都在它所受到的洛伦兹力的方向上。

粒子速率不同、轨道半径就不同,磁感应强度B的大小不同、轨道半径也不同,动态放缩法就是以入射点为定点,在磁场中做出半径不同的一系列轨迹圆,尤其要关注的是与磁场边界相切的轨迹圆,切点往往粒子运动的临界和极值点。

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
第八章 第4节 第八页,编辑于星期四:十四点 三十三分。
高考调研
高三物理(新课标版)
2.要重视分析时的尺规作图,规范而准确的作图可 突出几何关系,使抽象的物理问题更形象、直观.
第八章 第4节 第三十页,编辑于星期四:十四点 三十三分。
第八章 第4节 第五页,编辑于星期四:十四点 三十三分。
高考调研
高三物理(新课标版)
4.运动的重复性形成多解:带电粒子在部分是电场、 部分是磁场空间运动时,往往运动具有⑦__周_期__性___,因 而形成多解.
第八章 第4节 第六页,编辑于星期四:十四点 三十三分。
高考调研
高三物理(新课标版)
一、带电粒子在有界磁场中运动的临界极值问题 规律方法 1.解决此类问题关键是找准临界点,审题应抓住题 目中的“恰好”“最大”“最高”“至少”等词语作为 突破口,挖掘隐含条件,分析可能的情况,如有必要则 画出几个不同半径相应的轨迹图,从而分析出临界条 件.寻找临界点的两种有效方法:
高考调研
高三物理(新课标版)
二、带电粒子在磁场中做匀速圆周运动的多解问题 规律方法 1.带电粒子电性不确定形成多解
第八章 第4节 第二十五页,编辑于星期四:十四点 三十三分。
高考调研
高三物理(新课标版)
受洛伦兹力作用的带电粒子,可能带正电,也可能 带负电,在相同的初速度的条件下,正、负粒子在磁场 中运动的轨迹不同,形成多解.
值,常用结论如下:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m 的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

8-07-思想方法:求解带电粒子在匀强磁场中运动的临界和极值问题的方法

8-07-思想方法:求解带电粒子在匀强磁场中运动的临界和极值问题的方法

为弦,找出最大的弦即可求出最大半径.
2017版高三一轮物理教学实用课件
第14页
返回目录
结束放映
3.方法总结
2017版高三一轮物理教学实用课件
第15页
返回目录
结束放映
规律方法
1.三步解决带电粒子在有界磁场中的运动问题 (1)定圆心,画轨迹 (2)找几何关系,确定物理量 (3)画动态圆,定临界状态.
2017版高三一轮物理教学实用课件
第11页
返回目录
结束放映
(1)
电子在磁场中 做圆周运动
画圆弧,找半 径,定圆心 最大圆 弧 (弦 ) OP的长度 与半径r1、 r2的关系 最大 半径
圆心角
应用周期公 式求时间t 最小磁感 应强度
延长v0与过P的 (2) 水平线,最大圆 弧的两公切线 电子在y轴右、 (3) 左侧做圆周运动 的半径r1、r2
转解析 2017版高三一轮物理教学实用课件
第17页
返回目录
结束放映
【变式训练 2】[极值问题]如图示,半径为 R 的圆形区域内存在着磁感应 强度为 B 的匀强磁场,方向垂直于纸面向里,一带负电的粒子(不计重力) 沿水平方向以速度 v 正对圆心入射 ,通过磁场区域后速度方向偏转了 60° 。 q (1)求粒子的比荷m及粒子在磁场中的运动时间 t。 (2)如果想使粒子通过磁场区域后速度方向的偏转角度最大,在保持原 入射速度的基础上,需将粒子的入射点沿圆弧向上平移的距离 d 为多 少?
2017版高三一轮物理教学实用课件
第3页
返回目录
结束放映
(2)一个“解题流程”,突破临界问题
动态思维 临界点 半径方向 临界状态 磁场边界
1. 分 析 方 法
临界轨迹

高中物理 磁场(三)带电粒子在匀强磁场中运动的临界极值问题与多解问题

高中物理 磁场(三)带电粒子在匀强磁场中运动的临界极值问题与多解问题

带电粒子在匀强磁场中运动的临界极值问题与多解问题一、带电粒子在磁场中运动的临界极值思维方法物理系统由于某些原因而要发生突变时所处的状态,叫做临界状态.突变过程是从量变到质变的过程,在临界状态的前后,系统服从不同的物理规律,按不同的规律变化。

在高考试题中涉及的物理过程中常常出现隐含着一个或几个临界状态,需要通过分析思考,运用所学的知识和已有的能力去分析临界条件,挖掘出临界值,那么如何确定它们的临界条件?下面介绍三种寻找临界点的两种有效方法:1.对称思想带电粒子垂直射入磁场后,将做匀速圆周运动。

分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ 线间的夹角(也称为弦切角)相等,并有==2=t,如图所示。

应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷。

【典例】如图所示,半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题指导】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。

【名师点睛】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。

2.放缩法带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大。

带电粒子在磁场中运动——极值多解问题模板

带电粒子在磁场中运动——极值多解问题模板
带电粒子在Ⅱ区磁场中运动轨迹的圆心在 OA4 的中点, 即 R2=12r 在Ⅱ区磁场中运动的时间为 t2=12T2
带电粒子从射入到射出磁场所用的总时间 t=t1+t2 由以上各式可得 B1=56πqmt ,B2=53πqmt
答案
5πm 6qt
5πm 3qt
建模感悟 粒子在多个磁场中连续运动时,会画出不同 的轨迹,从复杂的轨迹中找出规律,寻找解决问题的突 破口,解这类问题时,关键在于能画出轨迹,想清楚粒 子的运动过程,借助圆周运动的特点解决问题.
1)
B
. R vO0
·
S
t
总r
(n
1)R
tan
n 1
n2
v
v
5.如图所示,在半径为R的圆筒内有匀强磁场,质量
为m、带电量为q的正离子在小孔S处,以速度v0向着 圆心射入,施加的磁感应强度为多大,此粒子才能在
最短的时间内从原孔射出?(设相碰时电量和动能均
无损失)
B
解:粒子经过n=2,3,4……次与圆筒
碰撞从原孔射出,其运动轨迹具
有对称性.当发生最少碰撞次数
r
. R vO0
n=2时 600
r R cot 300 3R
·
O’
r
S
qvB m v2 B mv0 mv0
r
qr 3qR
t 3 1 T m 3R
6 qB v0
当发生碰撞次数n=3时
900
(1)若能打到P点,则粒子速度的最小值为多少? (2)若能打到P点,则粒子在磁场中运动的最长时间 为多少?
例1.如图所示,一带电质点,质量为m,电量为q,以 平行于Ox轴的速度v从y轴上的a点射入图中第一象限所 示的区域.为了使该质点能从x轴上的b点以垂直于Ox轴 的速度v射出,可在适当的地方加一个垂直于xy平面、 磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆 形区域内,试求这圆形磁场区域的最小半径.重力忽略 不计. (若磁场为矩形,或正三角形又如何?)

2024年高中物理:带电粒子在磁场中运动的临界极值问题

2024年高中物理:带电粒子在磁场中运动的临界极值问题

2024年高中物理:带电粒子在磁场中运动的临界极值问题临界状态是指物体从一种运动状态(或物理现象)转变为另一种运动状态(或物理现象)的转折状态,它既具有前一种运动状态(或物理现象)的特点,又具有后一种运动状态(或物理现象)的特点,起着承前启后的转折作用.由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,常常出现临界和极值问题.1、临界问题的分析思路临界问题的分析对象是临界状态,临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件则称为临界条件,临界条件是解决临界问题的突破点.临界问题的一般解题模式:(1)找出临界状态及临界条件;(2)总结临界点的规律;(3)解出临界量;(4)分析临界量列出公式.2、极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:一是根据题给条件列出函数关系式进行分析、讨论;二是借助于几何图形进行直观分析.例、如图甲所示,在真空中坐标xOy平面的x>0区域内,有磁感应强度B=1.0×10-2T的匀强磁场,方向与xOy平面垂直,在x轴上一点P(10,0)有一放射源,能在xOy平面内向各个方向发射速率v=1.0×104m/s的带正电的粒子,粒子的质量m=1.0×10-25kg(重力不计),粒子带电荷量q=1.0×10-18C,则带电粒子能打到y轴上的范围为多少?解析:粒子的速率一定,故它在磁场中运动的半径一定,本题的关键是找出由于速度方向的变化而导致该圆周与y轴在正、负方向上交点的最高位置与最低位置。

设粒子速度方向开始沿x轴正方向沿逆时针变化,则洛伦兹力方向将沿y轴正方向向逆时针方向变化,当过P点的直径与y轴正方向相交时,粒子打在y轴上的A点距原点O的距离最大,由于x轴负方向无磁场,随着粒子速度方向的继续变化(沿逆时针),粒子打在y轴上的点距原点的距离逐渐减小(不可能打在图中虚线所示直径为PA′的圆交y轴负方向的A′点),当速度方向沿x轴负方向时,圆轨道与y轴负方向相切于C,以后轨道将不与y轴相交,粒子与y轴的交点在A、C之间,如图乙所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理求解带电粒子在有界匀强磁场中运动的临界与极值问
题的方法
由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。

然后应用数学知识和相应物理规律分析求解。

1、两种思路
一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;
二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。

2、两种方法
一是物理方法:
(1)利用临界条件求极值;
(2)利用问题的边界条件求极值;
(3)利用矢量图求极值。

二是数学方法:
(1)利用三角函数求极值;
(2)利用二次方程的判别式求极值;
(3)利用不等式的性质求极值;
(4)利用图像法等。

3、从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示。

审题时,一定要抓住这些特定的词语挖掘其隐藏的规律。

例1、如图1所示,一带正电的质子从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场,已知两板之间距离为d,板长为d,O 点是板的正中间,为使粒子能射出两板间,试求磁感应强度B的大小(质子的带电量为e,质量为m)。

图1
解析:第一种极端情况从M点射出,此时轨道的圆心为O′点,由平面几何知识可得
而带电粒子在磁场中的轨道半径,
第二种极端情况是粒子从N点射出,此时粒子正好走了半个圆,其轨道半径为。

综合上述两种情况,得。

例2、如图2所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,现从矩形区域ad边的中点O处,垂直磁场射入一速度方向与ad边夹角为30°、大小为的带电粒子。

已知粒子质量为m,电量为q,ad边长为l,重力影响不计。

(1)试求粒子能从ab边射出磁场的值。

(2)在满足粒子从ab边射出磁场的条件下,粒子在磁场中运动的最长时间是多少?
图2
解析:(1)由于有界磁场区域的限制,使带电粒子由ab边射出磁场时的速度有一定的范围。

以的较小值和较大值为临界值,可知当较小时,运动轨迹恰好与ab边相切;当较大时,则恰好与dc边相切,然后从ab边穿出,如图3所示。

图3
当速度较小为时,有。

解得
又由半径公式,可得。

当速度较大为时,有。

又由半径公式,可得。

可见,带电粒子在磁场中从ab边射出时,其速度范围应为:
(2)带电粒子在磁场中运动的周期为。

要使带电粒子运动的时间长,其运动轨迹所对的圆心角应最大。

所以当速度为时,粒子在磁场中运动的时间最长。

即有
好友都在看:
剩米饭别再炒了,这样做比炒饭好吃
小明滚出去
谁是十二星座最该忘记的人?
美食 | 铁锅炖排骨,好吃到连汤都抢光!
冬天过了这么久,这4双最基本的鞋你都买齐了吗?
10句英文,痛快表达你的不爽!
英语作文高分万能模板,这些句子一定要会!
汽车颜色的选择,选择不好影响太大!。

相关文档
最新文档