带电粒子在磁场中运动的临界和极值问题

合集下载

磁场中的临界极值问题

磁场中的临界极值问题

带电粒子在磁场中运动的极值问题1.解决此类问题的关键是:找准临界点.2.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角大的,运动时间越长.1 如图7所示, 匀强磁场 的磁感应强度为B,宽度为d,边界为CD和EF.一电子从CD 边界外侧以速率v0垂直匀强磁场射入,入射方向与CD 边界间夹角为θ.已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF 射 出,求电子的速率v 0至少多大?2、如图所示,环状匀强磁场围成的中空区域内具有自由运动的带电粒子,但由于环状磁场的束缚,只要速度不很大,都不会穿出磁场的外边缘,设环状磁场的内半径R 1=0.5m ,外半径R 2=1.0m ,磁场的磁感应强度B=1.0T ,若被束缚的带电粒子的荷质比为 mq 4×107C/kg ,中空区域中带电粒子具有各个方向的速度。

试计算: (1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度;(2)所有粒子不能穿越磁场的最大速度。

4、如图所示一足够长的矩形区域abcd 内充满磁感应强度为B ,垂直纸面向里的匀强磁场,现从矩形区域ad 边的中点O 处,垂直磁场射入一速度方向与ad 边夹角30°,大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为l ,重力影响不计。

(1)试求粒子能从ab 边上射出磁场的v 0的大小范围。

(2)粒子在磁场中运动的最长时间是多少?5如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一四象限有磁场,方向垂直于Oxy 平面向里。

高中物理求解带电粒子在有界匀强磁场中运动的临界与极值问题的方法

高中物理求解带电粒子在有界匀强磁场中运动的临界与极值问题的方法

高中物理求解带电粒子在有界匀强磁场中运动的临界与极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。

然后应用数学知识和相应物理规律分析求解。

1、两种思路一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。

2、两种方法一是物理方法:(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。

二是数学方法:(1)利用三角函数求极值;(2)利用二次方程的判别式求极值;(3)利用不等式的性质求极值;(4)利用图像法等。

3、从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示。

审题时,一定要抓住这些特定的词语挖掘其隐藏的规律。

例1、如图1所示,一带正电的质子从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场,已知两板之间距离为d,板长为d,O 点是板的正中间,为使粒子能射出两板间,试求磁感应强度B的大小(质子的带电量为e,质量为m)。

图1解析:第一种极端情况从M点射出,此时轨道的圆心为O′点,由平面几何知识可得而带电粒子在磁场中的轨道半径,第二种极端情况是粒子从N点射出,此时粒子正好走了半个圆,其轨道半径为。

综合上述两种情况,得。

例2、如图2所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,现从矩形区域ad边的中点O处,垂直磁场射入一速度方向与ad边夹角为30°、大小为的带电粒子。

带电粒子在磁场中运动临界极值多解问题

带电粒子在磁场中运动临界极值多解问题

极值临界问题1、如图所示,宽h=2cm的有界匀强磁场,纵向范围足够大,磁感应强度的方向垂直纸面向内,现有一群正粒子从O点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r=5cm,则()A.右边界:-4cm<y<4cm有粒子射出B.右边界:y>4cm和y<-4cm有粒子射出C.左边界:y>8cm有粒子射出D.左边界:0<y<8cm有粒子射出2、如图所示,磁感应强度大小B=0.15T、方向垂直纸面向里的匀强磁场分布在半径R=0.10m的圆形区域内,圆的左端跟y轴相切于直角坐标系原点O,右端跟荧光屏MN相切于x轴上的A点。

置于原点的粒子源可沿x轴正方向射出速度V0=3.0×106m/s的带正电的粒子流,粒子的重力不计,荷质比q/m=1.0×108C/kg。

现以过O点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上离A的最远距离?3、[2013·南昌二模]如图所示,有一垂直于纸面向外的磁感应强度为B的有界匀强磁场(边界上有磁场),其边界为一边长为L的正三角形,A、B、C为三角形的顶点.今有一质量为m、电荷量为+q的粒子(不计重力),以速度v=3qBL4m从AB边上某点P既垂直于AB边又垂直于磁场的方向射入磁场,然后从BC边上某点Q射出.则( )A.|PB|<2+34L B.|PB|<1+34LC.|QB|≤34L D.|QB|≤12LO4、如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B ,其边界为一等腰直角三角形(边界上有磁场),ACD 为三角形的三个顶点,AC=AD=L 。

今有一质量为m 、电荷量为+q 的粒子(不计重力),以速度=v CD 边上的某点P 既垂直于CD 边又垂直于磁场的方向射入,然后从AD 边上某点Q 射出,则有: ( )A.DP B.DP C .2DQ 3L ≤ D.DQ ≤ 5、如图所示,中轴线PQ 将矩形区域MNDC 分成上、下两部分,上部分充满垂直纸面向外的匀强磁场,下部分充满垂直纸面向内的匀强磁场,磁感应强度皆为B 。

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化(2)轨迹圆圆心一一共线如图所示(图中只画出粒子带正电的情景),速度V。

越大,运动半径也越大可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP,上.2.方法界定以入射点P为定点,圆心位于PP,直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1]如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t。

刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是()A.若该带电粒子从ab边射出,它经历的时间可能为t。

5tB.若该带电粒子从bc边射出,它经历的时间可能为十3C.若该带电粒子从cd边射出,它经历的时间号2tD.若该带电粒子从ad边射出,它经历的时间可能为43[解析]作出从ab边射出的轨迹①、从bc边射出的轨迹②、从cd边射出的轨迹③和从ad边射出的轨迹④.由带正电的粒子从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t o刚好从c点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t o.由图可知,从ab边射出经历的时间一定不大片;从bc边射出经历的时间一定不大于不从cd边射...... . 5t t出经历的时间一定是丁;从ad边射出经历的时间一定不大于可,C正确.3 3[答案]C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为一.一一、 ,.一.一 mv __ _____v,则圆周运动半径为区=”0.如图所示.o qB(2)轨迹圆圆心一一共圆mv 带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=京的圆上. qB2.方法界定mv将一半径为R=氤的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”.qB[典例2]如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T.磁场内有一块平面感光板ab,板面与磁场方向平行.在距ab为l = 16 cm处,有一个点状的a粒子放射源S,它向各个方向发射a粒子,a...................... . .. ....... q . .. ...... . . 粒子的速度都是v=3.0X106 m/s.已知a 粒子的比何m=5.0X107 C/kg,现只考虑在纸面内 运动的a 粒子,求ab 板上被a 粒子打中区域的长度.[解题指导]过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可.[解析]a 粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径, 4 c V 2有 qvB=mR由此得R 瑞代入数值得R=10 cm,可见2R>l>R因朝不同方向发射的a 粒子的圆轨迹都过S,由此可知,某一圆轨迹在下图中N 左侧与 ab 相切,则此切点、就是a 粒子能打中的左侧最远点为确定、点的位置,可作平行于ab 的直线cd, cd 到ab 的距离为R,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的 垂线,它与ab 的交点即为,即:NP=R 2—(1—R) 2 = 8 cm再考虑N 的右侧.任何a 粒子在运动中离S 的距离不可能超过2R,在N 点右侧取一点P 2, 取SP=20 cm,此即右侧能打到的最远点由图中几何关系得NP 2=M (2R) 2 — 12=12 cm所求长度为P 1P 2=NP 1+NP 2代入数值得P 1P 2 = 20 cm.[答案]20 cm考向1带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件 下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3]如图所示,宽度为d 的有界匀强磁场,磁感应强度为B, MM,和NN’是磁场左 右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子 不能从右边界NN,射出,求粒子入射速率的最大值为多少?突破 带电粒子在磁场中运动的多解问题fl 兄 乂尹। x x J V X y K P 2 x b[解题指导]由于粒子电性不确定,所以分成正、负粒子讨论,不从NN,射出的临界条 件是轨迹与NN,相切.[解析]题目中只给出粒子”电荷量为q”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN,相切的(圆弧,则轨道半径R \12 (2+ 2) Bqd ............... 一 一 一一 一 ......3 一 ........... 若q 为负电荷,轨迹是如图所示的下方与NN,相切的工圆弧,则轨道半径又—全解得『=(2-'⑵刎 m…… (2+ 2) Bqd (2— 2) Bqd,[答案] --- 玄 ---- (q 为正电何)或 -- m ----- (q 为负电何)考向2磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考 虑磁感应强度方向不确定而形成的多解.[典例4](多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固mvBq又d=R 解得v=R,mv' Bq M N।■乂 ।1 ।*[典例5](多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强 度为B,板间距离也为1,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从 左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是()定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在 负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重 力)() A. R 瘦 D. m 2qB C .— m D. qB m[解析]根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且 这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力 的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知 _ V2 _ 4BqR v 4Bq4Bqv=m 万,得v= ,此种情况下,负电何运动的角速度为3=5=-;;当负电何所受的R m R m 洛伦兹力与电场力方向相反时,有2B qv=m V2, 丫=等,此种情况下,负电荷运动的角速度v 2Bq为3=R=/",应选A 、C.[答案]AC考向3临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图 m所示.A.使粒子的速度v<Bq15BalB.使粒子的速度v>*C.使粒子的速度丫>平D.使粒子的速度v满足Bq^vV51a1[解析]带电粒子刚好打在极板右边缘,有r2 = (r-1)+12,又因r =%,解得v =誓;i V 12 i Bq i 4m粒子刚好打在极板左边缘,有r=l=M2,解得丫=整,故A、B正确. 2 4 Bq 2 4m[答案]AB考向4带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6]如图所示,在x轴上方有一匀强磁场,磁感应强度为B;x轴下方有一匀强电场,电场强度为E.屏MN与y轴平行且相距L. 一质量m、电荷量为e的电子,在y轴上某点A 自静止释放,如果要使电子垂直打在屏MN上,那么:(1)电子释放位置与原点O的距离s需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?[解题指导]解答本题可分“两步走”:(1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r和L的关系.[解析](1)在电场中,电子从A-O,动能增加eEs=1mv0在磁场中,电子偏转,半径为mv r = o r eB据题意,有(2n+1)r=L一eL2B2 . .所以S=2Em (2n+1)2(n=0,1,2,3,”)⑵在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的2s T T , Ee 2nm运动时间 t=(2n+1)、: w+z+nj,其中 a=%, T=—B-■. । a 乙ui e一— .一 BL , 、nm, 、整理后得 t=^+(2n+1)族("=。

磁场临界、极值

磁场临界、极值

§X3.5带电粒子在磁场中的运动(三)一、带电粒子在有界磁场中运动的极值问题:注意下列结论,再借助数学方法分析:1、刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

2、当速度v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长。

3、注意圆周运动中有关对称规律:如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。

二、洛仑兹力的多解问题带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,使问题形成多解,多解形成原因一般包含下述几个方面。

(1)带电粒子电性不确定形成多解(2)磁场方向不确定形成多解(3)临界状态不唯一形成多解(4)运动的重复性形成多解【典型例题】1、求带电粒子在有界磁场中运动的速度例1、如图所示,宽为d的有界匀强磁场的边界为PQ、MN,一个质量为m,带电量为-q的微粒子沿图示方向以速度v0垂直射入磁场,磁感应强度为B,要使粒子不能从边界MN射出,粒子的入射速度v0的最大值是多大?2、求带电粒子通过磁场的最大偏转角例2、如图所示,r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标O处相切,磁感应强度B=0.332T,方向垂直纸面向外,在O处有一放射源S,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子,已知m a=6.64×10-27kg,q=3.2×10-19C,则α粒子通过磁场最大偏转角等于多少?例3、某电子以固定的正电荷为圆心在匀强磁场中做匀速圆周运动,磁场方向垂直它的运动平面,电子所受电场力恰是磁场对它的作用力的3倍,若电子电荷量为e ,质量为m ,磁感应强度为B ,那么,电子运动的可能角速度是( )A 、4eB/mB 、3 eB/mC 、2 eB/mD 、eB/m【针对训练】1、如图所示一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域,为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感强度为B 的匀强磁场,若此磁场仅分布在一圆形区域内,试求该圆形区域的最小半径(粒子重力不计)。

磁场中的临界和极值问题

磁场中的临界和极值问题
qvB m v2 r
得 v qBd
m(1 sin )
y
o

y
x o
一束带电的粒子以初速度v进入匀强磁场,若初速度 大小 相 同,方向 不同,则所有粒子运动的轨道半径 相同 ,但不同粒子的圆
心位置不同。其共同规律是:
所有粒子的圆心都在 以射入点为圆心、半径等于入射 粒子轨迹半径 的圆上。 我们将这样的一组圆称为“转动圆”。
带电粒子在有界匀强磁场中 运动的临界和极值问题
1.带电粒子在匀强磁场中做匀速圆周运动的半径公式
r mv qB
2.带电粒子在匀强磁场中做匀速圆周运动的周期公式
T 2 m
qB
3.求带电粒子在匀强磁场中做匀速圆周运动时间的公式
t T m 2 qB
带电粒子在有界磁场中运动的几种常见情形 (1)直线边界(进出磁场具有对称性,如图所示)
2、转动圆 速度 大小不变,速度方向 发生变化,圆的大小 不 变,绕 射入点转动。
如图,磁感应强度为B的匀强磁场垂直于 纸面向里,PQ
为该磁场的右边界线,磁场中有一点O到PQ的距离为r。
现从点O以同一速率将相同的带负电粒子向纸面内各个不
同的方向射出,它们均做半径为r的匀速圆周运动,求带
电粒子打在边界PQ上的范围(粒子的重力不计)。
y
v0
O
x
解1: 电子由O点射入第Ⅰ象限做匀速
y
圆周运动
ev0
B
m
v02 r
r= mv0 eB
所有电子的轨迹圆半径相等,且均过 v0
O点。这些轨迹圆的圆心都在以O为圆 O 心,半径为r的且位于第Ⅳ象限的四分 之一圆周上,如图所示。
O1
x
O2
O3

带电粒子在匀强磁场中运动的临界极值问题(解析版)

带电粒子在匀强磁场中运动的临界极值问题(解析版)

带电粒子在匀强磁场中运动的临界极值问题由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.1.临界条件的挖掘(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速率v一定时,弧长(或弦长)越长,圆心角越大(前提条件是劣弧),则带电粒子在有界磁场中运动的时间越长。

(3)当速率v变化时,轨迹圆心角越大,运动时间越长。

(4)当运动轨迹圆半径大于圆形磁场半径时,则以磁场直径的两端点为入射点和出射点的轨迹对应的偏转角最大。

2.不同边界磁场中临界条件的分析(1)平行边界:常见的临界情景和几何关系如图所示。

(2)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。

(3)三角形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。

粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。

3. 审题技巧许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.【典例1】如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点。

一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场。

现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,下列说法中正确的是( )A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 【答案】 AC 【解析】 如图所示,【典例2】放置在坐标原点O 的粒子源,可以向第二象限内放射出质量为m 、电荷量为q 的带正电粒子,带电粒子的速率均为v ,方向均在纸面内,如图8-2-14所示.若在某区域内存在垂直于xOy 平面的匀强磁场(垂直纸面向外),磁感应强度大小为B ,则这些粒子都能在穿过磁场区后垂直射到垂直于x 轴放置的挡板PQ 上,求:(1)挡板PQ 的最小长度; (2)磁场区域的最小面积. 【答案】 (1)mv Bq (2)⎝⎛⎭⎫π2+1m 2v 2q 2B2【解析】 (1)设粒子在磁场中运动的半径为R ,由牛顿第二定律得qvB =mv 2R ,即R =mvBq【跟踪短训】1. 在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图8-2-24所示.不计重力的影响,则下列关系一定成立的是( ).A .若r <2mv qB ,则0°<θ<90° B .若r ≥2mv qB ,则t ≥πmqBC .若t =πm qB ,则r =2mv qBD .若r =2mv qB ,则t =πmqB【答案】 AD【解析】 带电粒子在磁场中从O 点沿y 轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x 轴上,轨道半径R =mv qB .当r ≥2mvqB 时,P 点在磁场内,粒子不能射出磁场区,所以垂直于x 轴过P 点,θ最大且为90°,运动时间为半个周期,即t =πm qB ;当r <2mvqB 时,粒子在到达P 点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x 轴的粒子的速度偏转角φ>90°,所以过x 轴时0°<θ<90°,A 对、B 错;同理,若t =πmqB ,则r ≥2mv qB ,若r =2mv qB ,则t 等于πm qB,C 错、D 对. 2. 如图所示,磁感应强度大小为B =0.15 T 、方向垂直纸面向里的匀强磁场分布在半径为R =0.10 m 的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O ,右端跟很大的荧光屏MN 相切于x 轴上的A 点。

超全带电粒子在有界磁场中运动的临界问题极值问题和多解问题

超全带电粒子在有界磁场中运动的临界问题极值问题和多解问题

二.带电粒子在平行直线边界磁场中的运动
QP
P
QPQ
B
S 圆心在磁场
原边界上
S
圆心在过入射点跟 边界垂直的直线上
S
圆心在过入射点跟跟速 度方向垂直的直线上
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
பைடு நூலகம்
后从原边界飞出;②速度在某一范
围内从上侧面边界飞;③速度较大
时粒子做部分圆周运动从右侧面边
界飞出;④速度更大时粒子做部分
圆周运动从下侧面边界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
(1)若使电子源发射的电子能到达挡 板,则发射速度最小为多大?
(2)如果电子源S发射电子的速度为 第(1)问中的2倍,则挡扳上被电子击中 的区域范围有多大?
(2)要使正离子从O′孔垂直于N 板射出磁场,正离子射入磁场时的速 度v0的可能值.
量变积累到一定程度发生质变,出现临界状态
三.带电粒子在矩形边界磁场中的运动
B
o
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
圆心在
过入射
点跟速
d
c 度方向
垂直的
直线上 B
θ
a
b
①速度较小时粒子做部分圆周运动
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出

带电粒子在有界磁场中运动的临界极值问题和多解问题

带电粒子在有界磁场中运动的临界极值问题和多解问题

第八章 第4节
高考调研
高三物理(新课标版)
受洛伦兹力作用的带电粒子,可能带正电,也可能 带负电,在相同的初速度的条件下,正、负粒子在磁场 中运动的轨迹不同,形成多解.
如图所示,带电粒子以速率 v 垂直进入匀强磁场, 如果带正电,其轨迹为 a;如果带负电,其轨迹为 b.
第八章 第4节
高考调研
高三物理(新课标版)
第八章 第4节
高考调研
高三物理(新课标版)
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
(1)若使电子源发射的电子能到达挡板,则发射 速度最小为多大?
(2)如果电子源S发射电子的速度为第(1)问中的2 倍,则挡扳上被电子击中的区域范围有多大?
第八章 第4节
高考调研
高三物理(新课标版)
【解析】 (1)电子射出方向不同,其在匀强磁场中 的轨迹不同,每个电子的圆轨道的圆心都位于以射出点 S 为圆心、半径 r=mBev的圆弧上,如图所示.欲使电子有 可能击中挡板,电子的轨道半径至少为L2,如图所示.
第八章 第4节
高考调研
高三物理(新课标版)
4.运动的重复性形成多解:带电粒子在部分是电场、 部分是磁场空间运动时,往往运动具有⑦__周_期__性___,因 而形成多解.
第八章 第4节
高考调研

带电粒子在匀强磁场中的运动(临界值和极值问题)

带电粒子在匀强磁场中的运动(临界值和极值问题)

∴ θ =30° 0 2 60 最大偏向角为
最长时间为
t
R 2 v0
6.0 10 2 1.2 10 6
2

6 s 5.2 10 8 s
(2)因
' mv0 R 1.5 10 2 m r qB
所以粒子在磁场中出现的区 域为图所示(以ao为直径的 半圆和以a为圆心oa为半径的 圆与磁场相交的部分)。 比荷相同的带电粒子在同一磁场中运动时,由 T 2m qB 和 t T 知,粒子在磁场中运动的时间由粒子 2 转过的圆心角决定。圆心角越大,时间越长。 若速率也相同(R同),轨迹越长或对应的弦越长, 运动的时间越长。
a
6cm
b
返回
解:(1)设轨迹半径为R
R 6.0 10 2 m
因R>r,所以要使粒子在磁场中运动的 时间最长,则粒子在磁场中运动的圆 a 弧所对应的圆心角应最大,即沿以直 径ab为弦R为半径的圆弧运动所用的时 间最长,此时的偏向角也最大。 由图知,
6cm θ
b
sin
r R

1 2
S
Байду номын сангаас v
解:α 粒子带正电,故在磁场中沿 逆时针方向做匀速圆周运动,用R表 v2 示轨道半径,有 qvB m
R
由此得
代入数值得R=10cm
可见,2R>l >R.因朝不同方向发射的α粒子的圆轨迹都过S,由 此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是粒 子能打中的左侧最远点.为定出P1点的位置,可作平行于ab的直 线cd,cd到ab的距离为R,以S为圆心,R为半径,作弧交cd于 Q点,过Q作ab的垂线,它与ab的交点即为P1. 再考虑N的右侧。任何粒子在运动中离S的距离不可能超过2R, 以2R为半径、S为圆心作圆,交ab于N右侧的P2点,此即右侧能 所求长度为 打到的最远点.由图中几何关系得 代入数值得 P1P2=20cm

带电粒子在磁场中运动的临界和极值问题动态放缩法的分析和应用

带电粒子在磁场中运动的临界和极值问题动态放缩法的分析和应用

带电粒子在磁场中运动的临界和极值问题动态放缩法的分析和应用摘要:带电粒子在磁场中运动的临界和极值问题是高中磁场部分教学中的难点,在高考中考查的频率很高,本知识点既联系了匀速圆周运动的内容,又承接带电粒子在磁场中所受洛伦兹力的内容,既是力学知识和电磁学知识的综合体现,又是临界极值问题的全新知识模型的建构,对学生的思维能力要求较高,可以很好地考察学生的核心素养。

由于带电粒子往往是在有界磁场中的运动的,粒子在磁场中只运动一段圆弧就飞出磁场,其轨迹不是完整的圆。

这类问题往往根据带电粒子的运动轨迹做出相关图示去寻找几何关系,分析临界条件,然后应用数学知识和相应的物理规律分析求解。

关键词:有界磁场;动态放缩法;临界问题;极值问题1.动态放缩法在空间内存在一个无限大的匀强磁场。

一个带负电的粒子以某一速度垂直进入该磁场,那么该粒子就会在洛伦兹力的作用下做匀速圆周运动。

根据洛伦兹力提供向心力就可以得出R=mv/qB,当粒子速度增大时,轨道半径不断增大,轨迹圆不断变大。

那如果现在限定这个磁场是一个有界磁场。

则粒子在磁场中的运动就存在了临界极值问题。

比如,当磁场边界缩小到与运动轨迹相切时,那么轨迹与边界的切点便是粒子运动的临界点或极值点。

当带电粒子在有界磁场中运动,粒子速度同向不同速时,其做圆周运动的圆心都在磁场边界上,v的大小或者B变化时,轨道半径随即变化。

可以入射点为定点做出半径不同的一系列轨迹。

当轨迹与右边界相切时,粒子恰好能从左边界射出磁场,即恰好不能从右边界射出磁场。

这种以入射点为定点做出半径不同的一系列轨迹,来确定粒子运动的临界和极值问题的方法称为动态放缩法。

画出与边界相切的临界轨迹、找到临界点、极值点,根据几何关系确定临界极值条件是解决问题的关键。

2.双边界磁场的临界极值问题如图1,不同速率的带点粒子垂直进入有界磁场,根据左手定则可以判断带电粒子在磁场中做圆周运动的圆心都在它所受到的洛伦兹力的方向上。

粒子速率不同、轨道半径就不同,磁感应强度B的大小不同、轨道半径也不同,动态放缩法就是以入射点为定点,在磁场中做出半径不同的一系列轨迹圆,尤其要关注的是与磁场边界相切的轨迹圆,切点往往粒子运动的临界和极值点。

带电粒子在磁场中运动之临界与极值问题

带电粒子在磁场中运动之临界与极值问题

考点4.6 临界与极值问题考点4.6.1 “放缩圆”方法解决极值问题1、圆的“放缩”当带电粒子射入磁场的方向确定,但射入时的速度v 大小或磁场的强弱B 变化时,粒子做圆周运动的轨道半径r 随之变化.在确定粒子运动的临界情景时,可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.如图所示,粒子进入长方形边界OABC 形成的临界情景为②和④.1. (多选)如图所示,左、右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电荷量为q的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.(2+2)Bqd mC.(2-2)Bqd mD.2Bqd 2m2. (2016·全国卷Ⅲ,18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。

一带电粒子的质量为m ,电荷量为q (q >0)。

粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。

已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM 上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两平面交线O 的距离为( )A.mv 2qBB.3mv qBC.2mv qBD.4mv qB3. (多选)长为L 的水平极板间,有垂直纸面向内的匀强磁场,如下图所示,磁感应强度为B ,板间距离也为L ,板不带电,现有质量为m ,电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A 、使粒子的速度v <BqL 4m B 、使粒子的速度v >5BqL 4m C 、使粒子的速度v >BqL m D 、使粒子速度BqL 4m <v <5BqL 4m4. 如图所示,边长为L 的正方形ABCD 区域内存在磁感应强度方向垂直于纸面向里、大小为B 的匀强磁场,一质量为m 、带电荷量为-q 的粒子从AB 边的中点处垂直于磁感应强度方向射入磁场,速度方向与AB 边的夹角为30°.若要求该粒子不从AD 边射出磁场,则其速度大小应满足( )A .v ≤2qBL mB .v ≥2qBL mC .v ≤qBL mD .v ≥qBL m5. 如图所示,条形区域AA ′、BB ′中存在方向垂直于纸面向外的匀强磁场,磁感应强度为B ,AA ′、BB ′为磁场边界,它们相互平行,条形区域的长度足够长,宽度为d .一束带正电的某种粒子从AA ′上的O 点以大小不同的速度沿着AA ′成60°角方向射入磁场,当粒子的速度小于某一值v 0时,粒子在磁场区域内的运动时间为定值t 0;当粒子速度为v 1时,刚好垂直边界BB ′射出磁场.不计粒子所受重力.求:(1) 粒子的比荷q m;(2) 带电粒子的速度v 0和v 1.6. 如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m ,带电荷量为q ,假设粒子速度方向都和纸面平行.(1) 图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 点,则初速度的大小是多少?(2) 要使粒子不穿出环形区域,则粒子的初速度不能超过多少?7.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.8.如图所示,OP曲线的方程为:y=1-0.4 6.25-x(x,y单位均为m),在OPM区域存在水平向右的匀强电场,场强大小E1=200N/C(设为I区),PQ右边存在范围足够大的垂直纸面向内的匀强磁场,磁感应强度为B=0.1T(设为Ⅱ区),与x轴平行的刚上方(包括PN存在竖直向上的匀强电场,场强大小E2=100N/C(设为Ⅲ区),PN的上方h=3.125m处有一足够长的紧靠y轴水平放置的荧光屏AB,OM的长度为a=6.25m。

高中物理带电粒子在有界磁场中运动临界问题极值问题和多解问题

高中物理带电粒子在有界磁场中运动临界问题极值问题和多解问题

(1)综合③④结论知,所有从 ab 上射出的粒子的入射 速度 v0 的范围应为q3Bml<v0<qmBl.
临界状态(轨迹与边界相切)
d
c
临界Байду номын сангаас态
B
θv
(轨迹与边界相切)
a
b
圆心在过入射点跟速度方向垂直的直线上
①速度较小时粒子做部分圆周运动后从原边界飞出;
②速度在某一范围内从上侧面边界飞;
③速度较大时粒子做部分圆周运动从右侧面边界飞出;
④速度更大时粒子做部分圆周运动从下侧面边界飞出。
例1 如图所示,S为一个电子源,它可以在纸面 内360°范围内发射速率相同的质量为m、电量为e的 电子,MN是一块足够大的挡板,与S的距离OS=L, 挡板在靠近电子源一侧有垂直纸面向里的匀强磁场, 磁感应强度为B,问:
PQ
v
S
圆心在过入射点跟跟速度方向垂直的直线上 ①速度较小时,作圆弧运动后从原边界飞出; ②速度增加为某临界值时,粒子作部分圆周运动其轨 迹与另一边界相切; ③速度较大时粒子作部分圆周运动后从另一边界飞出
量变积累到一定程度发生质变,出现临界状态
二、带电粒子在矩形边界磁场中的运动
vB
o
圆心在磁场原边界上 ①速度较小时粒子作半圆运动后从原边界飞出; ②速度在某一范围内时从侧面边界飞出; ③速度较大时粒子作部分圆周运动从对面边界飞出。
(1)若使电子源发射的电子能到达 挡板,则发射速度最小为多大?
(2)如果电子源S发射电子的速度 为第(1)问中的2倍,则挡扳上被电子 击中的区域范围有多大?
【解析】 (1)电子射出方向不同,其在匀强磁场中 的轨迹不同,每个电子的圆轨道的圆心都位于以射出点 S 为圆心、半径 r=mBev的圆弧上,如图所示.欲使电子有 可能击中挡板,电子的轨道半径至少为L2,如图所示.

超全带电粒子在有界磁场中运动的临界问题极值问题和多解问题

超全带电粒子在有界磁场中运动的临界问题极值问题和多解问题
③设轨道与 cd 相切的粒子,其轨道半径为 R1,由几 何关系可得
R1sin30°+2l =R1
第21页,共45页。
解得 R1=l,由公式 qvB=mv2/R,得该轨道上粒子 速度为 v01=qmBl.
④对于从 ab 射出的、速度最小的粒子,其轨道应与 ab 相切,设切点为 N,圆心为 O2,半径为 R2,则 R2+ R2cos60°=12l,解得 R2=13l,由 qvB=mv2/R 可得 v02=q3Bml.
第23页,共45页。
从 ad 边上射出,转过的角度均为53π,这些粒子在磁场中 运动的时间最长,tmax=53πqmB .
【答案】
(1)q3Bml<v0<qmBl
5πm (2)3qB
第24页,共45页。
二、带电粒子在磁场中做匀速圆周运动的多解问题 规律方法 1.带电粒子电性不确定形成多解
第25页,共45页。
超全带电粒子在有界磁场中运动 的临界问题极值问题和多解问题
第1页,共45页。
一、带电粒子在有界磁场中运动的临界极值问题 1.刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界①__相__切____. 2.当速度 v 一定时,弧长(或弦长)越长,圆周角越大, 则带电粒子在有界磁场中运动的时间②___越__长___.
第22页,共45页。
(1)综合③④结论知,所有从 ab 上射出的粒子的入射 速度 v0 的范围应为q3Bml<v0<qmBl.
(2)带电粒子在磁场中运动的时间 t=ωθ =vθ=qθBRR= Rm
θqmB,由此可知,t 取决于粒子在磁场中转过的角度,从上 面的分析可以推知,当粒子轨道半径 R≤R2 时,粒子均
则粒子再经过半圆 Cn+1 就能够经过原点,式中 n= 1,2,3……为回旋次数.

高中物理 磁场(三)带电粒子在匀强磁场中运动的临界极值问题与多解问题

高中物理 磁场(三)带电粒子在匀强磁场中运动的临界极值问题与多解问题

带电粒子在匀强磁场中运动的临界极值问题与多解问题一、带电粒子在磁场中运动的临界极值思维方法物理系统由于某些原因而要发生突变时所处的状态,叫做临界状态.突变过程是从量变到质变的过程,在临界状态的前后,系统服从不同的物理规律,按不同的规律变化。

在高考试题中涉及的物理过程中常常出现隐含着一个或几个临界状态,需要通过分析思考,运用所学的知识和已有的能力去分析临界条件,挖掘出临界值,那么如何确定它们的临界条件?下面介绍三种寻找临界点的两种有效方法:1.对称思想带电粒子垂直射入磁场后,将做匀速圆周运动。

分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ 线间的夹角(也称为弦切角)相等,并有==2=t,如图所示。

应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷。

【典例】如图所示,半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题指导】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。

【名师点睛】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。

2.放缩法带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大。

第八章第4节 带电粒子在有界磁场中运动的临界极值问题和多解问题

第八章第4节 带电粒子在有界磁场中运动的临界极值问题和多解问题

(1)若使电子源发射的电子能到达挡板,则发射速度 最小为多大? (2)如果电子源 S 发射电子的速度为第(1)问中的 2 倍, 则挡扳上被电子击中的区域范围有多大?
________________________________________ _______________________________________________ _______________________________________________ _______________________________________________ _______________________________________________
此时,从电子发射源发出的电子能击中挡板的最左 位置 A 和最右位置 C,如图所示,虚线圆是一系列轨迹 圆的圆心.
由几何关系知 OA= AS2-OS2 AS=2r′ OS=r′ OC=r′
解得 OA= 3L,OC=L 故被电子打中的区域长度为 AC=OA+OC=(1+ 3)L.
【答案】 BeL (1) 2m (2)(1+ 3)L
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”. (2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
3.临界状态⑥________形成多解:带电粒子在洛伦 兹力作用下飞越有界磁场时,由于粒子运动速度不同, 因此,它可能穿过去了,可能转过 180° 从入射界面这边 反向飞出,如图所示,于是形成多解.

带电粒子在磁场中地临界极值问题

带电粒子在磁场中地临界极值问题

带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点. 找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v 0从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d ,板长为d ,O 点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e ,质量为m ).2.偏角的极值问题例2 在真空中,半径r =3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=1×106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q m=1×108C/kg ,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.3.时间的极值问题例3 如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值Um;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4 如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档