管理类联考数学公式大全
管综数学公式总结
管综数学公式总结以下是管综数学中常用的一些公式总结,供您参考:1. 算术平均数与几何平均数算术平均数:$\frac{x_1 + x_2 + \cdots + x_n}{n}$几何平均数:$g = \sqrt[n]{x_1 \cdot x_2 \cdots x_n}$算术平均数与几何平均数之间的关系:$\frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 \cdot x_2 \cdots x_n}$2. 平方差公式:$a^2 - b^2 = (a + b)(a - b)$3. 完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 - 2ab + b^2$4. 平方和公式:$1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$1^2 + 3^2 + \cdots + (2n-1)^2 = \frac{n(4n^2 - 1)}{3}$5. 等差数列的通项公式:$a_n = a_1 + (n-1)d$6. 等差数列的求和公式:公式法:$S_n = \frac{n}{2} [2a_1 + (n-1)d]$倒序相加法:$S_n = \frac{n}{2} [a_1 + a_n]$7. 等比数列的通项公式:$a_n = a_1 \cdot q^{n-1}$8. 等比数列的求和公式:$S_n = \frac{a_1(1 - q^n)}{1 - q}$9. 二项式定理展开式:$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1}b + C_n^2 a^{n-2}b^2 + \cdots + C_n^n b^n$这些公式是管综数学中的基础,熟练掌握这些公式对于解题至关重要。
高中数学管理类联考数学公式大全(20200616025805)
x = x1
x2
1
y = y1 y2 1
若 A( x1 , y1), B(x2 , y2 ), C (x3, y3 ) , 则 △ ABC 的 重 心 G 的 坐 标 是
x1 x2 x3 ,y1 y2 y3 。
3
3
6、求直线斜率的定义式为
k= tg , 两点式为 k= y2 y1 。 x2 x1
7、直线方程的几种形式:
4 r3。 3
4、 侧面积:
直棱柱侧面积: S c h , 斜棱柱侧面积: S c l ;
正棱锥侧面积: S 1 c h , 正棱台侧面积: S 1 (c c )h ;
2
2
圆柱侧面积: S c h 2 rh , 圆锥侧面积: S 1 c l rl , 2
圆台侧面积: S 1 (c c )l 2
( R r )l , 球的表面积: S 4 r 2 。
2 11 ab
ab ab
2
a2 b2 2
4、 双向不等式是: a b a b a b
左边在 ab 0( 0) 时取得等号, 右边在 ab 0( 0) 时取得等号。
八、 数列
1、等差数列的通项公式是
1 = na1 n( n 1)d 。
2
2、等比数列的通项公式是
a n a1 ( n 1)d , 前 n 项和公式是: Sn
a b a2 ab b2 ;
(3) an bn a b an 1 an 2b ... bn 1
三、分式裂项
(1) 1
11
x( x 1) x x 1
1
( 2)
1 (1
1)
( x a)( x b) b a x a x b
四、指数运算
管理类联考综合—数学核心公式
数学核心公式一、幂、指、对数的运算公式1 、a≠0时,a⁰=1;log¹=02、:3 、a".a"=am;a"÷a*= a"-n4、;5、;尤其m=1F;尤其m=n时,6、 (换底公式),一般c取10或e.二、绝对值1、非负性:即|al≥0,任何实数a 的绝对值非负。
归纳:所有非负性的变量(1) 正的偶数次方(根式)(2) 负的偶数次方(根式)2、三角不等式,即|a|-bl≤|a+b| ≤la|+|b|左边等号成立的条件:a b≤0且al≥1bI右边等号成立的条件:a b≥0三、比和比例1、合分比定理:2、等比定理:四、平均值1、当x,x₂, ……,xa为n 个正数时,它们的算术平均值不小于它们的几何平均值,即当且仅当x₁=x₂= ……=x₂时,等号成立。
2 、a+b≥2√ab (a,b>0)3、(a>0)五、整式和分式1、乘法公式(1)(a±b)²=a²±2ab+b²(2)(a+b+c)²=a²+b²+c²+2ab+2ac+2bc(3)(a±b)³=a³±3a²b+3ab²±b³(4)a²-b²=(a+b)(a-b)(5)a³±b³=(a±b)(a²干ab+b²)2、除法定理设f(x)除以p(x), 商为g(x), 余式为r(x), 则有f(x)=g(x)p(x)+r(x), 且r(x)的次数小于p(x) 的次数。
当r(x)=0, 则f(x) 可以被p(x) 整除。
3、余式定理多项式f(x) 除以ax-b 的余式为4、因式定理多项式f(x)含有因式六、方程1、判别式(a,b,c ∈R)2、根与系数的关系x₁,x₂是方程ax²+bx+c=0(a≠0)的两个根,则3、韦达定理的应用(1)七、数列1 、aa 与Sa 的关系(1)已知an,求S(2)已知S,求aa2、等差数列(1)通项:a a=a₁+(n- 1)d(2)前n项和Sa(3)通项:a+an=ag+a,(m+n=k+t)(4)前n项和性质:Sa,S₂n-Sa,S₃n—S₂mL仍为等差数列,公差为n²d.(5)等差数列{an}和{bn}的前n项和分别用Sn和Tn表示,则4、等比数列注意:等比数列中任一个元素不为0(1)通项:an =a₁q²-(2)前n 项项和公式:(3)所有项和S对于无穷等比递缩(H|<1,q≠0)数列,所有项和为(4)通项性质:am ·az=a ·a(m+n=k+t)(5)前n项和性质:Sn,S₂n—Sn,S₃n-S₂n)L仍为等比数列,公比为qP(6)八、排列组合组合公式排列公式;九、概率初步1 、P(A+B)=P(A)+P(B)2、P(A)=1-P(A)3 、P(AB)=P(A) ·P(B)4、独立重复事件(A 、B互斥) (A 、B独立)(1)贝努里:n 次试验中成功k 次的概率(2)直到第k 次试验,A 才首次发生P =q²- ·p(3)做n 次贝努里试验,直到第n 次,才成功k 次,十、常见平面几何图形1、三角形(1)直角三角形常用勾股数:3 , 4 , 5 ; 6 , 8 , 1 0 ; 7 , 2 4 , 2 5 ; 8 , 1 5 , 1 7 ; 9 , 1 2 , 1 5 ; 9 , 4 0 , 4 1 等腰直角三角形三边之比:1:1:√2内角为30°、60°、90°的直角三角形三边比为:1:√③:2(2)等边三角形面积; 高;外接圆半径;内切圆半行2、四边形 (a、b 为边长, h 为高,面积为S)(1)矩形:面积S=ab,周长L=2(a+b),对角线长= √a²+b⁻(2)平行四边形:面积S=bh,周长L=2(a+b),对角线长=√a²+b³(3)梯形:面积3、圆和扇形(1)圆形:设半径为r, 直径为d, 周长1=2πr=πd(2)扇形:设圆心角为α,半径为r (注意α用弧度制)弧长1=rθ面积4、几个特殊的三角函数值十一、平面解析几何1、两点距离两点A(x,y)与B(x,y₂)之间的距离:d=√(x-x)²+(y₁-y₂) 2、直线方程一般式:Ax+By+C=0斜截式:y= kx+b点斜式:y-yo=k(x-x)截距式:(a≠0且b≠0)3、两条直线的位置关系(设不重合的两条直线)l:Ax+By+C₁=0 ,l₂:Ax+B₂y+C₂=0 (1) 相交:若AB₂-AB≠0,方程组有惟一的解(x o,yo)。
管理类综合数学公式大全
管理类综合数学公式大全以下是一些常见的管理类综合数学公式大全:1. 基本运算法则:- 加法法则:a + b = b + a- 减法法则:a - b ≠b - a- 乘法法则:a ×b = b ×a- 除法法则:a ÷b ≠b ÷a(当a和b不等于0时)2. 百分数计算:- 百分数表示法:a% = a/100- 百分数的加法和减法:a% + b% = (a + b)%,a% - b% = (a -b)%3. 比例关系:- 比例关系定义:a:b = c:d 表示a与b之间的比例等于c 与d之间的比例- 比例的倒数关系:a:b = 1/b:1/a4. 平均数:- 算术平均数:平均数= 总和/ 数据个数- 加权平均数:加权平均数= (数据1 ×权重1 + 数据2 ×权重2 + ... + 数据n ×权重n) / (权重1 + 权重2 + ... + 权重n)5. 百分比增长与减少:- 百分比增长率:增长率= (当前值- 原始值) / 原始值×100%- 百分比减少率:减少率= (原始值- 当前值) / 原始值×100%6. 利息与利率:- 简单利息:利息= 本金×利率×时间- 复利公式:本利和= 本金×(1 + 利率)^时间7. 阶乘:- n的阶乘:n! = n ×(n-1) ×(n-2) ×... ×3 ×2 ×18. 等差数列:- 第n项公式:a_n = a_1 + (n - 1) ×d- 前n项和公式:S_n = (a_1 + a_n) ×n / 29. 等比数列:- 第n项公式:a_n = a_1 ×r^(n-1)- 前n项和公式:S_n = a_1 ×(1 - r^n) / (1 - r)这些公式只是管理类综合数学中的一部分,还有很多其他公式用于解决各种问题。
管理类联考数学公式大全pdf
管理类联考数学公式大全pdf一、代数公式:1. 二次方程公式:对于二次方程ax^2+bx+c=0,其根可以通过公式x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}求得。
2.因式分解公式:对于二次三次等多项式,可以通过因式分解公式将其分解成两个或多个因式的乘积。
3. 二项式展开公式:根据二项式定理,对于任意实数a和b以及自然数n,(a+b)^n=a^n+na^{n-1}b+\frac{n(n-1)}{2}a^{n-2}b^2+...+b^n。
二、几何公式:1. 直线斜率:直线的斜率可以通过斜率公式k=\frac{y_2-y_1}{x_2-x_1}求得,其中(x_1,y_1)和(x_2,y_2)为直线上的两个点的坐标。
2. 圆的面积公式:圆的面积可以通过面积公式A=\pi r^2求得,其中r为圆的半径。
3. 三角形的面积公式:对于三角形ABC,其面积可以通过海伦公式A=\sqrt{s(s-a)(s-b)(s-c)}求得,其中a、b、c为三角形的边长,s为半周长s=\frac{a+b+c}{2}。
4.直角三角形的勾股定理:对于直角三角形ABC,其两直角边长度分别为a和b,斜边长度为c,满足a^2+b^2=c^2三、概率统计公式:1. 期望公式:对于一个随机变量X,其期望可以通过公式E(X)=\sum{xP(X=x)}求得,其中x为可能的取值,P(X=x)为X取到x的概率。
2. 方差公式:方差表示随机变量的离散程度,可以通过公式Var(X)=E[(X-E(X))^2]求得。
3. 正态分布公式:对于正态分布的随机变量X,其概率密度函数f(x)可以通过公式f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}求得,其中\mu为均值,\sigma为标准差。
以上只是数学公式的一部分,管理类联考数学公式实际上还包括更多内容,如排列组合、函数、微积分等。
管理类联考数学公式大全
管理类联考数学公式大全在管理类联考中,数学是一个非常重要的科目,涉及到很多与数学相关的计算、分析和决策问题。
以下是一些在管理类联考中常用的数学公式:1.变量关系公式相关系数公式:r = ∑((xi - x̄)(yi - ȳ))/√((∑(xi -x̄)²)(∑(yi - ȳ)²)线性回归公式:y = a + b复利公式:A = P(1 + r/n)^(nt2.概率与统计公式期望:E(x)=∑(x*P(x)方差:Var(x) = E((x - µ)²标准差:SD(x) = √Var(x正态分布:z=(x-µ)/3.成本与收入公式利润公式:利润=总收入-总成边际成本:MC(x)=∆TC/∆边际收入:MR(x)=∆TR/∆4.价格与需求公式需求函数:Qd=a-b供给函数:Qs=c+d市场均衡:Qd=Q5.折现与净现值公式现值公式:PV=FV/(1+r)^净现值公式:NPV=∑(CFt/(1+r)^t)-C6.线性规划公式目标函数:Z=c₁x₁+c₂x₂+...+c̄x约束条件:a₁₁x₁+a₁₂x₂+...+a₁̄x̄≤ba₂₁x₁+a₂₂x₂+...+a₂̄x̄≤b₂...ā₁x₁+ā₂x₂+...+ā̄x̄≤b̄7.运输问题公式最小运输成本:Z=∑(c̄̄x̄̄供需平衡:∑(x̄̄)=ā,∑(x̄̄)=b8.描述统计公式平均数:x̄=∑(x)/中位数:Me=(n+1)/众数:Mode = x with the highest frequenc 百分位数:P̄=(m/100)(n+1这些公式是管理类联考中常用的一些数学公式,可以帮助解决各种与数学相关的问题。
但是在考试中,重要的不仅仅是记住这些公式,还需要理解公式的含义和用途,以及如何在实际问题中灵活运用这些公式进行计算和分析。
因此,在备考过程中,不仅要记住这些公式,还要进行大量的练习和实践,加强对公式的理解和应用能力。
MBA数学公式大全
管理类MBA联考数学必背公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h 83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3 三边对应成比例,两三角形相似(sss) 95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
管理类联考数学应用题公式技巧总结
3.沿途数车问题公式:发车时间间隔 T= 2t1t2 车速/人速=(t1+t2)/ (t2-t1) t1 t2
例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不 变速度不停地运行,没隔 6 分钟就有辆公共汽车从后面超过她,每隔 10 分钟就 遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的( )倍? A. 3 B.4 C. 5 D.6 解:车速/人速=(10+6)/(10-6)=4 选 B 4.往返运动问题公式:V 均=(2v1*v2)/(v1+v2) 例题:一辆汽车从 A 地到 B 地的速度为每小时 30 千米,返回时速度为每小时 20 千米,则它的平均速度为多少千米/小时?( ) A.24 B.24.5 C.25 D.25.5 解:代入公式得 2*30*20/(30+20)=24 选 A
这两艘船在距离乙岸 400 米处又重新相遇。问:该河的宽度是多少?
A. 1120 米 B. 1280 米 C. 1520 米 D. 1760 米
典型两次相遇问题,这题属于两岸型(距离较近的甲岸 720 米处相遇、距离乙
岸 400 米处又重新相遇)代入公式 3*720-400=1760 选 D
如果第一次相遇距离甲岸 X 米,第二次相遇距离甲岸 Y 米,这就属于单岸型了,
握手是互相的都重复多计算一次,所以再除以2)
例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相
邻的2个人握手,整个游戏一共握手152次, 请问这个班的同学有( )人
A、16 B、17 C、18 D、19
【解析】每个人需要握 x-3次手(自己加相邻的2个人共3次)。每个人都是
这样。则总共握了 x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。
管理类联考形式逻辑公式
逻辑推理公式1.判断(P)与其负判(¬P)断是矛盾关系,矛盾关系一真一假;2.P∧Q表示,P与Q两个判断同时存在;3.P∨Q表示,P Q P∨Q真真真真假真假真真假假假4.;5.德摩根定律¬(P∧Q)=¬P∨¬Q¬(P∨Q)=¬P∧¬Q6.选言假言置换公式P∨Q=¬P→Q=¬Q→P7.假言判断如果P那么Q:P→Q前推后只有P才Q:¬P→¬Q=Q→P后推前P Q P→Q真真真真假假假真真假假真即:¬(P→Q)=P∧¬Q充分必要条件假言判断逻辑形式:P当且仅当Q。
(如果而且只有……才,如果……那么……并且只有……才)P Q P当且仅当Q真真真真假假假真假假假真8.假言推理肯前肯后,否后否前除非P否则Q:¬P→QP当且仅当Q需同时满足:P→Q(¬Q→¬P)、Q→P(¬P→¬Q)9.连锁推理如果P,那么Q;如果Q,那么R。
所以,如果P,那么R。
10.性质判断所有是(一切、凡是、任何、每一个、皆)有的S P(有些、许多、大多数、少量、存在某个、这些)这个不是量项主项联项谓项性质判断的矛盾关系:所有变有的,是变不是11.逻辑方阵图1.对角为矛盾关系。
(所有变有的,是变不是)2.所有的S都是P与所有的S都不是P是上反对关系两个“所有”至少一假,可以同假;有的S不是P与有的S都是P是下反对关系两个“有的”至少一真,可以同真。
3.从属关系①所有的S都是P→这个S是P→有的S是P②所有S都不是P→这个S不是P→有的S不是P12.换质推理的逻辑形式:(双重否定等于肯定)①所有S是P换质得:所有S不是非P②所有S不是P换质得:所有S是非P③有的S是P换质得:有的S不是非P④有的S不是P换质得:有的S是非P13.换位必须遵守的规则:不改变前提的质,只改变主、谓项的位置。
所有S是P可换位得:有的P是S所有S不是P可换位得:所有P不是S有的S是P可换位得:有的P是S有的S不是P不能换位得:有的P不是S13.模态判断对角为矛盾关系,上推下,下不能推上;上两个为上反对关系,至少一假,可以同假;下两个为下反对关系,至少一真,可以同真。
管理类联考数学公式整理及汇总
必备公式(1)有理数(-+、、×、÷)有理数=有理数有理数(-+、)无理数=无理数有理数(×、÷)无理数=不确定非零有理数(×、÷)无理数=无理数无理数(-+、、×、÷)无理数=不确定无理数的整数部分与小数部分:如5的整数部分为2,小数部分为25-无理数配方:如23625+=+一一对应关系:若b a ,为有理数,λ为无理数,且0=+λb a ,则有0==b a (1)奇数()奇数=偶数偶数(-+、)奇数=奇数偶数(-+、)偶数=偶数偶数(×、÷)奇数=偶数偶数(×、÷)偶数=偶数奇数(×、÷)奇数=奇数若干个数之和为奇数→有奇数个奇数相加若干个数之和为偶数→有偶数个奇数相加若干个数之积为奇数→都为奇数相乘若干个数之积为偶数→至少有一个偶数相乘整除的特征:能被2整除:个位数为0、2、4、6、8能被3整除:各个数位之和为3的倍数能被4整除:末两位数为4的倍数能被5整除:个位数为0、5能被6整除:既能被2整除也能被3整除能被7整除:截尾乘2再相减能被8整除:末三位数为8的倍数能被9整除:各个数位之和为9的倍数能被10整除:个位数为0能被11整除:奇数位之和与偶数位之和的差值为11的倍数小数化分数纯循环小数化分数:∙∙721.0=999127混循环小数化分数:9901127721.0-=∙∙绝对值代数意义:⎩⎨⎧≤-≥=0,0a a a a a |||||||,|||||ba b a b a ab ==非负性:00||22===⇒=++c b a c ba n n自比性:⎩⎨⎧<->==0,10,1||||a a a a a a 三角不等式:||||||||||||b a b a b a +≤±≤-||||b x a x -+-模型:(1)有最小值,无最大值;(2)有无穷多个值使得其取得最小值;(3)平底锅型图象;||||b x a x ---模型(1)有最小值和最大值,互为相反数;(2)有无穷多个值使得其取得最小值,有无穷多个值使得其取得最大值;(3)图象是“两边平,中间斜”||||||c x b x a x -+-+-模型平均值算术平均值:nx x x x n+++=...21几何平均值:n n g x x x x ....21=(0>i x )均值不等式:gx x ≥(一正二定三相等)已知)0,0(>>=+y x c by ax ,求n m y x 的最大值nm nc by n m m c ax +⨯=+⨯=,比例的性质(1)合比定理:d c cb a a d dc b b a dc b a +=+⇔+=+⇔=)0,0(≠+≠+d c b a (2)分比定理:d c cb a a d dc b b a dc b a -=-⇔-=-⇔=)0,0(≠-≠-d c b a (3)等比定理:)0()0(≠---=≠+++==d b d b ca db d bc a dc b a 一般情况下:)0(≠++++++===f d b f d b ec a f ed c b a 因式定理:)(a x -是)(x f 的一个因式⇒0)(=a f余式定理:)(a x -被)(x f 除的余式为)(x r ⇒)()(a r a f =基本公式:(1)))((22b a b a b a +-=-(2)222)(2b a b ab a ±=+±(3)33223)(33b a b ab b a a ±=±+±(4)))((2233b ab a b a b a +±=± (5)2222)(222c b a bc ac ab c b a ±±=±±±++(6)])()()[(21222222c b c a b a ac bc ab c b a -+-+-=---++(7)若2222)(0111C B A C B A CB A ++=++⇒=++(8)111)1(1+-=+n n n n (9)11(1)(1kn n k k n n +-=+(10)12121(21)12)(12(1+-=+-n n n n (11)!1)!1(1!1n n n n --=-2)2(1312112244333222--=+⇒-=+⇒-=+⇒=+A xx AA x x A xx A x x 指数公式:t s t s a a a +=stt s a a =)(stst a a1=-对数公式①()()log log log a a a MN M NM NR =+∈+,②()log log log aa a MNM N M NR =-∈+,③()()log log a n a N n NN R =∈+④()log log ana N nN N R =∈+1⑤对数换底公式:称为常数对数的自然对数称为…其中N N N e N N bN N e a a b 10log lg )71828.2(log ln log log log ====由换底公式推出一些常用的结论:(1)log log log log a b a b b a b a ==11或·(2)log log a m a n b mnb =(3)log log a n a n b b=(4)log a m n a m n=一元一次方程)0.(0≠=+a b ax 解方程⎪⎩⎪⎨⎧≠≠===唯一解无解无数个解,0,0,0,0a b a b a 一元二次方程20ax bx c ++=(1)实根个数的判别①当042>-ac b 时,有两个不相等实数根,即a ac b b x 2421-+-=,a ac b b x 2422---=;②当042=-ac b 时,有两个相等实数根,即a bx x 221-==;③当042<-ac b 时,一元二次方程02=++c bx ax )0(≠a 没有实数根。
管理类联考数学公式大全
管理类联考数学基础班、基本知识储备、乘法公式与二项式定理 2a 3 a C °a c (a 2 2 c (1) (a (a (a b)2 b)3 b)n 2 2ab b ;(a 2 2 3a b 3abn C :a n 1bb)2 a 2 2ab b 2 b 3;(a b)3 2b 2 C n 2a n b 2 c 2 ab ac be) a 3 3a 2b C n k a n a 3 b 3 k k b 3 c 3ab 2 b 3C n n 1ab n 3abc;(5) 二、因式分解 2a 3a a 2b 2c 2 2ab 2ac 2bc (1) b 2b 3 (a b)(a 2ab n b) ab b 2 ;a b 3 b n 1ab b 2 ;1 C :b n (1) 1 1 1) x 1 (2)1x(x x 1(x a)(x b) 1四、指数运算(1) n a 4 (a a 0)(2) 0a 1(a 1) (3) (4)m na am na(5)ma nm na a(6) (7) (b )na b n ( —(aa0)(8) (ab)n n na b(9)五、对数运算(1) a log NN(2) b nlo g a nlog :(3) (4)log : 1(5) 1log a(6)(7) M l og ;MNlog a(8)log; b1:a (9)log a ■ MNloga三、分式裂项 m n(a )六、函数 1、若集合A 中有n (nN )个元素,则集合 空真子集的个数是2nmnalga log :。
,ln0)Nlog aalog :A 的所有不同的子集个数为 2n所有非次函数y ax 2 bx c 的图象的对称轴方程是x —,顶点坐标是2a式,即 f(x) ax 2 bx c (一般式),f(x) a(x x 1) (x x 2)(零点式)和2f (x) a(x m) n (顶点式)。
管理类联考数学公式汇总
管理类联考数学公式汇总1、奇数偶数运算奇数加奇数得偶数,偶数加偶数得偶数。
奇数加偶数得奇数,奇数乘以奇数得奇数。
奇数乘以偶数得偶数,偶数乘以偶数得偶数。
2、有理数和无理数的运算规则1) 有理数之间的加减乘除,结果必为有理数。
2) 有理数与无理数的乘除为或无理数。
3) 有理数与无理数的加减必为无理数。
4) 若a,b为有理数,λ为无理数,且满足a+bλ=0,则有a=b=λ=0.3、比例的基本性质ac/bd)=(ad/bc)。
ac/bc)=(ab/cd)。
ac+bc+d)/(bd)=(a-c-b-d)/(bd)。
ac-bc-d)/(bd)=(a+c-b+d)/(bd)。
ac+bc+d)/(bd)=(a-c-b-d)/(bd)。
ac-bc-d)/(bd)=(a+c-b+d)/(bd)。
ac/bd)=(ad/bc)=(a/c)*(d/b)。
4、绝对值1) 三角不等式:对于任意实数a和b,有|a+b|≤|a|+|b|,|a-b|≥||a|-|b||。
2) 三种特殊绝对值函数的图像和最值:① y=|x-a|+|x-b| (a<b):当x∈[a,b]时,取得最小值b-a。
② y=|x-a|-|x-b| (ab时,取得最大值b-a;当a>b时,其图像为:当xa时,取得最小值b-a。
③y=|x-a|+|x-b|+|x-c| (a<b<c):当x=b时,取得最小值c-a。
5、均值不等式对于正数x1,x2,…,xn,有(x1+x2+…+xn)/n≥(x1x2…xn)^(1/n)。
6、方差D(x)=[(x1-x)²+(x2-x)²+…+(xn-x)²]/n。
方差的另一种计算方法是2²=[(x1)²+(x2)²+…+(xn)²]/n-x²。
第二章代数式和分式1、平方差公式:(a+b)(a-b)=a²-b²。
管综数学公式范文
管综数学公式范文一、代数公式:1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n)a^0b^n2.因式分解公式:a^2-b^2=(a+b)(a-b)3. 一次方程和一元二次方程解法公式:ax+b=0,x=-b/a;ax^2+bx+c=0,x=(-b±sqrt(b^2-4ac))/2a4. 指数函数和对数函数的性质:a^m ⋅ a^n = a^(m+n),log_a(m ⋅n) = log_a(m) + log_a(n)5.等比数列通项公式:a_n=a_1⋅r^(n-1)二、几何公式:1. 各种三角形的面积公式:等边三角形面积S=(√3/4)a^2,等腰三角形面积 S=(1/2)bh,直角三角形面积 S=(1/2)ab2. 三角函数的基本关系:sin^2 x + cos^2 x = 1,tan x = sin x / cos x3.圆的周长和面积公式:周长C=2πr,面积S=πr^24.直线与平面之间的关系:直线的方程Ax+By+Cz+D=0,平面的方程Ax+By+Cz+D=05. 空间几何中的立体体积公式:长方体体积 V = lwh,球体积 V = (4/3)πr^3三、概率公式:1.事件的概率公式:P(A∪B)=P(A)+P(B)−P(A∩B),P(Ω)=12.条件概率公式:P(A,B)=P(A∩B)/P(B)3.互斥事件的概率公式:P(A∪B)=P(A)+P(B)4.事件的互斥和独立性:如果事件A和B互斥,则P(A∩B)=0;如果事件A和B独立,则P(A∩B)=P(A)⋅P(B)5.伯努利定理:在n重伯努利试验中,事件A发生的概率为P(A)=C(n,m)⋅p^m⋅q^(n-m)以上只是部分常见的管综数学公式,考生还需要熟练掌握和灵活运用其它公式和定理,从而提高解题效率和准确性。
在备考过程中,考生应结合各个知识点的公式,多进行同类题的训练,熟练掌握公式的应用和转化,以便在考试中能够灵活运用,并且准确推导和运用公式。
管理类联考数学公式大全pdf
管理类联考数学公式大全pdf一、代数公式1.二次方程求根公式:对于二次方程ax²+bx+c=0,其根的求解公式为x = (-b ± √(b²-4ac))/2a。
2.平方差公式:对于任意实数a和b,有(a+b)² = a²+2ab+b²(a-b)² = a²-2ab+b²。
3.二项式展开公式:对于任意实数a和b以及正整数n,有(a+b)ⁿ = C(n,0)aⁿb⁰ + C(n,1)aⁿ⁻¹b¹ + C(n,2)aⁿ⁻²b² + ... +C(n,n-1)abⁿ⁻¹ + C(n,n)a⁰bⁿ其中C(n,r)为组合数。
二、几何公式1.勾股定理:对于直角三角形,设a、b和c分别为斜边、直角边和直角边,有a²=b²+c²。
2.正弦定理:对于任意三角形,设a、b和c分别为边a、边b和边c 的长度,设A、B、C分别为对应角的大小,则有a/sinA = b/sinB = c/sinC。
3.余弦定理:对于任意三角形,设a、b和c分别为边a、边b和边c 的长度,设A、B、C分别为对应角的大小,则有c² = a² + b² - 2ab*cosC。
三、概率与统计公式1.排列公式:在一个n个元素的集合中,从中取出r个元素进行排列的方式数为P(n,r)=n!/(n-r)!其中n!表示n的阶乘。
2.组合公式:在一个n个元素的集合中,从中取出r个元素进行组合的方式数为C(n,r)=n!/[r!(n-r)!]。
3.期望公式:对于离散型随机变量X,其期望值为E(X)=Σx·P(X=x)其中x为X的取值,P(X=x)为X取值为x的概率。
管综数学公式
管综数学公式数学四大部分包括算术、代数、几何、数据分析。
很多同学在答题时,不知道从哪里下手,就是因为对这四部分的公式不熟悉!今天我们一起盘点一下管综数学常用公式!要求同学们能做到熟练掌握,灵活运用哟~满满的干货,快用小本本记下来!一、常用公式大盘点01乘法公式与二项式定理02因式分解03分式裂项04指数运算05对数运算06函数07不等式08数列09排列组合、二项式定理10解析几何11立体几何二、常用定理大盘点1.过两点有且只有一条直线。
2.两点之间线段最短。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.过一点有且只有一条直线和已知直线垂直。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都和第三条直线平行,这两条直线也互相平行。
9.同位角相等,两直线平行。
10.内错角相等,两直线平行。
11.同旁内角互补,两直线平行。
12.两直线平行,同位角相等。
13.两直线平行,内错角相等。
14.两直线平行,同旁内角互补。
15.定理:三角形两边的和大于第三边。
16.推论:三角形两边的差小于第三边。
17.三角形内角和定理:三角形三个内角的和等于180°。
18.推论1:直角三角形的两个锐角互余。
19.推论2:三角形的一个外角等于和它不相邻的两个内角的和。
20.推论3:三角形的一个外角大于任何一个和它不相邻的内角。
21.全等三角形的对应边、对应角相等。
22.边角边公理(sas):有两边和它们的夹角对应相等的两个三角形全等。
23.角边角公理( asa):有两角和它们的夹边对应相等的两个三角形全等。
24.推论(aas):有两角和其中一角的对边对应相等的两个三角形全等。
25.边边边公理(sss):有三边对应相等的两个三角形全等。
26.斜边、直角边公理(hl):有斜边和一条直角边对应相等的两个直角三角形全等。
27.定理1:在角的平分线上的点到这个角的两边的距离相等。
199数学管理类联考公式大全
数学管理类联考公式大全随着社会的发展和进步,数学管理类联考已经成为了许多高校用来选拔学生的一种有效方式。
数学管理类联考作为一种评价考生数学水平和思维能力的工具,在考试中需要考生掌握大量的数学知识和公式。
为了帮助考生更好地备考,我们将在本文中为大家整理汇总数学管理类联考常用的公式,希望能对广大考生有所帮助。
1. 高等数学部分:1.1 导数公式:1.1.1 $\frac{d(u\pm v)}{dx}=\frac{du}{dx}\pm\frac{dv}{dx}$1.1.2 $\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$1.1.3 $\frac{d(\frac{u}{v})}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$1.1.4 $\frac{d(\sin x)}{dx}=\cos x,\frac{d(\cos x)}{dx}=-\sin x$1.1.5 $\frac{d(\tan x)}{dx}=\sec^2x$1.2 积分公式:1.2.1 $\int u\pm vdx=\int udv\pm\int vdu$1.2.2 $\int uvdx=u\int vdx-\int u'(\int vdx)dx$1.2.3 $\int \frac{1}{1+x^2}dx=\arctan x+C$1.2.4 $\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$1.2.5 $\int \frac{1}{x\sqrt{x^2-1}}dx=\arccos x+C$2. 线性代数部分:2.1 行列式公式:2.1.1 二阶行列式公式:$\begin{vmatrix} a_1 a_2 \\ b_1 b_2 \end{vmatrix}=a_1b_2-a_2b_1$2.1.2 三阶行列式公式:$\begin{vmatrix} a_1 a_2 a_3 \\ b_1 b_2 b_3 \\ c_1 c_2 c_3 \end{vmatrix}=a_1b_2c_2+a_2b_3c_1+a_3b_1c_2-a_1b_3c_2-a_2b_1c_3-a_3b_2c_1$2.1.3 Cramer法则:若系数行列式$D\neq 0$,则线性方程组$\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1 \\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2 \\ \cdots \\a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n \end{cases}$的解为$x_i=\frac{D_i}{D}(i=1,2,\cdots,n)$其中$D_i$是将$D$中第$i$列元素用$b_1,b_2,\cdots,b_n$代替得到的行列式。
管综数学公式大全pdf
管综数学公式大全pdf
1.集合论:
1)集合的定义:
集合A={x,x满足其中一种条件P(x)}
2)集合间的关系:
A⊆B:表示在A中出现的元素,也出现在B中;
A⊂B:表示A是B的真子集;
A∪B:表示A与B的并集;
A∩B:表示A与B的交集;
A′:表示A的补集;
2.代数学:
1)多项式的定义:
多项式P(x) = a0 + a1x + a2x2 + ... + anxn.
2)多项式相关公式:
多项式的求导公式: dP(x)/dx=a1+2ax2 + ... + n.axn-1多项式的展开式:P(x) = (x-x1)(x-x2)....(x-xn)
多项式的根的求解公式:x = (-b ± √(b2-4ac))/2a. 3.几何学:
1)三角形的定义:
三角形是由3条边组成,有且仅有两个角是锐角的多边形。
2)三角形相关公式:
三角形面积公式:S = 1/2×a×b×sinθ
三角形内角总和公式:180°
海伦公式:a+b+c=p,p=(a+b+c)/2
4.排列组合:
1)排列公式:
排列(可重复排列):A=n^m
排列(不可重复排列):A=n!/(n-m)!
2)组合公式:
组合(可重复组合):C=m+n-1!/m!(n-1)!。
管综数学公式大全
管综数学公式大全数学公式大全:Ⅰ、三角函数公式:1、正弦函数公式:sinA=a/c2、余弦函数公式:cosA=b/c3、正切函数公式:tanA=a/b4、反正弦函数公式:arcsinA=y/c5、反余弦函数公式:arccosA=x/c6、反正切函数公式:arctanA=y/x7、余割函数公式:cotA=b/aⅡ、二次函数公式:1、一般式:y=ax^2+bx+c2、判断式:b^2-4ac3、解法:x=(-b±√(b^2-4ac))/2aⅢ、一元二次方程组公式:1、解法:x=Δx/Δ,y=Δy/Δ2、增强格式:Δ=a_11a_22-a_12a_21;Δx=b_1a_22-b_2a_21;Δy=a_11b_2-b_1a_12;Ⅳ、不等式公式:1、一元一次不等式的解法:x>a>b,|x|<a,x≥a,x≤a2、不定式解法:ax+b>0,ax+b≥0,ax+b<0,ax+b≤0Ⅴ、空间几何公式:1、平面几何距离公式:AB=√((x_B-x_A)^2+(y_B-y_A)^2)2、立体几何公式:AB=√((x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2) Ⅵ、立体几何体积公式:1、立方体:V=a^32、圆柱体:V=πr^2h3、球体:V=4/3πr^34、四棱柱:V=a*b*hⅦ、抛物线方程公式:1、一般形式:y=ax^2+bx+c2、最高点方程:ⅰ、x=-b/2a;ⅱ、y=ax^2+bx+c3、焦点方程:x_1=(-b/2a)±√((b/2a)^2-c);y_1=ax^2+bx+c4、准线方程:y-y_1=-2a(x-x_1)5、顶点坐标:P(x_1,y_1)Ⅷ、椭圆方程公式:1、一般式:x^2/a^2+y^2/b^2=12、标准方程:(x-h)^2/a^2+(y-k)^2/b^2=13、长轴离心率公式:e=√(1-(b/a)^2)4、离心率方程:(x-h)^2/a^2+(y-k)^2/b^2=1-e^25、长短轴方程:a=√(2f/e+e^2),b=√(2f/e-e^2),c^2=a^2-b^2 Ⅸ、二次曲线的有关方程:1、中点式:(x-h)^2/(2f)+y^2/2f=12、标准式:(x-h)^2/a^2+(y-k)^2/b^2=13、纵截式:y=4f(x-h)^2/(4f+a^2)4、横截式:x=4f(y-k)^2/(4f+b^2)5、帽状形线:y=b(x-h)^2/a^2+2f6、放射状:(x-h)^2/a^2-(y-k)^2/b^2=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管理类联考数学基础班 一、基本知识储备一、乘法公式与二项式定理(1)222222()2;()2a b a ab b a b a ab b +=++-=-+(2)3322333223()33;()33a b a a b ab b a b a a b ab b +=+++-=-+-(3)01122211()n n n n k n k k n n n n n n n n n n a b C a C a b C a b C a b C ab C b -----+=++++++(4)()abc c b a bc ac ab c b a c b a 3)(333222-++=---++++;(5)()2222222a b c a b c ab ac bc +-=+++--二、因式分解(1)22()()a b a b a b -=+-(2)()()()()33223322;a b a b a ab b a b a b a ab b +=+-+-=-++; (3)()()121...n nn n n a b a b aa b b ----=-+++三、分式裂项 (1)111(1)1x x x x =-++ (2)1111()()()x a x b b a x a x b=-++-++四、指数运算(1)1(0)nn aa a-=≠ (2)01(1)a a =≠ (3)0)mn a a =≥ (4)mnm na a a+= (5)m n m na a a-÷= (6)()m n mna a=(7)()(0)n n n b b a a a=≠ (8)()n n nab a b = (9a =五、对数运算(1)log N aaN = (2)log log n b b aan = (3)1log b a a n=(4)log 1a a = (5)1log 0a = (6)log log log MNM Na a a=+ (7)loglog log N MM N a aa=- (8)1log log ba ab=(9)10lg log ,ln log a ae a a == 六、函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n2,所有非空真子集的个数是22-n。
二次函数c bx ax y ++=2的图象的对称轴方程是abx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,。
用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()( (顶点式)。
2、 幂函数nmx y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、 函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞。
七、 不等式1、若n 为正奇数,由b a <可推出nnb a <吗? ( 能 )若n 为正偶数呢? (b a 、仅当均为非负数时才能) 2、同向不等式能相减,相除吗 (不能) 能相加吗? ( 能 )能相乘吗? (能,但有条件)3、两个正数的均值不等式是:ab ba ≥+2三个正数的均值不等式是:33abc c b a ≥++n 个正数的均值不等式是:nn n a a a na a a 2121≥+++4、两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a b a ab b a +≤+≤≤+ 4、 双向不等式是:b a b a b a +≤±≤-左边在)0(0≥≤ab 时取得等号,右边在)0(0≤≥ab 时取得等号。
八、 数列1、等差数列的通项公式是d n a a n )1(1-+=,前n 项和公式是:2)(1n n a a n S += =d n n na )1(211-+。
2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn3、当等比数列{}n a 的公比q 满足q <1时,n n S ∞→lim =S=qa -11。
一般地,如果无穷数列{}n a 的前n 项和的极限n n S ∞→lim 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S 表示,即S=n n S ∞→lim 。
4、若m 、n 、p 、q ∈N ,且q p n m +=+,那么:当数列{}n a 是等差数列时,有q p n m a a a a +=+;当数列{}n a 是等比数列时,有q p n m a a a a ⋅=⋅。
5、 等差数列{}n a 中,若S n =10,S 2n =30,则S 3n =60;6、等比数列{}n a 中,若S n =10,S 2n =30,则S 3n =70;九、 排列组合、二项式定理a) 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类独立;乘法分步,步步相关。
2、排列数公式是:mn P =)1()1(+--m n n n =!!)(m n n -;排列数与组合数的关系是:mn m n C m P ⋅=!组合数公式是:mn C =mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅; 组合数性质:mn C =mn nC - m n C +1-m n C =mn C 1+∑=nr r n C=n2 r n rC =11--r n nC1121++++=++++r n r n r r r r r r C C C C C 0122nn n n n n C C C C ++++=3、 二项式定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)(二项展开式的通项公式:rr n r n r b a C T -+=1)210(n r ,,, =十、 解析几何a) 沙尔公式:A B x x AB -=b) 数轴上两点间距离公式:A B x x AB -= c) 直角坐标平面内的两点间距离公式:22122121)()(y y x x P P -+-=d) 若点P 分有向线段21P P 成定比λ,则λ=21PP PP e) 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P成定比λ,则:λ=x x x x --21=yy y y --21; x =λλ++121x xy =λλ++121y y若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫⎝⎛++++33321321y y y x x x ,。
6、求直线斜率的定义式为k=αtg ,两点式为k=1212x x y y --。
7、直线方程的几种形式:点斜式:)(00x x k y y -=-, 斜截式:b kx y += 两点式:121121x x x x y y y y --=--, 截距式:1=+b ya x 一般式:0=++C By Ax经过两条直线0022221111=++=++C y B x A l C y B x A l :和:的交点的直线系方程是:0)(222111=+++++C y B x A C y B x A λ8、 直线222111b x k y l b x k y l +=+=:,:,则从直线1l 到直线2l 的角θ满足:21121k k k k tg +-=θ直线1l 与2l 的夹角θ满足:21121k k k k tg +-=θ直线0022221111=++=++C y B x A l C y B x A l :,:,则从直线1l 到直线2l 的角θ满足:21211221B B A A B A B A tg +-=θ直线1l 与2l 的夹角θ满足:21211221B B A A B A B A tg +-=θ9、 点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=10、两条平行直线002211=++=++C By Ax l C By Ax l :,:距离是2221BA C C d +-=11、圆的标准方程是:222)()(r b y a x =-+-圆的一般方程是:)04(02222>-+=++++F E D F Ey Dx y x其中,半径是2422F E D r -+=,圆心坐标是⎪⎭⎫ ⎝⎛--22E D, 思考:方程022=++++F Ey Dx y x 在0422=-+F E D 和0422<-+F E D 时各表示怎样的图形?12、若),(),(2211y x B y x A ,,则以线段AB 为直径的圆的方程是0))(())((2121=--+--y y y y x x x x经过两个圆011122=++++F y E x D y x ,022222=++++F y E x D y x的交点的圆系方程是:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ经过直线0=++C By Ax l :与圆022=++++F Ey Dx y x 的交点的圆系方程是:0)(22=+++++++C By Ax F Ey Dx y x λ13、圆),(00222y x P r y x 的以=+为切点的切线方程是200r y y x x =+一般地,曲线)(00022y x P F Ey Dx Cy Ax ,的以点=++-+为切点的切线方程是:0220000=++⋅++⋅-+F y y E x x D y Cy x Ax 。
例如,抛物线x y 42=的以点)21(,P 为切点的切线方程是:2142+⨯=x y ,即:1+=x y 。
注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。
14、研究圆与直线的位置关系最常用的方法有两种,即:①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离; ②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。
十一、 立体几何1、体积公式:柱体:h S V ⋅=,圆柱体:h r V ⋅=2π。
斜棱柱体积:l S V ⋅'=(其中,S '是直截面面积,l 是侧棱长); 锥体:h S V ⋅=31,圆锥体:h r V ⋅=231π。