1.1.1 正弦定理

合集下载

1.1.1 正弦定理

1.1.1  正弦定理

已知两角和任意一边, 已知两角和任意一边, 求其他两边和一角 。 。 【例 1】 在△ABC 中,已知A = 45 , C = 30 , C c = 10,解三角形. 解: B =180° (A + C) =105° a b
定理的应用
c sin A 10×sin 45° ∴a = =10 2 = sinC sin30° b c = ∵ sin B sin C c sin B 10×sin 105° ∴ b= = = 5( 6 + 2 ) sin 30° sin C
a c = ∵ sin A sinC
A
c
B
【巩固练习】
6+ 2 sin 75 = 4
1.在△ABC中,已知 A=75°,B= 45°, c= 3 2 ,解三角形.
答案:C = 60°, a = 3 + 3 , b = 2 3
2.在△ABC中,已知 A=30°,B=120°, b=12 ,解三角形.
答案:C = 30°, a = 4 3 , c = 4 3
回应情境 △ABC中,已知 =75,C=60,AC=100,求 中 已知A= , = , = , B AB. . c 解: = 180° (A + C) = 45° B
b c a ∵ = sin B sinC 60 b sinC 100× sin60° ∴c = = C sin B sin45° = 50 6
b
A
c
D
B
C
a
c
B
D
a b c b 同理可得 = = sin A sin B sinC sin B
在一个三角形中,各边和它所对角的正弦的比相等, 在一个三角形中,各边和它所对角的正弦的比相等, 即

【数学】1.1.1《正弦定理》课件(新人教B版必修5)

【数学】1.1.1《正弦定理》课件(新人教B版必修5)

对任意三角形,这个等式都会成立吗 对任意三角形 这个等式都会成立吗? 这个等式都会成立吗 怎么证明这个结论? 怎么证明这个结论?
(一)正弦定理的证明 方法一(向量法) 方法一(向量法)
已知: ABC中,CB=a,AC=b,AB=c. 求证: 求证
a b c = = s in A s in B s in C
\ a = s in A b = s in B c s in C
90
0
即等式对任意三角 形都成立
B a c A b C
证法二:(等积法) 证法二: 等积法) 在任意斜 ABC当中 作AD⊥BC于D
c h a
A
b
∴ S ∆ABC = 1 a h 2 B ∵ h = b sin C ∴ S ∆ABC = 1 a b sin C 2
已知在Δ a,b和 例1.已知在ΔABC中,c=10,A=450,C=300,求a,b和B 已知在 中
解:∵c=10 A=450,C=300
a c 10sin 450 a sin A = =10 由 sin A = 得 a= 0 sin C sin 30 sin C b c 由 = sin B sin C
A+ B C sin = cos 2 2
cos( A + B ) = − cos C
3、边角关系: 、边角关系: 1)大边对大角,大角对大边,等边对等角 )大边对大角,大角对大边, 0,则 sin A = a , cos A = b 2)在直角三角形 )在直角三角形ABC中,C=90 则 中
c c
二、展示目标
请同学们思考两个问题: 请同学们思考两个问题: 1.为什么会出现两个解? 为什么会出现两个解? 为什么会出现两个解 2.当a=1时C有几个解;当a= 有几个解; 当 时 有几个解 几个解; 几个解;当a=3时C有几个解 时 有几个解

必修5课件 1.1.1 正弦定理

必修5课件 1.1.1 正弦定理

当A为锐角
当A为直角或钝角
我舰在敌岛A南50西相距12 nmile的B处,发现敌舰正由岛沿北 10西的方向以10nmile/h的速度航行,问:我舰需要以多大速度, 沿什么方向航行才能用2小时追上敌舰? 即追击速度为14mile/h
AC BC 又:∵△ABC中,由正弦定理: sin B sin A
AC
2.找 j 与 AB 、AC 、 的夹角 CB
3。利用等式
AC + CB = AB ,与 j 作内积
比值的意义:三角形外接圆的直径2R
注意: (1)正弦定理适合于任何三角形。
a b c (2)可以证明 = = =2R(R为△ABC外接圆半径) sin A sin B sin C
(3)每个等式可视为一个方程:知三求一
ABC中,c 10, A 45 0 , C 30 0 , 求a, b和B 例1、已知在
例2、在 ABC中,b
3, B 60 0 , c 1, 求a和A, C
例3、ABC中,c
6 , A 45 0 , a 2, 求b和B, C
ቤተ መጻሕፍቲ ባይዱ
解三角形时,注意大边对大角
小结:1。正弦定理可以用于解决已知两角和一边求另两边和一角的 问题。 2。正弦定理也可用于解决已知两边及一边的对角,求其他边 和角的问题。 3。正弦定理及应用于解决两类问题,注意多解情况。 注意: ABC中,已知a, b和A时解三角形的情况: 在
人教版 必修五
第一章
解三角形
1.1.1 正弦定理
正弦定理 证明一(传统证法)在任意斜△ABC当中:
1 1 1 ab sin C ac sin B bc sin A S△ABC= 2 2 2 1 b a c abc 两边同除以 即得: = = 2 sin C , sin A sin B

高中数学新人教A版必修5第一章 1.1 1.1.1 正弦定理

高中数学新人教A版必修5第一章  1.1  1.1.1  正弦定理

正弦定理和余弦定理1.1.1 正弦定理(1)直角三角形中的边角之间有什么关系?(2)正弦定理的内容是什么?利用它可以解哪两类三角形?(3)解三角形的含义是什么?预习课本P 2~3,思考并完成以下问题[新知初探]1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C. [点睛] 正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式. (3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)正弦定理适用于任意三角形( )(2)在△ABC 中,等式b sin A =a sin B 总能成立( ) (3)在△ABC 中,已知a ,b ,A ,则此三角形有唯一解( )解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知a sin A =bsin B,即b sin A =a sin B .(3)错误.在△ABC 中,已知a ,b ,A ,此三角形的解有可能是无解、一解、两解的情况,具体情况由a ,b ,A 的值来定.答案:(1)√ (2)√ (3)×2.在△ABC 中,下列式子与sin Aa 的值相等的是( )A.bc B.sin B sin A C.sin C cD.c sin C 解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2B .10 3C.1033D .5 6解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =30°,a =3,b =2,则这个三角形有 ( )A .一解B .两解C .无解D .无法确定解析:选A ∵b <a ,A =30°,∴B <30°,故三角形有一解.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D .32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22.∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin B sin C =6·sin 75°sin 60°=3+1.三角形形状的判断[典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,sin 2A =sin 2B +sin 2C ,且sin A =2sin B ·cos C .试判断△ABC 的形状. 解:由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵sin 2A =sin 2B +sin 2C , ∴⎝⎛⎭⎫a 2R 2=⎝⎛⎭⎫b 2R 2+⎝⎛⎭⎫c 2R 2, 即a 2=b 2+c 2, 故A =90°.∴C =90°-B ,cos C =sin B . ∴2sin B ·cos C =2sin 2B =sin A =1. ∴sin B =22. ∴B =45°或B =135°(A +B =225°>180°,故舍去). ∴△ABC 是等腰直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( )A.53B.35C.37D.57 解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos C c,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc ,则cos C =sin C ,即C =45°,故选B.4.在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1解析:选B 在△ABC 中,由正弦定理a sin A =bsin B ,得sin B =b sin Aa =5×133=59.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sinB =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在△ABC 中,若A =105°,C =30°,b =1,则c =________. 解析:由题意,知B =180°-105°-30°=45°.由正弦定理,得c =b sin C sin B =1×sin 30°sin 45°=22. 答案:229.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1, 所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以tan A =-1,因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin A a =2×222=12,又0<C <π4,所以C =π6.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C. 3.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:选A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .4.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( )A.31010B.1010C.510D.515解析:选B 由题意得EB =EA +AB =2,则在Rt △EBC 中,EC =EB 2+BC 2=4+1= 5.在△EDC 中,∠EDC =∠EDA +∠ADC =π4+π2=3π4,由正弦定理得sin ∠CED sin ∠EDC =DC EC =15=55, 所以sin ∠CED =55·sin ∠EDC =55·sin 3π4=1010. 5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=bsin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC=5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314.答案:33147.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由A -C =90°,得A 为钝角且sin A =cos C ,利用正弦定理,a +c =2b 可变形为sin A +sin C =2sin B ,又∵sin A =cos C ,∴sin A +sin C =cos C +sin C =2sin(C +45°)=2sin B , 又A ,B ,C 是△ABC 的内角,故C +45°=B 或(C +45°)+B =180°(舍去), 所以A +B +C =(90°+C )+(C +45°)+C =180°. 所以C =15°.8.在△ABC 中,已知c =10,cos A cos B =b a =43,求a ,b 及△ABC 的内切圆半径. 解:由正弦定理知sin B sin A =b a ,∴cos A cos B =sin Bsin A .即sin A cos A =sin B cos B ,∴sin 2A =sin 2B . 又∵a ≠b ,∴2A =π-2B ,即A +B =π2.∴△ABC 是直角三角形,且C =90°, 由⎩⎪⎨⎪⎧a 2+b 2=102,b a =43得a =6,b =8.故内切圆的半径为r =a +b -c 2=6+8-102=2.。

1.1.1正弦定理1

1.1.1正弦定理1

图2 C
D
思考
a b c = 求证: = sin A sin B sin C
= ?
2R
(2R为△ABC外接圆直径)
1.1.1正弦定理
在Rt△ABC中,各角与其对边的关系:
b a sin B sin A c c c sin C 1
c
不难得到:
b
A
c
a b c sin A sin B sin C
C
a
B
在非直角三角形ABC中有这样的关系吗?
C
b
A c
a
B
(1)若三角形是锐角三角形, 如图 1, 过点A作AD⊥BC于 D, AD , sin C 此时有 sin B AD c b
应用正弦定理化边为角:

2R
a 2R sin A, b 2R sin B, c 2R sin C
a b c 或化角为边:sin A ,sin B ,sin C 2R 2R 2R
课堂练习:
1.已知ABC的三个内角之比为A : B : C 3: 2 :1,
2:31 : 那么对应的三边之比a : b : c等于 ____________
B 30 , C 105
0

(三角形中大边对大角)
a sin C 2 6 2 c 3 1 sin A 4 2 2
课堂小结
(1)三角形常用公式: A B C
a b c 正弦定理: sin A sin B sin C

(2)正弦定理应用范围:
① ②
已知两角和任意边,求其他两边和一角 已知两边和其中一边的对角,求另一边 的对角。(注意解的情况)
(2)已知两边和其中一边的对角,求其他边和角.

1.1.1正弦定理

1.1.1正弦定理

[评析 (1)已知三角形的任意两个角和一边,由三角形 评析] 已知三角形的任意两个角和一边 评析 已知三角形的任意两个角和一边, 内角和定理,可以先求出三角形的另一角, 内角和定理,可以先求出三角形的另一角,并由正弦定理计 算出三角形的另两边. 算出三角形的另两边. (2)运算过程中, 运算过程中, 要注意三角函数公式的应用, 运算过程中 要注意三角函数公式的应用, 此题中对 105°作了“拆角”处理. 作了“ 作了 拆角”处理.
[评析 (1)已知两边及一边对角时,解三角形可用正弦 评析] 已知两边及一边对角时, 评析 已知两边及一边对角时 定理,关键是准确判断解的情况,可能出现一解、 定理,关键是准确判断解的情况,可能出现一解、两解或无 解的情况. 解的情况. (2)在三角形中, 在三角形中, 在三角形中 注意运用大边对大角或大角对大边的性 局限于一个三角形中). 质(局限于一个三角形中 . 局限于一个三角形中
4.利用正弦定理解三角形的类型及其解的情况 . (1)已知两角与一边,用正弦定理,有解时,只有一解. 已知两角与一边 用正弦定理,有解时,只有一解. 已知两角与一 (2)已知两边及其中一边的对角, 已知两边及其中一边的对角, 用正弦定理, 已知两边及其中一边的对角 用正弦定理, 可能有两 一解或无解. 解、一解或无解.在△ABC 中,已知 a,b 和 A 时,解的情 , 况如下: 况如下:
A 为锐角
A 为钝角或直角
图 形
①a= = bsinA< 关系式 bsinA a<b ②a≥b ≥ 两解 解的个数 一解
a< bsinA 无解
a>b 一解
a≤b ≤ 无解
已知两角及一边解三角形 已知三角形的两角和任一边解三角形,基本思路是: 已知三角形的两角和任一边解三角形,基本思路是: (1)若所给边是已知角的对边时, 若所给边是已知角的对边时, 若所给边是已知角的对边时 可由正弦定理求另一角 所对边,再由三角形内角和定理求出第三个角. 所对边,再由三角形内角和定理求出第三个角. (2)若所给边不是已知角的对边时, 若所给边不是已知角的对边时, 若所给边不是已知角的对边时 先由三角形内角和定 理求出第三个角,再由正弦定理求另外两边. 理求出第三个角,再由正弦定理求另外两边.

1.1.1正弦定理2012.4.26

1.1.1正弦定理2012.4.26

(正确解法 正确解法)解:根据正弦定理, 正确解法
b ⋅ sin A 25 ⋅ sin 133 sin B = = ≈ 0.8311 a 22
0
∵00<B<1800且a<b 而A=1330 ∴这样的三角形不存在! 这样的三角形不存在!
练习:P4 2
正弦定理的另一种证法
证二:如图,圆⊙O为△ABC的外接圆,
0
∴B≈640
错!
∵00<B<1800且a<b ∴B≈640或B≈1160 (1)当B≈640时,… (2)当B≈1160时,… 特别注意!
20 3 变例一:在△ABC中,已知a=20cm,b= 3
cm,A=600,解三角形(角度精确到10,边长精 确到1cm). 解:根据正弦定理,
3 20 ⋅ sin 60 0 b ⋅ sin A 1 3 sin B = = = 20 2 a
例2:在△ABC中,已知a=20cm,b=28cm, ABC中 已知a=20cm,b=28cm, a=20cm 解三角形(角度精确到1 A=400,解三角形(角度精确到10,边长精确到 1cm) 1cm).
C b A a c B
解:根据正弦定理,
b ⋅ sin A 28 ⋅ sin 40 sin B = = ≈ 0.8999 a 20
π
a C
a = sin A c
B
b = sin B c
c A
b
二、提出问题: 提出问题: 三角形中的边与角的关系能够通过哪些式子准 确量化的表示? 确量化的表示? 探究一: 探究一:在Rt△ABC中,结合三角函数,探究 △ 中 结合三角函数, 边角关系? 边角关系?
A
a b = sin A = sin B c c a b ⇒ = = c sinC=1 sin A sin B a b c ⇒ = = sin A sin B sin C

1.1.1正弦定理

1.1.1正弦定理

C/
1 1 1 另证2: S absin C = bc sin A = ac sin B ∆ABC = 2 2 2
A
c
B
b
ha
1 证明: S∆ABC = aha ∵ 2
Da 同理 ∴
S∆ABC = absin C = bc sin A = ac sin B 2 2 2
1 1 S∆ABC = acsin B = absinC 2 2 1 S∆ABC = bcsin A 2 1 1 1
D
b c = , 所以AD=csinB=bsinC, 即 sin B sin C
a c 同理可得 = , sin A sin C
a b c 即: = = sin A sin B sinC
若三角形是钝角三角形 且角 如图2, 若三角形是钝角三角形,且角 是钝角如图 钝角三角形 且角C是 过点A作AD⊥BC, 交BC延长线于D, 此时也有 sin B =
剖析定理、加深理解
a b c 正弦定理: 正弦定理: = = = 2R sin A sin B sinC
2、A+B+C=π 3、大角对大边,大边对大角 大角对大边,
剖析定理、加深理解
a b c 正弦定理: 正弦定理: = = = 2R sin A sin B sinC
4、一般地,把三角形的三个角A,B,C 一般地,把三角形的三个角A 和它们的对边a 叫做三角形的元 和它们的对边a,b,c叫做三角形的元 素。已知三角形的几个元素求其他元素 的过程叫解三角形 的过程叫解三角形
a
B
N
一解
已知A、a、b;求B
(1)A < 90°时 d = asin A
d < a < b时

1.1.1正弦定理(一)

1.1.1正弦定理(一)

第一章解三角形1.1.1正弦定理(一)一.知识归纳1.一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的________.已知三角形的几个元素求其他元素的过程叫做________________.2.在Rt△ABC中,C=90°,则有:(1)A+B=________,0°<A<90°,0°<B<90°;(2)a2+b2=________(勾股定理);(3)sin A=____________,cos A=____________,tan A=__________,sin B=________,cos B =________,tan B=________;(4)asin A=________,bsin B=________,csin C=________.3.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即____________,这个比值是________________________.二.典例分析知识点一已知两角和一边解三角形例1在△ABC中,a=5,B=45°,C=105°,解三角形.知识点二已知两边及其中一边的对角解三角形例2在△ABC中,a=23,b=6,A=30°,解三角形.知识点三已知两边及其中一边的对角,判断三角形解的个数例3不解三角形,判断下列三角形解的个数.(1)a=5,b=4,A=120°;(2)a=9,b=10,A=60°;(3)c=50,b=72,C=135°.三.当堂检测1.在△ABC中,若b=2,B=30°,C=135°,则a=________.2.在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3b,则角A等于3.在△ABC中,角A、B、C所对的边分别为a、b、c,已知A=60°,a=3,b=1,则c等于()A.1 B.2 C.3-1 D. 34.在△ABC中,a、b、c分别是△ABC的内角A、B、C的对边,b=2,c=1,B=45°,则a=( )A.6±22B.6-22C.6+24D.6+22第一章 解三角形1.1.1正弦定理(一)一、选择题1.在△ABC 中,下列等式中总能成立的是( )A .a sin A =b sinB B .b sinC =c sin A C .ab sin C =bc sin BD .a sin C =c sin A 2.在△ABC 中,已知a =18,b =16,A =150°,则这个三角形解的情况是( )A .有两个解B .有一个解C .无解D .不能确定 3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3234.在△ABC 中,根据下列条件解三角形,其中有两解的是( )A .b =10,A =45°,C =70°B .a =30,b =25,A =150°C .a =7,b =8,A =98°D .a =14,b =16,A =45° 二、填空题 5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,如果c =3a ,B =30°,那么角C 等于________. 6.在△ABC 中,AC =6,BC =2,∠B =60°,则C =________. 7.在△ABC 中,已知a 、b 、c 分别为内角A 、B 、C 的对边,若b =2a ,B =A +60°,则A =__________. 8.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是______________. 三、解答题9.在△ABC 中,若a =23,A =30°,讨论当b 为何值时(或在什么范围内),三角形有一解,有两解或无解?10.在锐角三角形ABC 中,A =2B ,a 、b 、c 所对的角分别为A 、B 、C ,求ab的取值范围.答案详解第一章 解三角形 §1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)知识梳理1.元素 解三角形2.90° (2)c 2 (3)a c b c a b b c a c ba(4)c c c3.a sin A =b sin B =c sin C三角形外接圆的直径2R 例1 解 由三角形内角和定理知A +B +C =180°, 所以A =180°-(B +C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B =csin C ,得b =a ·sin B sin A =5·sin 45°sin 30°=52;c =a ·sin C sin A =5·sin 105°sin 30°=5·sin (60°+45°)sin 30°=5·sin 60°cos 45°+cos 60°sin 45°sin 30°=52(6+2).例2 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3. 所以B =60°,C =90°,c =43或B =120°, C =30°,c =2 3.例3 解 (1)sin B =b a sin 120°=45×32<32,所以三角形有一解.(2)sin B =b a sin 60°=109×32=539,而32<539<1,所以当B 为锐角时,满足sin B =539的角有60°<B <90°,故对应的钝角B 有90°<B <120°, 也满足A +B <180°,故三角形有两解.(3)sin B =b sin C c =7250sin C >sin C =22,所以B >45°,所以B +C >180°,故三角形无解. 当堂检测 1. 6-22. π33 B [由正弦定理a sin A =bsin B,可得3sin 60°=1sin B,∴sin B =12,故∠B =30°或150°.由a >b ,得∠A >∠B ,∴∠B =30°,故∠C =90°, 由勾股定理得c =2.] 4 C课时作业1.D [由正弦定理知D 正确.]2.B [因为a >b ,A 为钝角,所有只有一个解.]3.C [方法一 根据三角形内角和定理,A =180°-(B +C )=45°.根据正弦定理,b =a sin Bsin A=8sin 60°sin 45°=4 6.方法二 如图,过点C 作CD ⊥AB ,由条件可知A =45°, 而由CD =a sin 60°=b sin 45°,得b =4 6.]4.D [对于A ,由三角形的正弦定理知其只有一解;对于B ,∵a >b ,即A >B ,且A =150°,∴只有一解;对于C ,a <b ,即A <B ,且A =98°,∴无解.]5.120° [∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3. 又C ∈(0,π),∴C =120°.] 6.75°解析 由正弦定理2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角,∴A =45°.∴C =75°. 7.30°解析 b =2a ⇒sin B =2sin A , 又∵B =A +60°,∴sin(A +60°)=2sin A , 即sin A cos 60°+cos A sin 60°=2sin A ,化简得sin A =33cos A ,∴tan A =33,∴A =30°.8.2<x <2 2解析 因三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2.即b ≤23或b =43时,有一解;当b sin A <a <b ,即23<b <43时,有两解. 10.解 在锐角三角形ABC 中,A 、B 、C <90°, 即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知: a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3), 故所求的范围是(2,3).。

1.1.1正弦定理

1.1.1正弦定理

1.1.1正弦定理正弦定理是中学数学中比较重要的一个定理,它可以用来求解任意三角形的边长和角度大小。

正弦定理是三角形学中最基本、最通用的定理之一,它的应用范围很广,并且在其他分支学科中也有很多实际应用。

在三角形ABC中,假设BC=a,AC=b,AB=c,∠A的对边为a,∠B的对边为b,∠C的对边为c。

则正弦定理的表述是:$$\frac{a}{\sin\angle A} = \frac{b}{\sin\angle B} = \frac{c}{\sin\angle C}$$其中,a、b、c分别为三角形ABC中BC、AC、AB的边长,∠A、∠B、∠C分别为三角形ABC的内角大小,sin指的是这些角的正弦值。

正弦定理解题的基本步骤有以下几步:(1)确定三角形ABC的已知数据,包括三边和三角度数中的已知数据;(2)应用正弦定理,根据已知数据求解未知数据;(3)特别注意角度的选择,有时需要用到角的补角或余角。

以下是一些正弦定理的应用实例:例1:已知三角形的两条边及夹角,求第三边的长度。

则:由正弦定理,有:即:因为$\sin\angle C\leq 1$,所以:同理,可以求得BC的另一角度∠C。

解:设三角形ABC的第一边为AB=a,角度A为∠A,角度B为∠B,已知数据为a和∠A、∠B,要求的为第二边的长度BC=b。

所以:其中,角B的大小为:其中角C可以用第二个角度公式求得,即:(注:第二个角度公式指的是正弦公式的逆变形式,即给定三角形的两条边和夹角,则可以根据正弦公式求得未知角度。

)正弦定理不仅仅在数学中有重要的应用,它也被广泛应用于实际生活中的许多领域。

例如,它在建筑学中可以用来计算建筑物的高度和角度;在航空和航海中可以用来计算航线的长度和方向;在地理和地质学中可以用来计算地球上两个点之间的距离等等。

因此,熟练掌握正弦定理的公式和应用方法是十分必要的。

1.1.1正弦定理

1.1.1正弦定理
一、解斜三角形(求边a,b,c;求角A,B,C.); 二、在三角形中实现边角互化.(a=2RsinA)
正弦定理在解斜三角形中的 三类应用:
(1)、已知两角和任一边,求一角和其他两条边.
aa
bb
c 2R
sin A sin BB sin CC
(2)、已知两边和其中一边的对角,求另一边的 对角(进而求其他的角和边)
4、在ABC中,若 3a=2bsinA,那么B的值是 C
A 、
B 、
3
6
C、 或 2
33
D、 或 5
66
5、在ABC中,AC= 3,A=45 ,C=75 ,那么 BC=___2__
6、在ABC中,a+b=12, A=60 ,B=45 , 那么a=__3_6_-1_2___6___,b=_1_2___6_-_2_4__
(3)S 1 absin C 1 bc sin A 1 ac sin B
2
2
2
例题讲解:
例1.已知在ΔABC中,c=10,A=450,C=300,求a,b和B
解:∵c=10 A=450,C=300
∴B= 1800 -(A+C)=1050

a sin
A
c
=sin C

a=a sin A
sin C
一、前提测评
回顾三角形中的边角关系:
1、边的关系:
1)两边之和大于第三边;两边之差小于第三边
2)在直角三角形中:a2+b2=c2
2、角的关系:
1)A+B+C=1800
2) sin( A B) sin C
sin A B cos C
ቤተ መጻሕፍቲ ባይዱ

1.1.1正弦定理(1)

1.1.1正弦定理(1)
解:根据三角形内角和定理,

根据正弦定理,

根据ห้องสมุดไป่ตู้弦定理,
评述:对于解三角形中的复杂运算可使用计算器。
巡视指导
归纳:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
相互交流,给出答案
边AB的长度随着其对角 C的大小的增大而增大。能否
浏览目标
自主学习
完成任务
明确疑问
合作学习
展示讲解推导过程
课时计划
课题
1.1.1正弦定理
课型
新授课
班别
1.5
1.6
时间
教学目标
1、通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2、让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
教学过程
教学内容
及流程
教师活动
学生活动
备注
1、创设情境
如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。
思考: C的大小与它的对边AB的长度之间有怎样的数量关系?
2、目标任务
1、理解正弦定理
2、能够应用正弦定理解决简单问题
3、个体自学
任务:
1、阅读教材p2——4。
2、明确正弦定理及其推理过程。
3、知道什么是解三角形。
四、互动交流
明确答案
交流疑问
五、展示汇报
如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,
有CD= ,则 ,

第一部分 第一章 1.1 1.1.1 正弦定理

第一部分  第一章  1.1  1.1.1 正弦定理

弦值可求锐角唯一.
(3)如果已知的角为小边所对的角时,则不能判断另一边 所对的角为锐角,这时由正弦值可求两个角,要分类讨论.
返回
π π 3.若把本例中 C=3改为 A=4,其他条件不变,求 C,B,b.
π 解:∵ 6sin4<2< 6, ∴本题有两解. a c csin A 3 ∵sin A=sin C,∴sin C= a = 2 .
且sin 2A=sin 2B+sin 2C,试判断△ABC的形状. [思路点拨] 首先利用正弦定理将角的关系式sin2A
=sin 2B+sin2C转化为边的关系式,进而判断三角形的 形状.
返回
[精解详析]
a b c 法一:设sin A=sin B=sin C=k, (2 分)
则 a=ksin A,b=ksin B,c=ksin C ∵sin2A=sin2B+sin2C. ∴(ksin A)2=(ksin B)2+(ksin C)2. ∴a2=b2+c2. ∴A=90° ,B+C=90° .
6.在△ABC中,若acos A=bcos B,试判断△ABC的形状.
a b 解:由正弦定理,设sin A=sin B=k,则 a=ksin A,b=ksin B, ∴由 acos A=bcos B,得:sin Acos A=sin Bcos B. 即 sin 2A=sin 2B. ∵2A、2B∈(0,2π), ∴2A=2B 或 2A=π-2B 或 2A-π=2π-2B. π 即 A=B 或 A+B=2. ∴△ABC 为等腰三角形或直角三角形.
A为钝角或直角
图形
关系 ①a=bsin A bsin A<a 式 解的 ②a≥b 一解 <b 两解
a<bsin A
a>b
a≤b
个数

1.1.1正弦定理课件(PPT)

1.1.1正弦定理课件(PPT)

sin C
同理 a 2R, b 2R
sin A
sin B
C/ 能否运用向量的方法
a b c 2R 来证明正弦定理呢? sin A sin B sin C
向量法
利用向量的数量积,产生边的长与内角 的三角函数的关系来证明.
在直角三角形中
A
c
b
B
a DC
在锐角三角形中
B
jc
a
A
b
C
证 明 : 过 点A作 单 位 向 量j垂 直
1.在ABC中 (1)已知b 12, A 300 , B 120 , 求a; (2)已知c 10, A 45 ,C 30 , 求b, SABC .
(3)已知A 300 , B C 600 , a 2,求c.
1.在ABC中 (1)已知b 12, A 300 , B 120 , 求a; (2)已知c 10, A 45 ,C 30 , 求b, SABC .
b c, sin B sinC
图1 D
C
同理可得 a c ,
sin A sinC
即: a b c sin A sin B sinC
3.若三角形是钝角三角形,且角C是钝角如图2, 过点A作AD⊥BC,交BC延长线于D,
此时也有
sin B
AD c

sin(
C)
AD b
sinC
仿(2)可得 a b c
一解
ba
作三角形
案例小结!
C
(1)A为锐角 C
b
a
ba a
A
B
a = bsinA (一解)
C
b
A B2
B1
bsinA<a<b

1.1.1 正弦定理

1.1.1  正弦定理

a b c 1.正弦定理 sin A sin B sin C
它是解三角形的工具之一. 2.应用正弦定理可以解以下两种类型的三角形: (1)已知两角及任意一边;
(2)已知两边及其中一边的对角.
【拓展提升】用正弦定理进行边角互化的两种方法
(1)边化角 a c b 根据sin A= ,sin B= ,sin C= 化边为角(其中 2R 2R 2R R为△ABC外接圆的半径).
(2)角化边
根据a=2Rsin A,b=2Rsin B,c=2Rsin C化角为边(其中R
为△ABC外接圆的半径).
O a b B c A` A
一、正弦定理: 在一个三角形中,各边和它所对角的正弦的比相等, a b c . 即 sin A sin B sin C 注意:(1)正弦定理指出了任意三角形中三条边与对应角 的正弦之间的一个关系式.由正弦函数在区间上的
单调性可知,正弦定理非常好地描述了任意三角形
判断:(正确的打“√”,错误的打“×”) (1)正弦定理只适用于锐角三角形.( )
(2)在△ABC中,等式asinA=bsinB总能成立.(

(3)在△ABC中,已知a=30,b=23,A=130°,则此三角形
பைடு நூலகம்
有唯一解.(

提示:(1)错误.正弦定理对于任意三角形都适用. (2)错误.由正弦定理得asinB=bsinA. (3)正确.由A=130°>90°,a=30>b=23.根据大边对大角 知,三角形有唯一解. 答案:(1)× (2)× (3)√
) C. 无解 D. 不确定
B. 两解
解答:b>c,一解
3.(2012·福建高考)在△ABC中,已知∠BAC=60°,

人教版高中数学必修五 1.1.1 正弦定理

人教版高中数学必修五 1.1.1 正弦定理

AC 等于( )
A.4 3
B.2 3
C. 3
3 D. 2
【解析】由正弦定理可知,sAinCB=sBinCA,
所以 AC=BCsisniAnB=3
2× 3
2 2 =2
3.故选 B.
2
【答案】B
3.在△ABC 中,sinA=sinC,则△ABC 是( ) A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形
课堂小结: 1.对正弦定理的理解 (1)三角形中各边的长和它所对角的正弦的比值为三角
形外接圆的直径 2R.即sianA=sibnB=sincC=2R.
(2)结合(1)的结论由正弦定理可得如下变形: ①a=2RsinA,b=2RsinB,c=2RsinC. ②sinA=2aR,sinB=2bR,sinC=2cR. 由变形①②可以实现三角形中边与角之间的相互转 化.这是正弦定理除了用于求边、角之外的另一重要功能.
c=assiinnAC=2 s3ins3in03°0°=2 3. ∴B=60°,C=90°,c=4 3或 B=120°,C=30°, c=2 3.
变式训练 2:在△ABC 中,A=60°,a=4 3,b=4 2,
则 B 等于( )
A.45°或 135°
B.135°
C.45°
D.以上答案都不对
【解析】由sianA=sibnB,
2.解三角形
一般地,把三角形的三个角和它们的_对___边__叫做三角形 的元素.已知三角形的几个元素求_其__他__元__素___的过程叫做解
三角形.
典例探究 类型一 已知两角及一边解三角形 例 1:在△ABC 中,已知 a=8,B=60°,C=75°,求
A,b,c.
解:A=180°-(B+C)=180°-(60°+75°)=45°.

1.1.1正弦定理1

1.1.1正弦定理1
第一章 解三角形
1.1.1 正弦定理
复习三角形中的边角关系
(一)任意三角形中的边角关系 A B C 180 1、角的关系2、边的关系 3、角关系abc, ab c
大角对大边
(二)直角三角形中的边角关系 (角C为直角)
1、角的关系
2、边的关系 3、边角关系
A B 90
2 2

a b c
2
直角三角形中:
a b , sin B , sin C 1 sin A c c
A
即c
a b c ,c ,c sin A sin B sin C
b
c
\
a b c sin A sin B sin C
B a 探索:直角三角形的边角关系式对任意三角形是否成立?
变式:
a b b c c a (1) ; ; sin A sin B sin B sin C sin C sin A
(2)sin A : sin B : sin C a : b : c
概念:解三角形
一般的,把三角形的三个角A,B,C和它们的对边 a,b,c叫做三角形的元素。已知三角形的几个元 素求其他元素的过程叫做解三角形。 思考:利用正弦定理可以解决一些怎样的 解三角形问题呢?
C
如图:
C C
1
B a c A C1 O C
c c 2R 1 sin C sin C
b
b a 2 R, 2R 同理: sin B sin A
a b c 2 R(R为外接圆半径) 即得: sin A sin B sin C
在一个三角形中,各边和它所对角的正弦的比相等, 即 a b c 2 R(R为外接圆半径 ) sin A sin B sin C

1.1.1 正弦定理(A3)

1.1.1 正弦定理(A3)
2
鸡西市第十九中学学案
2015 年( )月( )日 班级 姓名
问题 我们应用正弦定理解三角形时, 已知三角形的两边及其中一边的对角往往得出不同情形的 解,有时一解,有时两解,有时又无解,这究竟是怎么回事?
1.1.1 正弦定理(二) 学习 目标 重点 难点
1.熟记正弦定理的有关变形公式. 2.探究三角形面积公式的表现形式,能结合正弦定理解与面积有关的斜三角形问 题.3.能根据条件,判断三角形解的个数.
探究 1 关系式
在△ABC 中,已知 a,b 和 A,若 A 为直角,讨论三角形解的情况.(请完成下表) a≤b a>b
1.已知两边及其中一边对角解三角形,其解不一定唯一,应注意运用大边对大角的 理论判断解的情况.2.判断三角形形状时,不要在等式两边轻易地除以含有边角的 因式,造成漏解. a b c 正弦定理: = = =2R 的常见变形: sin A sin B sin C (1)sin A∶sin B∶sin C= ; ;
1

小结 正弦定理在实现三角形的边角转化中非常方便,需要进行边角转化时,首先要考虑通过正 弦定理来实现. 训练 1 在△ABC 中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则 sin A∶sin B∶sin C 等于 ( ) A.6∶5∶4 B.7∶5∶3 C.3∶5∶7 D.4∶5∶6
小结 已知两角与任一边,利用正弦定理解三角形,有以下两种情况: (1)若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角, 最后由正弦定理求第三边; (2)若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两 边. 训练 3 在△ABC 中,a=5,B=45° ,C=105° ,解三角形.

第1章1.1.1第2课时 正弦定理课件人教新课标

第1章1.1.1第2课时 正弦定理课件人教新课标

1.满足 B=60°,AC=12,BC=k 的△ABC 恰有一个,则 k 的
取值范围是( )
A.k=8 3
B.0<k≤12
C.k≥12
D.0<k≤12 或 k=8 3
D [已知两边和其中一边的对角解三角形时,首先求出另一边的 对角的正弦值,由正弦值求角时,需对角的情况进行讨论:当 AC< BCsin B,即 12<ksin 60°,即 k>8 3时,三角形无解;当 AC=BCsin B,即 12=ksin 60°,即 k=8 3时,三角形有一解;当 BCsin B<AC <BC,即 23k<12<k,即 12<k<8 3时,三角形有两解;当 0< BC≤AC,即 0<k≤12 时,三角形有一解.综上,0<k≤12 或 k=8 3 时,三角形有一解.]
+B>2π⇔A>π2-B⇔sin A>cos B,cos A<sin B.
【例 3】 在△ABC 中,角 A,B,C 所对的边分别是 a,b,c, m=(sin A,sin B),n=(cos B,cos A),m·n=-sin 2C.
(1)求 C 的大小; (2)若 c=2 3,A=6π,求△ABC 的面积. 思路探究:(1)由 m·n=-sin 2C,利用三角恒等变换求出 C 的大 小; (2)由正弦定理可得 b 的大小,利用三角形的面积公式求解.
bsin A<a<b
两__解__
A为
___a_<_b_s_i_n_A_
无解
锐角
思考:在△ABC 中,a=9,b=10,A=60°,判断三角形解的
个数.
[提示] sin B=basin A=190× 23=5 93,

35 2<
9

1.1.1正弦定理 课件(人教B必修五)

1.1.1正弦定理 课件(人教B必修五)

引导学生回答所提问题,理解正弦定理成立的条件、特征及 由正弦定理可求解的三角形的类型; 通过例题与练习让学生在应 用定理解决问题的过程中更深入地理解定理及其作用, 以强化重 点.
课 标 解 读
1.掌握正弦定理及基本应用.(重点) 2.会判断三角形的形状.(难点) 3.能根据正弦定理确定三角形解的个数.(难点、 易错点)
已知两角及一边解三角形
1 在△ABC 中,∠A=60° ,sin B=2,a=3,求三角 形中其他边与角的大小.
1 【思路探究】 (1)由 sin B=2能解出∠B 的大小吗?∠B 唯
一吗? (2)能用正弦定理求出边 b 吗? (3)怎样求其他边与角的大小?
【自主解答】
1 ∵sin B=2,∴∠B=30° 或 150° ,
【答案】 A
已知两边及一边的对角解三角形
π 在△ABC 中,若 a=3,b= 3,∠A=3.求∠C.
【思路探究】 (1)由已知边 a,b 及边 a 的对角 A,能否用
正弦定理求得 B 呢? (2)求出 B 值后,怎样求∠C 呢?
【自主解答】 在△ABC 中,由正弦定理得 3 3× 2 sin A 1 sin B=b a = 3 =2. π ∵a>b,∴∠A>∠B,∴∠B=6, π π π ∴∠C=π-3-6=2.
3.情感、态度与价值观 (1)通过对三角形边角关系的探究学习,经历数学探究活动 的过程,体会由特殊到一般再由一般到特殊的认识事物的规律, 培养探索精神和创新意识; (2)通过本节学习和运用实践,体会数学的科学价值、应用 价值,学习用数学的思维方式解决问题、认识世界,进而领会数 学的价值,不断提高自身的文化修养.
2.对于锐角三角形中,问题 1 中的关系是否成立? 【提示】 成立. 3.钝角三角形中呢? 【提示】 成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版A版 高中必修五
第一章 解三角形 1.1.1 正弦定理
学习目标
• 1. 掌握正弦定理的内容; • 2. 掌握正弦定理的证明方法; • 3. 会运用正弦定理解斜三角形的两类基本问题。
学习重点:
正弦定理的内容; 正弦定理的基本应用。
学习难点:
正弦定理的证明。
在初中阶段我们学过:在同一个三角形中,大 边对大角,小边对小角。
我们利用正弦定理可以解 决一些怎样的解三角形问 题呢?
① 已知两角和任意一边,可以求出其他两边和一角; ②已知两边和其中一边的对角,可以求出三角形的其
它的边和角。
一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做 解三角形。
【课堂练习】
10
2 14
Q 又
B 180 ( A C ) 105
bc sin B sinC
b c sin B 10 sin105 19
sinC
sin 30
例2 在ABC中,已知 a 4,b 4 2, B 45,求A,C和边c .
解:由 a b sin A sin B
(1)在 ABC 中,一定成立的等式是( C)
A. asin A bsinB
B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)在△ABC中,R为△ABC外接圆半径,sina
A
பைடு நூலகம்

b sin B

c sin C

k
则k为( A )
A.2R B.R C.4R D.R
【课外作业】
用向量法证明正弦定理。
A
r e
B
C
【课堂练习】
(3)在△ABC中,根据下列条件解三角形。
① A 600, B 450,c 20
② a 1,b 2, B 450
C 75
① a 30 2 10 6
b 20 3 2
A 30
C 105

c 6 2
2
【课堂练习】
③ a 4,b 2, B 450 ④ c 6,A ,a 2,求b
C 180°(A B)=105°
得 sin A a sin B 1 b2
由b c sin B sin C
∵ 在 ABC 中 a b
∴ A 为锐角
得c bsin C 4 sin B
2 sin105 sin 45

2
62
2
A 30
【探究二】正弦定理的在解三角形中的应用
证法二:
证明:做∆ABC的外接圆e O ,设其半径为R。
过点B做直径A’B,连接A’C。 则∠A’CB=90°,∠A=∠A’。
sin A sin A' a 2R
2R a sin A
2R b
同理:
2R

sin B c
sin C
所以
a b c 2R sin A sin B sin C
【探究二】正弦定理的在解三角形中的应用
我们利用正弦定理可以解 决一些怎样的解三角形问 题呢?
例1 在 ABC 中,已知 c 10, A 45,C 30 ,求a和b。
(保留两个有效数字).
解 : 根据正弦定理
ac sin A sin C
a

c sin A sin C

10sin 45 sin 30
4
③ 无解 ④ b 3 1或 3 1
【课堂小结】
1、正弦定理:
a b c 2R(R为三角形外接圆的半径) sin A sin B sin C
2、正弦定理的推导过程; 3、正弦定理在解三角形中的应用。
【作业】
• 必做题:P4,1、2 • 选做题:P10,6、7 • 预习新课:余弦定理
aC
?对于锐角和钝角三角形,以上关系是否仍然成 立呢?
对于锐角∆ABC,有
a b c sin A sin B sinC
对于钝角∆ABC,有
a b c sin A sin B sinC
正弦定理:
在一个三角形中,各边和它所对角的正弦的比相等, 即
a b c sin A sin B sinC
那么在三角形中,边和角之间有没有准确的量 化关系呢?
• 如图,∆ABC中,∠A所 对的边BC长为a,∠B所 对的边AC长为b,∠C所 对的边AB长为c。
【探究一】三角形中的角和边的关系
根据三角函数定义,找出直角三角 形中的边角关系。
A
c
b
a b c sin A sin B
sinC 1
abc B sin A sin B sinC
相关文档
最新文档