(天津版)高考数学分项版解析专题05平面向量文
2024年高一数学真题分类汇编(天津专用)平面向量(解析版)
专题01平面向量考点一、向量的基本概念和线性运算考点二、向量共线定理的应用考点三、向量共线和垂直考点四、向量的数量积及夹角考点五、向量的投影1、数量积及其最值问题2、平面向量的综合应用向量的基本概念和线性运算1.(20·21高一·全国·课时练习)下列说法正确的是()A .向量AB与向量BA 是相等向量B .与实数类似,对于两个向量a ,b 有a b = ,a b > ,a b <r r三种关系C .两个向量平行时,表示向量的有向线段所在的直线一定平行D .若两个非零向量是共线向量,则向量所在的直线可以平行,也可以重合【答案】D【分析】根据向量的基本概念辨析可知.【详解】解:对于A ,向量AB与向量BA 是相反向量,所以A 错误;对于B ,因为向量是有方向和大小的量,所以两个向量不能比较大小,所以B 错误;对于C ,当两个向量平行时,表示向量的有向线段所在的直线平行或共线,所以C 错误;,由共线向量的定义可知,当两个向量是共线向量时,有向量所在的直线可以平行,也可以3.(2023高一·天津市下学期期中)已知向量A.()5,7B.()5,9【答案】Aa=2(4,8)A .1233AB AD-+C .1536AB AD -AP 1233PQ BQ BP BC =-=- 故选:A.8.(20·21高一下·山西吕梁AP AB AC λμ=+,则λ+A .49【答案】B3A .2B .4【答案】A【分析】设CP CD λ=,可得出AP的坐标,再由两向量共线列方程可求出,则向量【点睛】本题考查投影向量的计算,涉及向量投影的计算,考查计算能力,属于基础题则有BD AC ⊥,且BD 所以()AB BA BC BA ⋅+=- 故答案为:32-.【答案】74/1.75【分析】以B 为坐标原点,建立平面直角坐标系,利用平面向量数量积的坐标运算即可求解【详解】以B 为坐标原点,建立平面直角坐标系,如图:()()()2,0,0,2,0,0C A B ,设()2,D x ,()2,2AC =- ,BD 2AC BD ⋅=- ,则42x -=()2,3D ∴, 点M 为边AB 设()0,M t ,[]0,2t ∈,MC 【答案】2-19-【分析】以B 为坐标原点可建立平面直角坐标系,求得D 点坐标,由向量数量积坐标运算可得则()0,0B ,()2,0C ,()0,2A ,E ()2,2CD x ∴=- ,22,2CE ⎛⎫=- ⎪ ⎪⎝⎭ 向量CD 在向量CE 上的投影向量的模为BP 26.(20·21高一上·广西·期末)如图,在菱形。
天津专用2018版高考数学总复习专题05平面向量分项练习含解析理201710013108
专题05 平面向量一.基础题组1.【2006天津,理12】设向量与b的夹角为,且a (3,3),2b a(1,1),则cos__________.【答案】31010【解析】设向量与的夹角为,且a (3,3),2b a (1,1),∴b (1,2),则cosa b9310||||325a b10m2.【2007天津,理10】设两个向量a(2,2cos2)和b (m,sin),其中,m ,为2实数.若a 2b,则m的取值范围是( )A.[6,1]B.[4,8]C.(,1] D. [1,6]【答案】A【解析】(16t 18t2)[0,4]2111t [1,]18k28解得6k 1.故选A解不等式得因而3.【2007天津,理15】如图,在ABC中,BAC 120,AB 2,AC 1,D是边BC上一点,DC 2BD,则AD A BC.AB DC1【答案】 8 3 【解析】cos 由余弦定理得 B AB AC BC AB AD BD2 2 2 2 2 22 AB AC 2 AB BD可得 BC 7, AD 13 3 , BD 2AD 2 AB 232 9 8 cos ADBBD AD, 又 AD , BC 夹角大小为 ADB ,29 4 13 7 918AD BC cos ADB所以 AD A BC. 34.【2008天津,理 14】如图,在平行四边形 ABCD 中, AC1,2, BD3,2,则AD AC.【答案】35.【2009天津,理 15】在四边形 ABCD 中,AB DC (1,1) ,|1 1BABCBA || BC |3 BDBD,则四边形 ABCD 的面积为_________________.【答案】 3 【解析】由于 AB DC (1,1) ,则四边形 ABCD 是平行四边形且| AB | 2 ,又由| 11BABCBA || BC |3 BDBD,得 BC 、CD(BA)与 BD 三者之间的边长之比为1∶1∶3,那么可知∠DAB=120°,所以AB边上的高为62.所以四边形ABCD的面积为623.26.【2010天津,理15】如图,在△ABC中,AD⊥AB,BC3BD,|AD|=1,则AC AD=__________.2【答案】3【解析】解析:∵AC AB BC AB 3BD AB 3(BA AD)(13)AB 3AD ∴AC·AD=(1-3)AB+3AD]·AD=(1-3)AB·AD+3A D2=3AD=3.27.【2012天津,理7】已知△ABC为等边三角形,AB=2.设点P,Q满足AP=λAB,AQ=(1-λ) AC,λ∈R.若BQ CP32,则λ=()A.1212B.2110C.2D.3222【答案】A3即(2λ-1)2=0,∴1 2.8.【2013天津,理12】在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若AC·BE=1,则AB的长为__________.【答案】1 2【解析】如图所示,在平行四边形ABCD中,AC=AB+AD,BE=BC+CE =1 AB 2+AD.41AB AD所以 AC ·BE =(AB + AD )·21 |AB |2+|AD |2+ =2 1 2 AB ·AD 1 1 1|AB |2+=|AB |+1=1,解方程得|AB |= (舍去|AB |=0),所以线段 AB 的长2 4 21为 .29. 【2017天津,理 13】在△ABC 中,∠A60 , AB 3, AC 2 .若 BD 2DC ,AEAC ABR ,且 AD AE4 ,则 的值为___________( )3【答案】11【考点】向量的数量积【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基地可以表示平面内的任一向 量,利用向量的定比分点公式表示向量,则可获解.本题中 AB , AC 已知模和夹角,作为基底 易于计算数量积. 二.能力题组1.【2005天津,理 14】在直角坐标系 xOy 中,已知点 A (0,1)和点 B (3,4),若点 C 在∠AOB 的平分线上且| OC | = 2,则 OC = __________。
天津市四合庄中学2021年高考数学中“平面向量多选题”的类型分析含答案
天津市四合庄中学2021年高考数学中“平面向量多选题”的类型分析含答案一、平面向量多选题1.已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M 【答案】BD【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断.【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ',所以1M 不是“互垂点集”集合;对y = 所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在xy e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合,故选:BD .【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.2.已知直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,线段AB是圆()()22:114C x y +++=的一条动弦,G 为弦AB 的中点,AB =( )A .弦AB 的中点轨迹是圆B .直线12,l l 的交点P 在定圆()()22222x y -+-=上C .线段PG长的最大值为1D .PA PB ⋅的最小值6+【答案】ABC【分析】对于选项A :设()00,G x y ,利用已知条件先求出圆心到弦AB 的距离CG ,利用两点之间的距离公式即可得到结论;对于选项B :联立直线的方程组求解点P 的坐标,代入选项验证即可判断;对于选项C :利用选项A B 结论,得到圆心坐标和半径,利用1112max PG PG r r =++求解即可;对于选项D :利用平面向量的加法法则以及数量积运算得到23PA PB PG ⋅==-,进而把问题转化为求1112min PG PG r r =--问题,即可判断. 【详解】对于选项A :设()00,G x y,2AB =G 为弦AB 的中点,GB ∴=,而()()22:114C x y+++=,半径为2,则圆心到弦AB 的距离为1CG ==,又圆心()1,1C --, ()()2200111x y ∴+++=,即弦AB 的中点轨迹是圆.故选项A 正确;对于选项B : 由310310mx y m x my m --+=⎧⎨+--=⎩, 得222232113211m m x m m m y m ⎧++=⎪⎪+⎨-+⎪=⎪+⎩, 代入()()2222x y -+-整理得2,故选项B 正确;对于选项C :由选项A 知:点G 的轨迹方程为:()()22111x y +++=,由选项B 知:点P 的轨迹方程为:()()22222x y -+-=, ()()11121,1,1,2,2,G r P r ∴--=所以线段1112max11PG PG r r =++=+=,故选项C 正确;对于选项D : ()()PA PB PG GA PG GB ⋅=+⋅+()2PG PG GA GB GA GB =+⋅++⋅22203PG PG GB PG =+⋅-=-,故()()2min min3PA PB PG ⋅=-,由选项C 知:1112min11PG PG r r =--=-=,所以()()2min 136PA PB ⋅=-=-, 故选项D 错误;故选:A B C.【点睛】关键点睛:本题考查了求圆的轨迹问题以及两个圆上的点的距离问题.把两个圆上的点的距离问题转化为两个圆的圆心与半径之间的关系是解决本题的关键.3.已知ABC 是边长为2的等边三角形,D 是边AC 上的点,且2AD DC =,E 是AB 的中点,BD 与CE 交于点O ,那么( )A .0OE OC +=B .1AB CE ⋅=-C .32OA OB OC ++=D .132DE = 【答案】AC【分析】建立平面直角坐标系,结合线段位置关系以及坐标形式下模长的计算公式逐项分析.【详解】建立平面直角坐标系如下图所示:取BD 中点M ,连接ME ,因为,M E 为,BD BA 中点,所以1//,2ME AD ME AD =,又因为12CD AD =, 所以//,ME CD ME CD =,所以易知EOM COD ≅,所以O 为CE 中点, A .因为O 为CE 中点,所以0OE OC +=成立,故正确;B .因为E 为AB 中点,所以AB CE ,所以0AB CE ⋅=,故错误;C .因为()()(30,,1,0,1,0,32O A B C ⎛- ⎝⎭,所以33331,1,0,OA OB OC ⎛⎛⎛⎛++=+-+= ⎝⎭⎝⎭⎝⎭⎝⎭, 所以3OA OB OC ++= D .因为()123,0,03D E ⎛ ⎝⎭,所以123,3DE ⎛=- ⎝⎭,所以13DE =,故错误, 故选:AC.【点睛】关键点点睛:对于规则的平面图形(如正三角形、矩形、菱形等)中的平面向量的数量积和模长问题,采用坐标法计算有时会更加方便.4.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60°【答案】ACD【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解.【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角,∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误;对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a a b a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒, 得a 与a b λ+的夹角为30°,故D 项错误.故错误的选项为ACD故选:ACD 【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.5.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 【答案】AC【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D .【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a 与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误; 故选:AC .【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.6.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( )A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+【答案】ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】 解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.7.若平面向量,,a b c 两两夹角相等,,a b 为单位向量,2c =,则a b c ++=( ) A .1B .2C .3D .4【答案】AD 【分析】由平面向量,,a b c 两两夹角相等可知,夹角为0︒或120︒.分两种情况对三个向量的和的模长进行讨论,算出结果.【详解】 平面向量,,a b c 两两夹角相等, ∴两两向量所成的角是0︒或120︒.当夹角为0︒时,,,a b c 同向共线,则4a b c ++=;当夹角为120︒时,,a b 为单位向量,1a b ∴+= ,且a b +与c 反向共线,又2c =,1a b c ∴++=.故选:AD.【点睛】本题考查了平面向量共线的性质,平面向量的模的求法,考查了分类讨论的思想,属于中档题.8.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( )A .(0,1)-B .(6,15)C .(2,3)-D .(2,3) 【答案】ABC【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解.【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-;当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15);当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-.∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-.故选:ABC .【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.9.关于平面向量有下列四个命题,其中正确的命题为( )A .若a b a c ⋅=⋅,则b c =;B .已知(,3)a k =,(2,6)b =-,若//a b ,则1k =-;C .非零向量a 和b ,满足||||||a b a b ==-,则a 与a b +的夹角为30º;D .0||||||||a b a b a b a b ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭【答案】BCD【分析】通过举反例知A 不成立,由平行向量的坐标对应成比例知B 正确,由向量加减法的意义知,C 正确,通过化简计算得D 正确.【详解】对A ,当0a = 时,可得到A 不成立;对B ,//a b 时,有326k =-,1k ∴=-,故B 正确. 对C ,当||||||a b a b ==-时,a 、b 、a b -这三个向量平移后构成一个等边三角形, a b + 是这个等边三角形一条角平分线,故C 正确.对D ,22()()()()110||||||||||||a b a b a b a a a b b b +⋅-=-=-=,故D 正确. 故选:BCD .【点睛】本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特点.属于基础题.10.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( )A .a 为单位向量B .//b BC C .a b ⊥D .()6a b BC +⊥ 【答案】ABD 【分析】 求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD.【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.。
专题05 平面解析几何(选择题、填空题)-三年(2022–2024)高考数学真题分类汇编(原卷版)
专题05平面解析几何(选择题、填空题)考点三年考情(2022-2024)命题趋势考点1:直线方程与圆的方程2022年全国II卷、2022年全国甲卷(文)2022年全国乙卷(理)近三年高考对解析几何小题的考查比较稳定,考查内容、频率、题型难度均变化不大,备考时应熟练以下方向:(1)要重视直线方程的求法、两条直线的位置关系以及点到直线的距离公式这三个考点.(2)要重视直线与圆相交所得弦长及相切所得切线的问题.(3)要重视椭圆、双曲线、抛物线定义的运用、标准方程的求法以及简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.考点2:直线与圆的位置关系2024年北京卷、2022年全国甲卷(理)2022年天津卷、2022年北京卷2023年全国Ⅰ卷、2024年北京卷考点3:圆与圆的位置关系2022年全国I卷考点4:轨迹方程及标准方程2023年北京卷、2023年天津卷2024年全国Ⅱ卷、2022年天津卷2022年全国甲卷(文)考点5:椭圆的几何性质2022年全国I卷2023年全国甲卷(理)2023年全国甲卷(文)考点6:双曲线的几何性质2022年北京卷2023年全国乙卷(理)考点7:抛物线的几何性质2024年北京卷、2024年天津卷2023年全国乙卷(理)2023年天津卷、2023年全国Ⅱ卷2024年全国Ⅱ卷、2022年全国I卷考点8:弦长问题2022年全国乙卷(理)2023年全国甲卷(理)考点9:离心率问题2024年全国Ⅰ卷、2022年全国甲卷(文)2023年全国Ⅰ卷、2022年浙江卷2022年全国乙卷(理)2024年全国甲卷(理)2023年全国Ⅰ卷、2022年全国甲卷(理)考点10:焦半径、焦点弦问题2022年全国II卷、2023年北京卷考点11:范围与最值问题2022年全国II卷2024年全国甲卷(文)2023年全国乙卷(文)考点12:面积问题2024年天津卷、2023年全国Ⅱ卷2023年全国Ⅱ卷考点13:新定义问题2024年全国Ⅰ卷考点1:直线方程与圆的方程1.(2022年新高考全国II 卷数学真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||23MA NB MN ==l 的方程为.2.(2022年高考全国甲卷数学(文)真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为.3.(2022年高考全国乙卷数学(理)真题)过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为.考点2:直线与圆的位置关系4.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214xy -=只有一个公共点,则k 的一个取值为.5.(2022年高考全国甲卷数学(理)真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.6.(2022年新高考天津数学高考真题)若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.7.(2022年新高考北京数学高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A .12B .12-C .1D .1-8.(2023年新课标全国Ⅰ卷数学真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D 649.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A 2B .2C .3D .32考点3:圆与圆的位置关系10.(2022年新高考全国I 卷数学真题)写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程.考点4:轨迹方程及标准方程11.(2023年北京高考数学真题)已知双曲线C 的焦点为(2,0)-和(2,0),离心率为2,则C 的方程为.12.(2023年天津高考数学真题)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF 的斜率为24,则双曲线的方程为()A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=13.(2022年新高考天津数学高考真题)已知抛物线21245,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为()A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=14.(2022年高考全国甲卷数学(文)真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=15.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)考点5:椭圆的几何性质16.(2022年新高考全国I 卷数学真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是.17.(2023年高考全国甲卷数学(理)真题)设O 为坐标原点,12,F F 为椭圆22:196x yC +=的两个焦点,点P 在C 上,123cos 5F PF ∠=,则||OP =()A .135B .302C .145D .35218.(2023年高考全国甲卷数学(文)真题)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅=,则12PF PF ⋅=()A .1B .2C .4D .5考点6:双曲线的几何性质19.(2022年新高考北京数学高考真题)已知双曲线221x y m +=的渐近线方程为3y =,则m =.20.(2023年高考全国乙卷数学(理)真题)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A .()1,1B .()1,2-C .()1,3D .()1,4--考点7:抛物线的几何性质21.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为.22.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.23.(2023年高考全国乙卷数学(理)真题)已知点(5A 在抛物线C :22y px =上,则A 到C 的准线的距离为.24.(2023年天津高考数学真题)已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.25.(多选题)(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个26.(多选题)(2022年新高考全国I 卷数学真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA⋅>D .2||||||BP BQ BA ⋅>27.(多选题)(2023年新课标全国Ⅱ卷数学真题)设O 为坐标原点,直线)31y x =--过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN 为等腰三角形考点8:弦长问题28.(2022年高考全国乙卷数学(理)真题)设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .22C .3D .3229.(2023年高考全国甲卷数学(理)真题)已知双曲线2222:1(0,0)x y C a b a b-=>>5C 的一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A 55B .255C .355D .455考点9:离心率问题30.(2024年新课标全国Ⅰ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.31.(2022年高考全国甲卷数学(文)真题)记双曲线2222:1(0,0)x y C a b a b -=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值.32.(2023年新课标全国Ⅰ卷数学真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A B ⊥=- ,则C 的离心率为.33.(2022年新高考浙江数学高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是.34.(多选题)(2022年高考全国乙卷数学(理)真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A 52B .32C .132D .17235.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 236.(2023年新课标全国Ⅰ卷数学真题)设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若213e e =,则=a ()A 233B 2C 3D 637.(2022年高考全国甲卷数学(理)真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A 32B .22C .12D .13考点10:焦半径、焦点弦问题38.(多选题)(2022年新高考全国II 卷数学真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则()A .直线AB 的斜率为26B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒39.(2023年北京高考数学真题)已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A .7B .6C .5D .4考点11:范围与最值问题40.(2022年新高考全国II 卷数学真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是.41.(2024年高考全国甲卷数学(文)真题)已知直线20ax y a ++-=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .642.(2023年高考全国乙卷数学(文)真题)已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A .3212+B .4C .132+D .7考点12:面积问题43.(2024年天津高考数学真题)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=44.(2023年新课标全国Ⅱ卷数学真题)已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值.45.(2023年新课标全国Ⅱ卷数学真题)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A .23B 23C .23D .23-考点13:新定义问题46.(多选题)(2024年新课标全国Ⅰ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+。
高考数学压轴专题天津备战高考《平面向量》图文答案
《平面向量》考试知识点一、选择题1.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v方向上的投影为AB.2C .1 D【答案】C 【解析】 【分析】根据a v在b v方向上的投影定义求解. 【详解】a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-rr r , 选C. 【点睛】本题考查a v在b v方向上的投影定义,考查基本求解能力.2.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为,P Q 在圆222:8120C x y y +-+=上,则MP MQ ⋅u u u r u u u u r的最小值为( )A.18-B.19-C.18+D.19+【答案】B 【解析】 【分析】设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,求得23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,再利用圆与圆的位置关系,即可求解故()223MP MQ ⋅≥-u u u r u u u u r,得到答案.【详解】依题意,设PQ 中点D ,则,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,所以23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,221C D ==Q ,D ∴在以1为半径,以2C 为圆心的圆上,21C C ==≥Q ,1221min min MD C C C D MC ∴=--故()22319MP MQ ⋅≥-=-u u u r u u u u r【点睛】本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.3.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则实数λ=( )A 3B 3C 6D 6【答案】D 【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u ur 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r 中计算即可. 【详解】 由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC=u u u r u u u r ,||3622||AB AC λ===u u u ru u u r . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.4.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u u r u u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.5.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.6.在ABC V 中,D 为边AC 上的点,若2133BD BA BC =+u u u r u u u r u u u r ,AD DC λ=u u u v u u u v,则λ=( )A .13B .12C .3D .2【答案】B 【解析】 【分析】根据2133BD BA BC =+u u u v u u u v u u u v ,将,AD DC u u u r u u u r 都用基底()BABC u u u r u u u r ,表示,再根据AD DC λ=u u u v u u u v 求解. 【详解】因为2133BD BA BC =+u u u v u u u v u u u v ,所以1122,+3333AD BD BA BA BC DC BC BD BA BC =-=-+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,因为AD DC λ=u u u v u u u v ,所以λ= 12, 故选:B 【点睛】本题主要考查平面向量的基本定理和共线向量定理,还考查运算求解的能力,属于中档题.7.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B 【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.8.如图,已知1OA OB ==u u u v u u uv ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则mn等于( )A .57B .75C .37D .73【答案】A 【解析】 【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7,又如图点C 在∠AOB 内,∴cos θ2,sin θ72,又2OC u u u v =C (1755,), ∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n )即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A . 【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.9.设()1,a m =r ,()2,2b =r,若()2a mb b +⊥r r r ,则实数m 的值为( )A .12B .2C .13-D .-3【答案】C 【解析】 【分析】计算()222,4a mb m m +=+r r,根据向量垂直公式计算得到答案.【详解】()222,4a mb m m +=+r r,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-.故选:C . 【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.10.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2-3b 2=2ac ,BA u u u r ⋅BC uuur =2,则△ABC 的面积为( )A B .32C .D .【答案】C 【解析】 【分析】利用余弦定理求出B 的余弦函数值,结合向量的数量积求出ca 的值,然后求解三角形的面积. 【详解】在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2﹣3b 2=2ac ,可得cosB 222123a c b ac +-==,则sinB =BA u u u r⋅BC =u u u r 2,可得cacosB =2,则ac =6,∴△ABC 的面积为:116223acsinB =⨯⨯=. 故选C . 【点睛】本题考查三角形的解法,余弦定理以及向量的数量积的应用,考查计算能力.11.已知向量(b =r ,向量a r 在b r方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( ) A .13B .13-C .23D .3【答案】A 【解析】 【分析】设(),a x y =r 6=-,()4x λ=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴62a b x b⋅+==-r rr 即12x +=-.又 ()a b b λ+⊥r r r ,∴()0a b b λ+⋅=r r r即130x y λ++=,∴()4x λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.12.在边长为2的等边三角形ABC 中,若1,3AE AC BF FC ==u u u v u u u v u u u v u u u v ,则BE AF ⋅=u u u v u u u v( )A .23-B .43-C .83-D .2-【答案】D 【解析】 【分析】运用向量的加减运算和向量数量积的定义计算可得所求值. 【详解】在边长为2的等边三角形ABC 中,若13AE AC =u u u r u u u r,则BE AF ⋅=u u u r u u u v (AE AB -u u u r u u u r)•12(AC AB +u u ur u u u r ) =(13AC AB -u u u r u u u r )•12(AC AB +u u ur u u u r )1123AC =u u u r (2AB -u u u r 223AB -u u u r •AC =u u u r )142142222332⎛⎫--⨯⨯⨯=- ⎪⎝⎭故选:D 【点睛】本题考查向量的加减运算和向量数量积的定义和性质,向量的平方即为模的平方,考查运算能力,属于基础题.13.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( ) A .4 B .5C .6D .7【答案】C 【解析】 【分析】设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r表示成为x 的二次函数,根据二次函数性质可求出其最大值. 【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r,则 22OP FP x x y ⋅=++u u u r u u u r,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-,所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r又因为22x -≤≤,所以当2x =时,OP FP ⋅u u u r u u u r的最大值为6 故选:C 【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.14.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A .2B .2CD .12【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为22=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.15.下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数; ②若0a b ⋅=r r,则0a =r r 或0b =r r;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题;④函数()x xe ef x x--=是偶函数.A .1B .2C .3D .4【答案】B 【解析】 【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论. 【详解】对于①中,当x =时,22x =为有理数,故①错误;对于②中,若0a b ⋅=r ,可以有a b ⊥r r,不一定要0a =r r 或0b =r r ,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题,其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-,且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称, 所以函数()x xe ef x x--=是偶函数,故④正确.综上,真命题的个数是2. 故选:B. 【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.16.已知平面向量,,a b c r r r 满足||||2a b ==r r ,a b ⊥r r,()()a c b c -⊥-r r r r ,则(a b c ⋅r r r +)的取值范围是( )A .[0,2]B .[0,C .[0,4]D .[0,8]【答案】D 【解析】 【分析】以点O 为原点,OA u u u r ,OB uuu r分别为x 轴,y 轴的正方向建立直角坐标系,根据AC BC ⊥,得到点C 在圆22(1)(1)2x y -+-=,再结合直线与圆的位置关系,即可求解. 【详解】设,,OA a OB b OC c ===u u u r r u u u r r u u u r r,以点O 为原点,OA u u u r ,OB uuu r分别为x 轴,y 轴的正方向建立直角坐标系,则(2,0),(0,2)A B ,依题意,得AC BC ⊥,所以点C 在以AB 为直径的圆上运动,设点(,)C x y ,则22(1)(1)2x y -+-=,()22a b c x y +⋅=+r r r ,由圆心到直线22x y t +=的距离d =≤,可得[0,8]t ∈.故选:D .【点睛】本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力.17.已知,A B 是圆22:16O x y +=的两个动点,524,33AB OC OA OB ==-u u u v u u u v u u u v ,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v ( )A.8+B.8-C .12 D .4 【答案】C【解析】【分析】【详解】 由题意1122OM OA OB =+u u u u r u u u r u u u r ,则2252115113322632OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.18.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )A .15,45B .43,13-C .45,15D .13-,43【答案】C【解析】【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=,联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==. 故选:C .【点睛】本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.19.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .D .【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.20.已知单位向量,a b r r 满足3a b +=r r ,则a r 与b r 的夹角为A .6πB .4πC .3πD .2π 【答案】C【解析】由3a b +=r r 22236913a b a a b b +=+⋅+=r r r r r r ,又因为单位向量,a b r r ,所以1632a b a b ⋅=⇒⋅=r r r r , 所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r ,且,[0,]a b π〈〉∈r r ,所以,3a b π〈〉∈r r ,故选C.。
高考数学复习重点知识专题讲解与练习05 函数图象的辨析(解析版)
高考数学复习重点知识专题讲解与练习专题05 函数图象的辨析1.(2021·江西赣州·高三期中(文))已知函数||()122x xx f x =+,则函数()y f x =的大致图象为( )A .B .C .D .【答案】D 【分析】函数图像的识别,通常利用性质+排除法进行判断: 利用函数的奇偶性排除B ,利用特殊点的坐标排除A 、C. 【详解】 由||()22x xx f x -=+,得()f x 的定义域为R ,(0)0f =,排除A 选项. 而||()()22x xx f x f x --==+,所以()f x 为偶函数,图像关于y 轴对称,排除B 选项.()1141421,1152522f f ⎛⎫====< ⎪⎝⎭+,排除C 选项. 故选:D .2.(2021·浙江·高三月考)函数sin 2x y x=的图象可能是( )A .B .C .D .【答案】B 【分析】判断当3,22x x ππ==的符号,可排除AC ,求导,判断函数在()0,π上的单调性,可排除D ,即可得出答案. 【详解】解:由()()sin 02x y f x x x==≠得,1310,0223f f ππππ⎛⎫⎛⎫=>=-< ⎪ ⎪⎝⎭⎝⎭,故排除AC , ()2cos sin 2x x x f x x -'=,令()cos sin g x x x x =-,则()sin g x x x '=-,当0πx <<时,()0g x '<, 所以函数()g x 在()0,π上递减, 所以()()00g x g <=在()0,π上恒成立, 即()2cos sin 02x x xf x x-'=<在()0,π上恒成立, 所以函数()f x 在()0,π上递减,故排除D. 故选:B.3.(2021·江苏省前黄高级中学高三月考)已知215()sin ,()42f x x x f x π⎛⎫+⎪⎭'=+ ⎝为()f x 的导函数,则()f x '的图象是( )A .B .C .D .【答案】A 【分析】求出导函数,判断导函数的奇偶性,再利用特殊值即可得出选项. 【详解】22co 151()si s n424f x x x x x π⎛⎫=++= +⎪⎝⎭, ()1sin 2f x x x '∴=-,∴函数()f x '为奇函数,排除B 、D.又1024f ππ⎛⎫'=-< ⎪⎝⎭,排除C.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.4.(2021·浙江·高二开学考试)函数())ln cos f x x x x =+⋅在[]2,2ππ-上的图象可能是( )A .B .C .D .【答案】C 【分析】确定奇偶性,可排除两个选项,然后确定函数在3[,2]2ππ上的单调性可再排除一个选项,从而得正确选项. 【详解】())cos())cos ()f x x x x x x x f x -=-+-=--=-,()f x 是奇函数,排除AB ,在3[,2]2x ππ∈时,由复合函数单调性知)y x =是增函数,且)0y x =>,又cos y x =增函数,且cos 0y x =>,所以)cos y x x =是增函数,而y x =是增函数,所以()f x 是增函数,排除D . 故选:C .5.(2021·浙江金华·高三月考)函数|ln()|x ay x a +=-的图象,不可能是( )A .B .C .D .【答案】D 【分析】通过函数的定义域、值域以及特殊值对四个选项中的函数图像一一分析即可判断.【详解】对于A ,当0a =时,ln xy x=,其定义域为{}0,1x x x >≠,且0y >恒成立,故A 正确; 对于B ,由函数定义域可知,0a <,当0y =,x a =-,当x a >-时,0y >,当x a <-时,0y <,故B 正确;对于C ,由函数定义域可知,0a >,当1x a -=时,函数无意义,且0y ≥恒成立,故C 正确;对于D ,由函数定义域可知,0a <,当0y =,x a =-,当x a <-时,0y <,但图中0y >,不满足条件,故D 错误; 故选:D.6.(2021·全国·高三专题练习)函数2x y π=的图像大致是( )A .B .C .D .【答案】A 【分析】由02x <<时()0f x >,排除B 和C ;再探究出函数()f x 的图象关于直线1x =对称,排除D. 【详解】当02x <<时,sin 02x π>,所以()sin02xy f x π==>,故排除B 和C ;又(2)(2)sinsin()22x xf x f x ππ--===,所以函数()f x 的图象关于直线1x =对称,排除D. 故选:A. 【点睛】方法点睛:解决函数图象的识别问题的技巧:一是活用性质,常利用函数的定义域、值域、单调性与奇偶性来排除不合适的选项;二是取特殊点,根据函数的解析式选择特殊点,即可排除不合适的选项,从而得出正确的选项.7.(2021·天津市新华中学高三月考)函数23sin ()x x x x x f x e e--=+的图象大致为( )A .B .C .D .【答案】B 【分析】先判断函数的奇偶性排除A,D,再根据(1)0f >,排除C 即得解. 【详解】解:根据题意,23sin ()x x x x x f x e e--=+,其定义域为R ,有23sin ()()x xx x xf x f x e e---==+,则函数f (x )为偶函数,排除A ,D , 3sin11(1)01f e e-=>+,排除C , 故选:B . 【点睛】方法点睛:根据函数的解析式找图象,一般先找差异,再验证. 8.(2021·全国·高三专题练习)函数2()1cos e 1x f x x ⎛⎫=+⎪-⎝⎭的大致图象为( ) A . B .C .D .【答案】B 【分析】判断图像类问题,首先求定义域,其次判断函数的奇偶性()()f x f x -=-;再次通过图像或函数表达式找特殊值代入求值,()0f x =时,即e 1cos 0e 1x x x +⋅=-,此时只能是cos 0x =;也可通过单调性来判断图像.主要是通过排除法得解. 【详解】函数()f x 的定义域为{}0x x ≠,因为2e 12e 1()1cos cos cos e 1e 1e 1x x x x x f x x x x ⎛⎫⎛⎫-++⎛⎫=+⋅=⋅=⋅ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,并且()()00e 1e e 1e ()cos cos cos e 1e e 1ex x xx x xf x x x x f x --+++-=⋅-=⋅=⋅=----, 所以函数()f x 为奇函数,其图象关于原点对称,可排除A C ,;当()0f x =时,即e 1cos 0e 1x x x +⋅=-,此时只能是cos 0x =,而cos 0x =的根是2x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z ,,可排除D . 故选:B 【点睛】函数的定义域,奇偶性,特殊值,单调性等是解决这类问题的关键,特别是特殊值的选取很重要,要结合图像的特征来选取.9.(2022·全国·高三专题练习(理))函数()232sin log y x x x π=⋅⋅的图象大致为( )A .B .C .D .【答案】B 【分析】分析函数()232sin log y x x x π=⋅⋅的定义域、奇偶性及其在()0,1上的函数值符号,结合排除法可得出合适的选项. 【详解】设()()()2322sin log sin log f x x x x x x ππ=⋅⋅=⋅,该函数的定义域为{}0x x ≠,()()()()22sin log sin log f x x x x x f x ππ-=-⋅-=⋅=-,函数()f x 为奇函数,排除AC 选项;当01x <<时,0x ππ<<,()sin 0x π>,则()0f x <,排除D 选项. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.10.(2022·全国·高三专题练习)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【分析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3loga f x x ax =-,必有30x ax -≠,则0x ≠且x ≠, 即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =,当x 时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间⎛⎝⎭上,()0g x '<,则()g x 在区间⎛ ⎝⎭上为减函数,在区间⎫+∞⎪⎪⎝⎭上,()0g x '>,则()g x 在区间⎫+∞⎪⎪⎝⎭上为增函数,0g =,则()g x 存在极小值3g a =-=⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A ,故选:B. 【点睛】函数图象的辨识可以从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.(2022·全国·高三专题练习)函数()122cos cos 4421x x f x x x ππ+-⎛⎫⎛⎫=+- ⎪ ⎪+⎝⎭⎝⎭的图象为( ) A . B .C .D .【答案】D【分析】先将()f x 的解析式化简,然后判断()f x 的奇偶性,再根据()f π的取值特点判断出对应的函数图象. 【详解】因为()12221cos cos 2442121x x x x f x x x x x x x ππ+⎫⎫--⎛⎫⎛⎫=+-=⋅⋅⋅+⎪⎪ ⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭()222121cos sin cos22121x x x x x x x --=⋅-=⋅++, 所以()()()2112cos 2cos22112x xx x f x x x f x -----=⋅-=⋅=-++且定义域为R 关于原点对称, 所以()f x 为奇函数,排除A 和C ;由()21cos2021f ππππ-=>+,排除B , 故选:D . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.(2021·河南·温县第一高级中学高三月考(理))函数()ln |||sin |,(f x x x x ππ=+-≤≤且0)x ≠的图象大致是( )A .B .C .D .【答案】B 【分析】根据解析式判断奇偶性,在0x π>>上0x +→有()f x →-∞,利用导函数,结合函数图象分析0x π>>内极值点的个数,即可确定正确函数图象. 【详解】函数()ln |||sin()|ln |||sin |()f x x x x x f x -=-+-=+=,(x ππ-≤≤且0)x ≠是偶函数,A 不合要求. 当0x π>>时,()ln sin f x x x =+:当0x +→,()f x →-∞,C 不合要求;而1()cos 0f x x x'=+=时,1,cos y y x x==-在0x π>>上只有一个交点(如下图示),即区间内只有一个极值点. D不合要求,B 符合要求.故选:B. 【点睛】关键点点睛:利用导函数,应用数形结合分析函数的交点情况,判断函数在区间上极值点个数.13.(2021·全国·高三专题练习(文))已知函数()f x ,()g x 满足()()()()x x f x g x e f x g x e -⎧+=⎪⎨-=⎪⎩,则()()()sin 2x h x f x g x π⎛⎫+ ⎪⎝⎭=⋅的图像大致是( ) A . B .C .D .【答案】C 【分析】依题意得()()()221=4x x f x g x e e --⋅,根据奇偶性定义知()h x 为奇函数,再结合特征点即可得答案. 【详解】因为()()()()x x f x g x e f x g x e -⎧+=⎪⎨-=⎪⎩解得()()()()11=,=22x x x xf x e eg x e e --+- 所以()()()221=4x x f x g x e e --⋅,则()()()22sin 4cos 2=x xx x h x f x g x e e π-⎛⎫+ ⎪⎝⎭=⋅- ()h x 定义域为{}0x x ≠因为()()224cos x xxh x h x e e --==--,故()h x 是奇函数,则B ,D 错;当02x π<<时,()224cos 0x xxh x e e -=>-,则C 正确,故选:C 【点睛】思路点睛:函数图象的识别可以以下方面入手: (1)从函数定义域判断; (2)从函数单调性判断; (3)从函数奇偶性判断; (4)从函数特征点判断.14.(2021·湖南·长郡中学二模)函数sin cos 4411()x x f x ee ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭的图像可能是( )A .B .C .D .【答案】A 【分析】本题首先可通过()()f x f x -=-判断出函数()f x 为奇函数,C 、D 错误,然后取04x π<≤,通过sin cos 44x x ππ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭判断出此时()0f x <,即可得出结果.【详解】 因为sin cos cos sin 44441111()()x x x x f x f x ee e e ππππ⎛⎫⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝==-⎭⎝⎭,x ∈R ,所以函数()f x 为奇函数,C 、D 错误,当04x π<≤,442x πππ<+≤,sin cos 44x x ππ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭,sin cos 4411x x e e ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,sin cos 4411()0x x f x ee ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎭<⎝,B 错误,故选:A. 【点睛】方法点睛:本题考查函数图像的判断,在判断函数的图像的时候,可以通过函数的单调性、奇偶性、周期性、函数值的大小、是否过定点等函数性质来判断,考查数形结合思想,是中档题.15.(2021·福建龙岩·高一期末)已知函数()cos6x xxf x e e -=-,则()f x 的图象大致是( )A .B .C .D .【答案】C 【分析】分析函数()f x 的奇偶性及其在区间0,12π⎛⎫⎪⎝⎭上的函数值符号,由此可得出合适的选项.【详解】 对于函数()cos6x xxf x e e-=-,0x x e e --≠,解得0x ≠,函数()f x 的定义域为{}0x x ≠, ()()()cos 6cos6x xx xx xf x f x e e e e----==-=---,所以,函数()f x 为奇函数,排除BD 选项, 当0,12x π⎛⎫∈ ⎪⎝⎭时,60,2x π⎛⎫∈ ⎪⎝⎭,则cos60x >且0x x e e -->,此时,()0f x >,排除A 选项. 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.16.(2021·湖北武汉·高一期末)函数()32241x xxx y -=+的部分图像大致为( )A .B .C .D .【答案】A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x xx x x x x xx x x x f x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x x xx x x x x y f x --+-===++,故(x ∈时,00,0,202x x x x x ->+>+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象. 17.(2021·全国·高三专题练习(理))函数()x x f x -=的图象大致为( )A .B .C .D .【答案】A 【分析】分析函数()f x 的奇偶性,以及当0x >时,()f x 的符号,进而可得出合适的选项. 【详解】 设())lng x x =,对任意的x ∈Rx x >≥-0x >,则函数()g x 的定义域为R ,())ln xxg x x-==)()lnx g x ==-=-,所以,函数())ln g x x =为奇函数,令())ln0g x x ==1x =1x =-,所以,10x -≥,可得1x ≤1x =-可得()2211x x +=-,解得0x =. 所以,函数()x x f x -=的定义域为{}0x x ≠,()()()()2222x x x xf x f xg x g x --++-==-=--,所以,函数()f x 为奇函数,排除BD 选项,当0x >时,)ln ln10x >=,220x x -+>,所以,()0f x >,排除C 选项.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.18.(2021·全国全国·高三月考(理))已知函数()31sin f x x x x ⎛⎫=-⋅ ⎪⎝⎭,则其图象为( ) A . B .C .D .【答案】A 【分析】分析函数()f x 的定义域、奇偶性以及该函数在()0,1上的函数值符号,结合排除法可得出合适的选项. 【详解】 函数()31sin f x x x x ⎛⎫=-⋅ ⎪⎝⎭的定义域为{}0x x ≠,排除D 选项; ()()()()()()333111sin sin sin f x x x x x x x f x x x x ⎡⎤⎛⎫⎛⎫⎢⎥-=--⋅-=-+⋅-=-⋅= ⎪ ⎪⎝⎭⎝⎭⎢⎥-⎣⎦, 所以,函数()f x 为偶函数,排除B 选项;当01x <<时,433110x x x x--=<,sin 0x >,此时()0f x <,排除C 选项.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.19.(2020·全国全国·模拟预测(文))函数()()ee sin 32xx xf x -+⋅=在55,22⎡⎤-⎢⎥⎣⎦上的图象大致是( )A .B .C .D .【答案】B 【分析】先判断函数奇偶性得函数为奇函数,故排除A,再结合π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x >排除C ,最后讨论函数在对应区间内的零点个数即可得答案. 【详解】∵()()()()()e e sin 3e e sin 322xx xx x f f xx x --+⋅-+⋅==-=--,∴()f x 是奇函数,排除A .当π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x >,排除C .由()0f x =得sin30x =,又15153,22x ⎡⎤∈-⎢⎥⎣⎦, ∴30x =或π±或2π±,∴()f x 在55,22⎡⎤-⎢⎥⎣⎦上有5个零点,排除D .故选:B . 【点睛】本题考查利用函数性质确定函数图象,考查了函数的奇偶性,考查数形结合思想,属于基础题.思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.20.(2020·山西·河津中学高三月考(理))函数(),()sin f x x g x x x ==+,则()()()h x f x g x =的图象大致为( )A .B .C .D .【答案】A 【分析】由()h x 为偶函数,故排除选项B ,当0x >时,()0,f x >且()f x 为增函数,()g x 在(0,)+∞上为增函数,所以当0x >时,()()00g x g >=,所以当0x >时,()()()0h x f x g x =>,排除选项D ,从而可得出()h x 在(0,)+∞上为增函数,排除选项C ,得到答案.【详解】()(sin )h x x x x =+,则()()()()sin sin h x x x x x x x h x -=---=+=,所以()h x 为偶函数,故排除选项B. 当0x >时,()0,f x >且()f x 为增函数.()1cos 0g x x '=+≥恒成立,所以()g x 在(0,)+∞上为增函数,所以当0x >时,()()00g x g >=所以当0x >时,()()()0h x f x g x =>,排除选项D. 设120x x <<,则()()120f x f x <<,()()120g x g x << 则()()()()()()121122g g h x h x f x x f x x -=-()()()()()()()()11121222g g g g f x x f x x f x x f x x =-+- ()()()()()()()()112212g g g f x x x x f x f x =-+- ()()()()()()()()112212g g g f x x x x f x f x =-+-由条件()10f x >,()()12g g 0x x -<,则()()()()112g g 0f x x x -<()2g 0x >,()()120f x f x -<,则()()()()212g 0x f x f x -<所以()()()()()()()()112212g g g 0f x x x x f x f x -+-<,即()()12h x h x < 因此()h x 在(0,)+∞上为增函数,排除选项C 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.。
高考数学 专题05 解析几何中的对称解法(解析版)
专题05 解析几何中的对称解法一.【学习目标】1.掌握点关于直线,直线关于直线,曲线关于点,曲线关于直线的对称2.对称思想的应用 二.【知识点】 1.中心对称(1)设平面上的点M (a ,b ),P (x ,y ),P ′(x ′,y ′),若满足:x +x ′2=a ,y +y ′2=b ,那么,我们称P ,P ′两点关于点M 对称,点M 叫做对称中心.(2)点与点对称的坐标关系:设点P (x ,y )关于M (x 0,y 0)的对称点P ′的坐标是(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2x 0-xy ′=2y 0-y . 2.轴对称(1)设平面上有直线l :Ax +By +C =0和两点P (x ,y ),P ′(x ′,y ′),若满足下列两个条件:①__________________;②_______________________,则点P ,P ′关于直线l 对称. (2)对称轴是特殊直线的对称问题对称轴是特殊直线时可直接通过代换法得解:①关于x 轴对称(以_____代______); ②关于y 轴对称(以_______代_______); ③关于y =x 对称(_______互换);④关于x +y =0对称(以_______代_____,以_____代______); ⑤关于x =a 对称(以______代______); ⑥关于y =b 对称(以________代________). (3)对称轴为一般直线的对称问题可根据对称的意义,由垂直平分列方程,从而找到坐标之间的关系:设点P (x 1,y 1),Q (x 2,y 2)关于直线l :Ax +By +C =0(AB ≠0)对称,则 三.【题型】(一)点关于直线的对称 (二)光线的对称问题 (三)圆关于直线的对称 (四)利用对称求最值 (五)圆锥曲线的对称 (六)椭圆的中点弦问题 (七)双曲线的中点弦 (八)抛物线的对称问题 (九)椭圆中的对称方法 (十)对称的综合应用 四.【题型解法】(一)点关于直线的对称例1.已知坐标原点()0,0O 关于直线L 对称的点()3,3M -,则直线L 的方程是( ) A .210x y -+= B .210x y --= C .30x y -+= D .30x y --=【答案】D【解析】由(0,0)O , (3,3)M -, 可得OM 的中点坐标为33,22⎛⎫-⎪⎝⎭,又313OMk-==-, OM∴的垂直平分线的斜率为1, ∴直线L的方程为33122y x⎛⎫+=⨯-⎪⎝⎭,即30x y--=,故选D.练习1.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称为欧拉线,已知ABC∆的顶点(20)(04)A B,,,,若其欧拉线方程为20x y-+=, 则顶点C的坐标为()A.04-(,)B.4,0-()C.4,0()或4,0-()D.4,0()【答案】B【解析】设C坐标x,y(),所以重心坐标为2+4(,)33x y+,因此2+4204033x yx y+-+=∴-+=,从而顶点C的坐标可以为4,0-(),选B.(二)光线的对称问题例2.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.5B.33C.6D.210【答案】D【解析】点P关于y轴的对称点P'坐标是()2,0-,设点P关于直线:40AB x y+-=的对称点()",P a b,由()112204022baa b-⎧⨯-=-⎪⎪-⎨++⎪+-=⎪⎩,解得42ab=⎧⎨=⎩,故光线所经过的路程()22'"242210P P=--+=,故选D.练习1.一条光线从点()2,3-射出,经x轴反射后与圆2264120x y x y+--+=相切,则反射光线所在直线的斜率为()A.65或56B.45或54C.43或34D.32或23【解析】点()2,3-关于x 轴的对称点Q 的坐标为()2,3--, 圆2264120x y x y +--+=的圆心为()3,2,半径为1R =.设过()2,3--且与已知圆相切的直线的斜率为k , 则切线方程为()23y k x =+-即230kx y k -+-=, 所以圆心()3,2到切线的距离为25511k d R k-===+,解得43k =或34k =,故选C.(三)圆关于直线的对称例3..直线1l :y x =、2l :2y x =+与C e :22220x y mx ny +--= 的四个交点把C e 分成的四条弧长相等,则(m = ) A .0或1 B .0或1-C .1-D .1【答案】B【解析】直线l 1:y=x 与l 2:y=x+2之间的距离为2,⊙C :22220x y mx ny +--=的圆心为(m ,m ),半径r 2=m 2+m 2,由题意可得222222222()()22{22()()2m nm n m n m n -+=+-++=+解得 m=0或m=-1,故选B.练习1.已知圆关于对称,则的值为 A .B .1C .D .0【答案】A 【解析】化圆为.则圆心坐标为,圆关于对称,所以直线经过圆心,,得. 当时,,不合题意,.故选A .练习2.已知直线3420x y ++=与圆2240x y y ++=相交于,A B 两点,则线段AB 的垂直平分线的方程为A .4360x y --=B .4320x y --=C .4360x y ++=D .3480x y ++= 【答案】A【解析】圆2240x y y ++=的圆心坐标为()0,2C -,AB 的中垂线垂直于AB 且过C ,故可设中垂线的方程为:430x y m -+=,代入()0,2C -可得6m =-,故所求的垂直平分线的方程为4360x y --=,故选A.(四)利用对称求最值例4.已知点P ,Q 分别在直线1:20l x y ++=与直线2:10l x y +-=上,且1PQ l ⊥,点()3,3A --,31,22B ⎛⎫⎪⎝⎭,则AP PQ QB ++的最小值为().A .130B .3213+C .13D .32【答案】B【解析】因为112,P l l l Q ⊥P ,故()21322PQ --==1AA k '=,故1AA l '⊥,所以A P A Q 'P ,又322AA '=,所以AA PQ '=,故四边形AA QP '为平行四边形, 322AP PQ QB A Q QB '++=++, 因为13A Q QB A B ''+≥=,当且仅当,,A Q B '三点共线时等号成立,AP PQ QB ++的最小值为32132+,选B.(五)圆锥曲线的对称例5.已知F 是双曲线2218y C x -=:的右焦点,P 是C 左支上一点,)66,0(A ,当APF ∆周长最小时,则点P 的纵坐标为( ) A .66 B .26C .46D .86-【答案】B【解析】如图:由双曲线C 的方程可知:a 2=1,b 2=8,∴c 2=a 2+b 2=1+8=9,∴c=3,∴左焦点E (-3,0),右焦点F (3,0), ∵|AF|=223(66)15+=,所以当三角形APF 的周长最小时,|PA|+|PF|最小. 由双曲线的性质得|PF|-|PE|=2a=2,∴|PF|=|PE|+2,又|PE|+|PA|≥|AE|=|AF|=15,当且仅当A ,P ,E 三点共线时,等号成立. ∴三角形APF 的周长:|AF|+|AP|+|PF|=15+|PE|+|AP|+2≥15+15+2=32.此时,直线AE 的方程为y=2666x +,将其代入到双曲线方程得:x 2+9x+14=0, 解得x=-7(舍)或x=-2, 由x=-2得6(负值已舍) 故选:B .练习1.椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为( ) ABC1 D1【答案】A【解析】∵点()0F c -,关于直线0x y +=的对称点A 为()0,A c ,且A 在椭圆上, 即22b c =,∴c b =,∴椭圆C的离心率2e ===.故选A .(六)椭圆的中点弦问题例1.如果椭圆22193x y +=的弦被点(1,1)M 平分,则这条弦所在的直线方程是( )A .340x y +-=B .320x y -+=C .320x y --=D .340x y +-=【答案】A【解析】设直线与椭圆交点为()11,A x y ,()22,B x y22112222193193x y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩,两式作差得:1212121213ABy y x x k x x y y -+==-⋅-+ 又M 为AB 中点 122x x ∴+=,122y y += 13AB k ∴=-∴直线方程为:()1113y x -=--,即:340x y +-= 本题正确选项:A练习1.已知椭圆()222210x y a b a b+=>>,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于,A B两点,且AB 的中点为11,2M ⎛⎫⎪⎝⎭,则椭圆的离心率为()A.22B.12C.14D.32【答案】A【解析】设A(1x,1y),B(2x,2y),又AB的中点为11,2M⎛⎫⎪⎝⎭,则121221x x y y+=+=,,又因为A、B在椭圆上所以22221122222211x y x ya b a b+=+=,两式相减,得:2121221212y y y y bx x x x a-+⋅=--+∵12121212b1c2AB FP OMy y y yk k kx x x x,-+===-==-+,∴22b2cba=,,∴22a bc=,平方可得()42224a a c c=-, ∴22ca=12,c2a2=,故选A.练习2.已知椭圆22142x y+=,则以点(1,1)为中点的弦的长度为()A.2B.3C30D36【答案】C【解析】设直线方程为y=k(x﹣1)+1,代入椭圆方程,消去y得:(1+2k2)x2﹣(4k2﹣4k)x+2k2﹣4k﹣2=0,设交点坐标为A(x1,y1),B(x2,y2),则x1+x2=2,解得k=﹣12,∴x1x2=13,∴221212301()43k x x x x++-=.故选C.练习3.已知椭圆C :()2222100x y a b a b +=>,>的离心率为2,直线l 与椭圆C 交于A B ,两点,且线段AB 的中点为()21M -,,则直线l 的斜率为( )A.13B.23C.12D.1【答案】C【解析】由c e a ==,得2222234c a b a a -==, ∴224a b =,则椭圆方程为22244x y b +=,设()()1122A x y B x y ,,,,则121242x x y y ,+=-+=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:()()()()121212124x x x x y y y y -+=--+,∴()12121212414422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C .(七)双曲线的中点弦例7.直线l 与双曲线2212y x -=交于A ,B 两点,以AB 为直径的圆C 的方程为22240x y x y m ++++=,则m =( )A.-3B.3C.5-D.【答案】A【解析】设11(,)A x y ,22(,)B x y由根据圆的方程可知(1,2)C --,C 为AB 的中点根据双曲线中点差法的结论202021112ABx b k a y -=⨯=⨯=- 由点斜式可得直线AB 的方程为1y x =-将直线AB 方程与双曲线方程联立22121y x y x ⎧-=⎪⎨⎪=-⎩解得34x y =-⎧⎨=-⎩或10x y =⎧⎨=⎩,所以AB =由圆的直径AB ===3m =-故选A.练习1.双曲线221369x y -=的一条弦被点(4,2)P 平分,那么这条弦所在的直线方程是( )A .20x y --=B .2100x y +-=C .20x y -=D .280x y +-=【答案】C【解析】设弦的两端点1(A x ,1)y ,2(B x ,2)y ,斜率为k ,则22111369x y -=,22221369x y -=,两式相减得12121212()()()()369x x x x y y y y -+-+=, 即121212129()98136()3642y y x x k x x y y -+⨯====-+⨯,∴弦所在的直线方程12(4)2y x -=-,即20x y -=. 故选:C练习2.已知双曲线C的焦点在坐标轴上,其渐近线方程为y =,过点P ⎫⎪⎪⎝⎭. ()1求双曲线C 的标准方程;()2是否存在被点()1,1B 平分的弦?如果存在,求出弦所在的直线方程;如果不存在,请说明理由.【答案】(1)2212y x -=(2)直线l 不存在.详见解析【解析】()1双曲线C的焦点在坐标轴上,其渐近线方程为y =,设双曲线方程为:22y x λ2-=,过点P ⎫⎪⎪⎝⎭.可得λ1=,所求双曲线方程为:22y x 12-=. ()2假设直线l 存在.设()B 1,1是弦MN 的中点,且()11M x ,y ,()22N x ,y ,则12x x 2+=,12y y 2+=.M Q ,N 在双曲线上,22112x y 122222x y 1-=⎧⎪∴-=⎨⎪⎩, ()()()()121212122x x x x y y y y 0∴+---+=,()()12124x x 2y y ∴-=-,1212y y k 2x x -∴==-,∴直线l 的方程为()y 12x 1-=-,即2x y 10--=,联立方程组222x y 22x y 10-=⎧--=⎨⎩,得22x 4x 30-+=1643280QV =-⨯⨯=-<,∴直线l 与双曲线无交点,∴直线l 不存在.练习3.已知双曲线的中心在原点,焦点为,且离心率.(1)求双曲线的方程; (2)求以点为中点的弦所在的直线方程.【答案】(1);(2).【解析】(1) 由题可得,,∴,,所以双曲线方程 .(2)设弦的两端点分别为,,则由点差法有: , 上下式相减有:又因为为中点,所以,,∴,所以由直线的点斜式可得,即直线的方程为.经检验满足题意.(八)抛物线的对称问题例8.已知抛物线2:2(0)C y px p =>,倾斜角为4π的直线交抛物线C 于A ,B 两点,且线段AB 中点的纵坐标为1,则抛物线C 的准线方程是________ 【答案】12x =-【解析】设1122(,),(,)A x y B x y ,则有2211222,2y px y px ==,两式相减得:()()()1212122y y y y p x x -+=-,又因为直线的斜率为1,所以12121y y x x -=-, 所以有122y y p +=,又线段AB 的中点的纵坐标为1, 即122y y +=,所以1p =,所以抛物线的准线方程为12x =-.故答案为:12x =-.练习1.如图所示,点P 为抛物线E :28y x =上的动点,点Q 为圆:M 22430x y x +-+=上的动点,则PQ的最小值为___________.【答案】1【解析】圆:M 22430x y x +-+=可化为22(2)1x y -+=, 故圆M 的圆心(2,0),半径为1.设000(,)(0)P x y x ≥为抛物线28y x =上任意一点,故有2008y x =,∴00(,)P x y 与(2,0)的距离2222200000000(2)44844(2)d x y x x x x x x =-+=-++=++=+当00x =时, 00(,)P x y 与(2,0)的距离取最小值2,PQ ∴的最小值为211-=,故答案为:1.(九)椭圆中的对称方法例9.如图,椭圆()222210x y a b a b+=>>的右焦点为F ,过F 的直线交椭圆于,A B 两点,点C 是A 点关于原点O 的对称点,若CF AB ⊥且CF AB =,则椭圆的离心率为__________.【答案】63-【解析】作另一焦点F ',连接AF '和BF '和CF ',则四边形FAF C '为平行四边,所以AF CF AB '==,且AF AB '⊥,则三角形ABF '为等腰直角三角形, 设AF AB x '== ,则24x x x a +=,解得(422)x a =-,(222)AF a =,在三角形AFF ' 中由勾股定理得222()()(2)AF AF c '+=,所以2962,63e e =-=,故答案为63-.练习1.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点为1F ,2F ,点P 在椭圆C 上,且12PF F ∆面积3 6.(1)求椭圆C 的方程,并求椭圆C 的离心率;(2)已知直线l :1(0)y kx k =+>与椭圆C 交于不同的两点AB ,若在x 轴上存在点(,0)M m ,使得M 与AB 中点的连线与直线l 垂直,求实数m 的取值范围【答案】(1)22143x y +=,椭圆的离心率12e =(2)3,012⎡⎫-⎪⎢⎪⎣⎭【解析】(1)由题意得2223226bc c a a b c ⎧=⎪+=⎨⎪=+⎩,解之得2a =,3b =1c =,所以椭圆C 的方程为22143x y +=,椭圆的离心率12e =; (2)由221143y kx x y =+⎧⎪⎨+=⎪⎩得()2243880k x kx ++-=,设()11,A x y ,()22,B x y ,则122843kx x k -+=+,122643y y k +=+, 所以线段AB 中点的坐标为2243,4343k k k -⎛⎫⎪++⎝⎭, 则223143443k k k m k -+=-++,整理得213434k m k k k=-=-++, 因为0k >,所以34k k +≥=34k k =,即k =时上式取得等号,此时m取得最小值12-, 因为0k >,所以2043k m k =-<+,所以实数m的取值范围是⎡⎫⎪⎢⎪⎣⎭. 练习2.已知椭圆22:194x y C +=,若不与坐标轴垂直的直线l 与椭圆C 交于,M N 两点.(1)若线段MN 的中点坐标为()1,1,求直线l 的方程;(2)若直线l 过点()6,0,点()0,0P x 满足0PM PN k k +=(,PM PN k k 分别是直线,PM PN 的斜率),求0x 的值.【答案】(1)49130x y +-=(2)32【解析】(1)设()11,M x y ,()22,N x y ,由点,M N 都在椭圆22:194x y C +=上,故22112222194194x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩22222121094x x y y --⇒+=,则()()212121214499x x y y k x x y y +-==-=--+故直线l 的方程为()411491309y x x y -=--⇒+-= (2)由题可知,直线l 的斜率必存在,设直线l 的方程为()6y k x =-,()0,0P x , 则()()()()1212021010200660PM PN y y k k k x x x k x x x x x x x +=+=⇒--+--=--即()()12012026120x x x x x x -+++=①联立()()222222149108936360946x y k x k x k y k x ⎧+=⎪⇒+-+⨯-=⎨⎪=-⎩,则21222122108499363649k x x k k x x k ⎧+=⎪⎪+⎨⨯-⎪=⎪+⎩将其代入①得()()2220003546964902k k x x k x --+++=⇒=故0x 的值为32(十)对称的综合应用例10.在直角坐标系xOy 中,抛物线2:4x C y =与直线:4l y kx =+ 交于M ,N 两点.(1)当0k =时,分别求抛物线C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【答案】(1) 过点M 和点N 的切线方程分别为24,24y x y x =-=--.(2)存在点()0,4P -,理由见解析【解析】(1)由题意知0k =时,联立244y x y =⎧⎪⎨=⎪⎩,解得()4,4M ,()4,4N -.设过点()4,4M 的切线方程为(4)4y k x =-+,联立2444y kx kx y =+-⎧⎪⎨=⎪⎩得:2416160x kx k -+-=, 由题意:2164(1616)0k k ∆=--=,即2440k k -+=,解得2k =, 根据对称性,过点()4,4N -的切线斜率为2k =-,所以过点M 和点N 的切线方程分别为24,24y x y x =-=--. (2)存在符合题意的点,证明如下:设点P ()0,b 为符合题意的点,()11,M x y ,()22,N x y ,直线PM ,PN 的斜率分别为1k ,2k .联立方程244y kx x y =+⎧⎪⎨=⎪⎩,得24160x kx --=,故124x x k +=,1216x x =-, 从而121212y b y b k k x x --+=+=()()12121224kx x b x x x x +-+=()44k b +.当4b =-时,有120k k +=,则直线PM 与直线PN 的倾斜角互补, 故OPM OPN ∠=∠,所以点()0,4P -符合题意.练习2.已知抛物线2:2(0)C y px p =>的焦点为F,点(,B m 在抛物线C上,A ,且||2||BF AF =.(1)求抛物线C 的标准方程;(2)过点(1,2)P 作直线PM ,PN 分别交抛物线C 于M ,N 两点,若直线PM ,PN 的倾斜角互补,求直线MN 的斜率.【答案】(1)24y x =(2)1-【解析】(1)由题得,02p F ⎛⎫⎪⎝⎭,则||2p BF m =+,||AF =因为|2||BF AF =,所以2P m +=因为点B 在抛物线C 上,所以122pm =,即6pm =.②联立①②得428480p p +-=,解得2p =或2p =-(舍去),所以抛物线C 的标准方程为24y x =.(2)由题知直线PM ,PN 的斜率存在,且不为零,且两直线的斜率互为相反数 设()11,M x y ,()22,N x y ,直线:(1)2(0)PM y k x k =-+≠由2(1)24y k x y x =-+⎧⎨=⎩,得()2222244440k x k k x k k --++-+=,则()222222444(2)16(1)0k k k k k ∆=-+--=->,又点P 在抛物线C 上,所以21244k k x k -+=同理得22244k k x k++=.则212228kx xk+ +=,12288kx xk k---==,()()12121212y y k x k x⎡⎤⎡⎤-=-+---+⎣⎦⎣⎦()122k x x k=+-22282kk kk+=⋅-8k=,所以1212818MNy y kkx xk-===---即直线MN的斜率为-1.练习3.如图, 直线12y x=与抛物线2148y x=-交于,A B两点, 线段AB的垂直平分线与直线5y=-交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含,A B)的动点时, 求ΔOPQ面积的最大值.【答案】(1) ()5,5Q-;(2) 最大值30【解析】(1) 解方程组212148y xy x⎧=⎪⎪⎨⎪=-⎪⎩得11-4-2xy=⎧⎨=⎩或2284xy=⎧⎨=⎩即A(-4,-2),B(8,4), 从而AB的中点为M(2,1).由12ABK=,直线AB的垂直平分线方程()122y x-=--令5y=-, 得5x=, ∴()5,5Q-(2)直线OQ的方程为x+y=0, 设21,48P x x⎛⎫-⎪⎝⎭∵点P 到直线OQ 的距离2832x +-,OQ =, ∴12OPQ S ∆=OQ d =2583216x x +-. ∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上, ∴-4≤x4或4< x ≤8.∵函数2832y x x =+-在区间[]4,8-上单调递增,∴当x =8时, ΔOPQ 的面积取到最大值30。
(天津专用)2020届高考数学一轮复习第五章平面向量5.2平面向量数量积与应用课件
= 1 ,又知<a,b>∈[0,π],所以<a,b>= ,故选B.
2
3
解法二:如图,令
OA
=a,
OB
=b,则
BA
=
OA
-
OB
=a-b,因为(a-b)⊥b,所以∠OBA=90°,又|a|=2|b|,所以
∠AOB= ,即<a,b>= .故选B.
3
3
思路分析 本题可由两向量垂直的充要条件建立方程求解;也可以将两向量放在直角三角形 中,由题设直接得到两向量的夹角.
13 3
方法总结 利用数量积求解向量模的处理方法: ①a2=a·a=|a|2或|a|= a a ; ②|a±b|= (a b)2 .
11.(2017课标Ⅰ理,13,5分)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=
.
答案 2 3
解析 本题考查向量数量积的计算.
由题意知a·b=|a|·|b|cos 60°=2×1×1 =1,则|a+2b|2=(a+2b)2=|a|2+4|b|2+4a·b=4+4+4=12.
9.(2019北京文,9,5分)已知向量a=(-4,3),b=(6,m),且a⊥b,则m=
.
答案 8
解析 本题考查两向量垂直的充要条件和向量的坐标运算,考查了方程的思想方法. ∵a⊥b,∴a·b=(-4,3)·(6,m)=-24+3m=0, ∴m=8. 易错警示 容易把两向量平行与垂直的条件混淆.
)·(AD
+μAB
)=μ
AB
2
+λ
AD
2
+(1+λμ)
天津市静海县2019届高考数学复习第五章平面向量第一节平面向量概念及线性运算校本作业
第五章 平面向量 第一节:平面向量概念及线性运算一、基础题1.如图所示,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则AF →-DB →等于( )A.FD →B.FC → 了C.FE →D.BE →2.已知向量a 与b 不共线,且AB →=λa +b ,AC →=a +μb ,则点A ,B ,C 三点共线应满足 ( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=13.已知A 、B 、C 三点不共线,且点O 满足OA →+OB →+OC →=0,则下列结论正确的是( )A.OA →=13AB →+23BC → B.OA →=23AB →+13BC → C.OA →=13AB →-23BC → D.OA →=-23AB →-13BC →4.在平行四边形ABCD 中,AB →=a ,AC →=b ,DE →=2EC →,则BE →=( )A .b -13aB .b -23aC .b -43aD .b +13a5.如图,在△ABC 中,|BA →|=|BC →|,延长CB 到D ,使AC →⊥AD →,若AD →=λAB →+μAC →,则λ-μ的值是( )A .1B .2C .3D .46.在△ABC 中,D 为边AB 上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.7.设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.8.设e 1,e 2是不共线的向量,若AB →=e 1-λe 2,CB →=2e 1+e 2,CD →=3e 1-e 2,且A ,B ,D 三点共线,则λ的值为________.9.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 反向共线,求实数λ的值_____________10.已知|OA →|=1,|OB →|=3,∠AOB =90°,点C 在∠AOB 内,且∠AOC =30°.设OC →=mOA →+nOB →(m ,n ∈R),求mn的值.__________ 11.如图所示,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,则下列说法错误的是( )A.AC →=AB →+AD →B.BD →=AD →-AB →C.AO →=12AB →+12AD →D.AE →=53AB →+AD →二、中档题1. 如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|O B →|=1,|OC →|=2 3.若OC →=λOA →+μOB→(λ,μ∈R),则λ+μ的值为________.2.设点O 在△ABC 内部,且有4OA →+OB →+OC →=0,求△ABC 与△OBC 的面积之比___________3.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A.12 B.13 C.14D .14.设P 为锐角△ABC 的外心(三角形外接圆的圆心),AP →=k (AB →+AC →)(k ∈R),若cos ∠BAC =25,则k =( )A.514 B.214 C.57 D.374.已知a ,b 是两个不共线的非零向量,且a 与b 起点相同。
2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)
专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .2.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2 C .22 D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解析】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+,解得:2p =(6p =-舍去).故选:B. 3.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C、D.【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD 4.【2022年新高考2卷】已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为B.C.D.【答案】ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A 正确;对于B ,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B 错误;对于C ,由抛物线定义知:,C 正确;对于D ,,则为钝角, 又,则为钝角,又,则,D 正确.故选:ACD.5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =【答案】ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-4MP =,由勾股定理可得2232BP BM MP =-=CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【解析】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养. 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 【答案】或或【分析】先判断两圆位置关系,分情况讨论即可. 【解析】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.9.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.【答案】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【解析】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解; 【解析】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以, 即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程.【解析】由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == ,所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.【答案】(1);(2).【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1);(2)见解析【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.∴C的方程为:;(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件①在上,等价于;两渐近线的方程合并为,联立消去y并化简整理得:设,线段中点为,则,设,则条件③等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,∴由,∴,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,∴∴, ∴条件②等价于,综上所述:条件①在上,等价于;条件②等价于;条件③等价于;选①②推③:由①②解得:,∴③成立;选①③推②:由①③解得:,,∴,∴②成立;选②③推①:由②③解得:,,∴,∴,∴①成立.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【解析】(1) 因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立,如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x --.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦. 由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【解析】(1)由题意,椭圆半焦距c =c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212324x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==()22310k -=,所以1k =±, 所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+, 代入椭圆方程消去y 并整理得:()222124260kxkmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP =, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny .将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP =.[方法三]:建立曲线系 A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k .则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==.[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny ,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=, 化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离, 利用平行线之间的距离公式可得:12514d ==+由两点之间距离公式可得||AM =.所以△AMN 的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【】专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .62.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1B .2C .22D .43.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .4.【2022年新高考2卷】已知O 为坐标原点,过抛物线焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点,若,则( ) A .直线的斜率为B .C .D .5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C nC .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 9.【2022年新高考1卷】已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过且垂直于的直线与C 交于D ,E 两点,,则的周长是________________. 10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a 的取值范围是________.11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.14.【2020年新高考1卷(山东卷)】斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点在C 上,且.过P 且斜率为的直线与过Q 且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【】三年专题05 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】 ∵ 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,,所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是.故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A .4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,。
天津市静海县2019届高考数学复习第五章平面向量第三节平面向量的数量积校本作业
第五章 平面向量 第三节:平面向量的数量积一基础题:1.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为( )A. π6B. π4C. π3D. π22.已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.3.. 已知|a |=1,|b |=2,a 与b 的夹角为60°,则a +b 在a 方向上的投影为________。
4.△ABC 的外接圆的圆心为O ,半径为1,2→AO =→AB +→AC 且→AO =→AB ,则向量→AB 在→BC 方向上的投影为5.设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 6.已知向量a 与b 的夹角是π3,且|a |=1,|b |=4,若(3a +λb )⊥a ,则实数λ=( ) A .-32 B.32C .-2D .2 7.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=( )A .5B .4C .3D .28.在△ABC 中,∠C =90°,且CA =CB =3,点M 满足BM →=2AM →,则CM →·CA →=( ) A .18 B .3 C .15 D .129.平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2 B .-1 C .1 D .210.已知a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |=________.11.△ABC 中,点M 在线段AC 上,点P 在线段BM 上,且满足AM MC =MP PB=2,若|AB →|=2,|AC →|=3,∠BAC =90°,则AP →·BC →的值为( )A .1B .-23 C.143 D .-13二中档题:1. 已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58 B.18 C.14 D.1182、在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,求AB 的长._________________3.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4。
专题05 平面向量-2017年高考数学理母题题源系列天津专版 含解析 精品
母题五 平面向量【母题原题1】【2017天津,理13】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R ,且4AD AE ⋅=-,则λ的值为___________.【答案】311【考点】向量的数量积【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中,AB AC 已知模和夹角,作为基底易于计算数量积.【母题原题2】【2015天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【答案】2918【解析】因为1,9D F D C λ=12D C A B=,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+, ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918.A【考点定位】向量的几何运算、向量的数量积与基本不等式.【名师点睛】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现.【母题原题3】【2015天津,理8】 已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?-,则l m += ( ) (A )12 (B )23 (C )56 (D )712【答案】C .考点:1.平面向量共线充要条件;2.向量的数量积运算.【名师点睛】本题考查平面向量的有关知识及及向量运算,运用向量的加法、减法正确表示向量,利用向量的数量积求值,本题属于基础题.解决向量问题有两种方法,第一种是本题的做法,借助向量的几何意义,利用加法、减法、数乘、数量积运算,借助模运算解题,另一种方法是建立适当的平面直角坐标系,利用向量的坐标运算解题.【命题意图】 高考对本部分内容的考查以能力为主,重点考查平面向量的线性运算和坐标运算. 【命题规律】 高考试题对该部分内容考查的主要有两种:其一为平面向量的线性运算,其二为平面向量的坐标运算.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:选基底,选用的基底最好已知向量的模和夹角. 本题选取,AB AC 为基地,已知3AB = ,2AC =,且两向量夹角为060.第二步:借助向量的加法、减法及数乘运算表示出解题需要的有关向量.本题中由于2BD DC =,利用定比分点公式表示1232AD AB AC =+,根据已知AE AC AB λ=-用AB AC 、 表示AE . 第三步:利用题目所提供的条件(如向量的夹角、模或数量积等)列出向量所满足的要求 .本题需要满足条件4AD AE ⋅=-,借助AB AC 、的模和数量积解题.第四步:根据要求解方程,求出λ . 【方法总结】1. 求向量的模:(求模必先求模方,得出模方勿忘开方)根据公式22a a a a =⋅=,求出模的平方,然后开方得出向量的模,同样题目中有时给出某向量的模的大小时,也是利用向量的模的平方去解题的. 2. 求两个向量的夹角:(点积比模积)利用向量夹角公式cos a b a bθ⋅=⋅,使用本公式求夹角时,要注意利用数量积与模的关系.3. 求数量积:cos ,a b a b a b ⋅=<>确定应使用的一组基地,要求已知基地的模和夹角,利用加、减、数乘运算表示向量,然后利用数量积运算进行计算. 4. 向量的坐标运算建立适当的平面直角坐标系,写出相关点的坐标,利用向量的坐标运算公式进行计算. 有关向量的坐标运算公式: 设1122(,),(,)a x y b x y ==, (1)2a x =+(2)1212(,)a b x x y y ±=±±(3)11(,)a x y λλλ= (4)1212a b x x y y ⋅=+(5)设向量,a b 的夹角为θ,则2cos a b a bx θ⋅==⋅+(6)非零向量12120a b x x y y ⊥⇔+= (7)1221//0a b x y x y ⇔-=1. 【2017广东佛山二模】直角ABC 中, AD 为斜边BC 边的高,若1AC =, 3AB =,则CD AB ⋅=( )A.910 B. 310 C. 310- D. 910- 【答案】A2.【2017江西南昌十所重点二模】已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+,若()AB AC R λλ=∈,点O 为直线BC 外一点,则12017a a +=A. 0B.C.D. 【答案】A【解析】∵32015BA a OB a OC =+, ∴32015OA OB a OB a OC -=+, 即()320151OA a OB a OC =++, 又∵()AB AC R λλ=∈, ∴3201511a a ++=, ∴12017320150a a a a +=+=.3.【2017江西4月质检】在矩形ABCD 中, 2AB =, 3AD =,点F 为CD 的中点,点E 在BC 边上,若4AF DE ⋅=-,则AE BF ⋅的值为( )A. 0B. 1C. 2D. 3 【答案】B【点睛】本题主要考查向量的坐标运算及平面向量的数量积,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答,往往更能将问题直观化. 4.【2017安徽阜阳二模】已知点()()()1,1,1,2,2,3A B C -,且()AB BC AC λ⊥+,则λ= ( )A.38 B. 38- C. 12 D. 12- 【答案】B【解析】解:由题意可知: ()()()2,1,1,1,3,2AB BC AC === , 则: ()13,12BC AC λλλ+=++ ,由平面向量垂直的充要条件可知: ()()32131208λλλ+++=⇒=- . 本题选择B 选项.5.【2017四川资阳4月模拟】如图,在直角梯形ABCD 中, AB AD ⊥, AB ∥DC , 2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yBC =+,其中x y R ∈,,则4x y -的取值范围是A. 234⎡+⎢⎣⎦,B. 23⎡⎢⎣⎦, C. 334⎡-+⎢⎣⎦ D. 33⎡-⎢⎣⎦【答案】B【解析】解:以A 点为坐标原点, ,AD AB 方向为y 轴, 轴正方向建立直角坐标系,如图所示,设点P 的坐标为(),P m n ,由意可知: ()()2,01,1AP x y =+- ,据此可得: 2{m x y n y=-= ,则: {2m nx y n+== ,目标函数: 42z x y m n =-=+ ,其中为直线系2n m z =-+ 的截距,当直线与圆相切时,目标函数取得最大值3当直线过点1,12⎛⎫⎪⎝⎭时,目标函数取得最小值, 则4x y -的取值范围是2,3⎡+⎢⎣⎦. 本题选择B 选项.【点睛】本题同时考查平面向量基本定理和线性规划中的最值问题.求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时, 值最大,在y 轴截距最小时, 值最小;当0b <时,直线过可行域且在y 轴上截距最大时, 值最小,在y 轴上截距最小时, 值最大.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6.【2017云南、四川、贵州高三联考14】在矩形ABCD 中,30CAB ∠=, ||AC AD AC =,则AC AB =____________.【答案】12考点: 平面向量的数量积.7.【2017广东海珠区综测,16】已知ABC ∆的外接圆的圆心为O ,若2AB AC AO +=,且||||AC AO =,则AB 与BC 的夹角为 .【答案】56π【解析】试题分析:因为2AB AC AO +=,所以O 是BC 的中点,又因为O 是ABC ∆的外接圆的圆心,所以OA OB OC == ,又||||AC AO =,可得AOC ∆是正三角形,23AOC ABO BAO ABO π∠==∠+∠=∠,6ABO π∠=,因此AB 与BC 的夹角为56π,故答案为56π. 考点:1、向量的几何运算及外接圆的性质;2、向量的夹角.【点睛】本题主要考查向量的几何运算及外接圆的性质、向量的夹角,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答.8.【2017河北唐山二模】平行四边形ABCD 中, M 为BC 的中点,若AB AM DB λμ=+,则λμ=__________.【答案】29【解析】由图形可得: 12AM AB AD =+①,DB AB AD =-②, ①2⨯+②得: 23AM DB AB +=,即2133AB AM DB =+,∴21,33λμ==,∴29λμ=,故答案为29.9.【2017河北唐山二模】平行四边形ABCD 中, AB AC DB λμ=+,则λμ+=__________. 【答案】110.【2017陕西师范附属二模】如图,在ABC ∆中,已知点D E 、分别在边AB BC 、上,且3AB AD =,2BC BE =.(1)用向量AB 、AC 表示DE ;(2)设6AB =, 4AC =, 60A =︒,求线段DE 的长.【答案】(1)1162AB AC + ;(2【解析】试题分析:(1)现将DE 转换为DB BE +,然后利用题目给定的比例,将其转化为以,AB AC 为起点的向量的形式.(2)由(1)将向量DE 两边平方,利用向量的数量积的概念,可求得DE . 试题解析:(1)由题意可得: 21DE DB BE AB BC 32=+=+ ()21AB AC AB 32=+- 11AB AC 62=+ (2)由11DE AB AC 62=+可得:2222211111|DE |DE AB AC AB AB AC AC623664⎛⎫==+=+⋅+ ⎪⎝⎭22111664cos60473664=⨯+⨯⨯⨯︒+⨯=.故DE =。
备战高考十年高考理数分项版(天津版)专题05平面向量(含答案解析)
第五章 平面向量一.基础题组1.【2006天津,理12】设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __________.2.【2007天津,理10】设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A 【解析】由22(2,cos )a λλα=+-(,sin ),2m b m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km mk m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A 3.【2007天津,理15】如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==是边BC 上一点,2,DC BD =则AD BC =__________.【答案】83-4.【2008天津,理14】如图,在平行四边形ABCD 中,()()2,3,2,1-==,则=⋅AC AD . 【答案】3【解析】令AB a =,AD b =,则(1,2)(2,0),(1,2)(3,2)a b a b a b ⎧+=⎪⇒==-⎨-+=-⎪⎩ 所以()3AD AC b a b ⋅=⋅+=. 5.【2009天津,理15】在四边形ABCD中,)1,1(==,BD BC BA 3=+,则四边形ABCD 的面积为_________________. 【答案】3B ACD6.【2010天津,理15】如图,在△ABC 中,AD ⊥AB ,3BC BD =,|AD |=1,则A CA D =__________.7.【2012天津,理7】已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP =λAB ,AQ =(1-λ) AC ,λ∈R .若32BQ CP ⋅=-,则λ=( )A .12 B .12± C .12 D .32-± 【答案】A【解析】设AB =a ,AC =b , 则|a|=|b|=2,且〈a ,b 〉=π3.()1BQ AQ AB λ=-=--b a ,CP AP AC λ=-=-a b . BQ CP ⋅= (1-λ)b -a ]·(λa -b)=λ(1-λ)+1]a·b -λa2-(1-λ)b2 =(λ-λ2+1)×2-4λ-4(1-λ) =-2λ2+2λ-2=32-.即(2λ-1)2=0,∴12λ=.8.【2013天津,理12】在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ·BE =1,则AB 的长为__________. 【答案】12【解析】如图所示,在平行四边形ABCD 中,AC =AB +AD ,BE =BC +CE =12-AB +AD.所以AC ·BE =(AB +AD )·12AB AD ⎛⎫-+ ⎪⎝⎭=12-|AB |2+|AD |2+12AB ·AD =12-|AB |2+14|AB |+1=1,解方程得|AB |=12(舍去|AB |=0),所以线段AB 的长为12. 二.能力题组1.【2005天津,理14】在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上且| OC | = 2,则OC = __________。
2021年高考数学分项汇编 专题05 平面向量(含解析)理
2021年高考数学分项汇编专题05 平面向量(含解析)理
一.基础题组
1. 【xx全国,理6】△ABC中,AB边的高为CD.若=a,=b,a·b=0,|a|=1,|b|=2,则=( )
A. B. C. D.
【答案】D
2. 【xx高考新课标2,理13】设向量,不平行,向量与平行,则实数_________.
【答案】
【解析】因为向量与平行,所以,则所以.
【考点定位】向量共线.
二.能力题组
1. 【xx新课标,理3】设向量a,b满足|a+b|=,|a-b|=,则ab = ( )
A. 1
B. 2
C. 3
D. 5
【答案】A
2. 【xx全国2,理8】△ABC中,点D在边AB上,CD平分∠ACB,若=a,=b,|a|=1,|b|=2,则等于( )
A. a+b
B. a+b
C. a+b
D. a+b
【答案】:B
3. 【xx全国3,理14】已知向量,且A、B、C三点共线,则k= .
【答案】
【解析】由平面向量共线定理的推论可知:,可得:4=kt-k(1-t),
5=12t+10(1-t),解得:,.
三.拔高题组
1. 【xx全国2,理8】已知点,,.设的一平分线与相交于,那么有,其中等于()
(A) 2 (B) (C) (D)
【答案】C
【解析】
2. 【xx课标全国Ⅱ,理13】已知正方形ABCD的边长为2,E为CD的中点,则=__________.
【答案】:2
34129 8551 蕑
3" 37255 9187 醇37532 929C 銜_l|B26900 6914 椔q 33960 84A8 蒨。
2020高考数学课标二轮(天津专用)课件:专题五 5.3 立体几何中的向量方法
因为点 D 在线段 AB 上,且������������������������ = 13,
即������������ = 1 ������������.
3
所以 a=2,b=43 , ������������ =
-1,
4 3
,0
.
平面 BCD 的法向量为 n1=(0,0,1).
设平面 B1CD 的法向量为 n2=(x,y,1),
专题五
5.3 立体几何中的向量方法
高频考点•探究突破 核心归纳•预测演练
-9-
突破点一
突破点二
突破点三
(2)证法一 ������������1=(0,-4,4),设平面 B1CD 的法向量 m=(x,y,z),
由������1������ ·m=(-3,0,-4)·(x,y,z)=-3x-4z=0,
设 CF=h(h>0),则 F(1,2,h). 依题意,������������=(1,0,0)是平面 ADE 的法向量,又������������=(0,2,h),可得������������ · ������������=0,又因为直线 BF⊄平面 ADE,所以 BF∥平面 ADE.
突破点一
专题五
专题五
5.3 立体几何中的向量方法
高频考点•探究突破 核心归纳•预测演练
-7-
突破点一
突破点二
突破点三
即时巩固1如图,在直三棱柱ABC-A1B1C1中,AC=4,BC=3,AA1=4, AC⊥BC,点D在线段AB上.
(1)证明:AC⊥B1C;
(2)若D是AB的中点,证明:AC1∥平面B1CD; (3)当������������������������ = 13时,求二面角 B-CD-B1 的余弦值.
天津卷高考数学十年真题【平面向量】【文】
平面向量【文科】2010年 (9)如图,在ΔABC 中,AD AB ⊥,BC = BD ,1AD = ,则AC AD ⋅ =(A)(B(C(D2009年15. 若等边A B C ∆的边长为32,平面内一点M 满足→→→+=CA CB CM 3261,则=∙→→MB MA ________.2008年(14)已知平面向量(2,4)a = ,(1,2)b =- .若()c a a b b =-⋅ ,则||c = _____________.2007年(15)在ABC △中,2AB =,3AC =,D 是边BC 的中点,则AD BC = .2006年12. 设向量a 与b 的夹角为θ,且a =(3,3),)1,1(2-=-a b ,则=θcos 。
2005年12.已知||=2,||=4,与的夹角为3π,以,为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为_______________.2004年4. 若平面向量与向量)2,1(-=的夹角是︒18053=,则=A. )6,3(-B. )6,3(-C. )3,6(-D. )3,6(-2003年8.O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ).,0[|||(+∞∈+=λλAC AB 则P 的轨迹一定通过△ABC 的 ( )A .外心B .内心C .重心D .垂心2002年12. 平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足βα+=,其中R ∈βα,,且1=+βα,则点C 的轨迹方程为( )A. 5)2()1(22=-+-y xB. 01123=-+y xC. 02=-y xD. 052=-+y x2001年(5)若向量a =(3,2),b =(0,-1),c =(-1,2),则向量2b -a 的坐标是(A )(3,-4) (B )(-3,4) (C )(3,4) (D )(-3,-4)平面向量答案【文科】2010年(9).D ||||cos ||cos ||cos()2||sin sin B AC AD AC AD DACAC DAC AC BAC AC BAC BC π∙=∙=∙=∙-=== ∠∠∠∠2009年(15):-2 合理建立直角坐标系,因为三角形是正三角形,故设)3,3(),0,32(),0,0(B A C这样利用向量关系式,求得M )21,233(,然后求得)25,23(),21,23(--=-=→→MB MA ,运用数量积公式解得为-2.2008年(14)||c = 因为(2,4)6(1,2)(8,8)c =--=-,所以||c = .2007年(15)522006年(12)12.101032005年2(12).32004年(4). A2003年(8).B2002年(12)D2001年(5)D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 平面向量
一.基础题组
1.【2005天津,文12】已知2,4a b ==r r ,a r 和b r 的夹角为3
π
,以a r ,b r 为邻边作平行四
边形,则此平行四边形的两条对角线中较短的一条的长度为 . 【答案】12
【解析】222||||||2||||cos 416224cos 123
c a b a b C π=+-⋅=+-⨯⨯⨯=r r
r r r
2.【2006天津,文12】设向量a r 与b r 的夹角为,θ且(3,3),2(1,1),a b a =-=-r r r
则
cos θ= 。
【答案】
310
10
3.【2007天津,文15】在ABC △中,2AB =,3AC =,D 是边BC 的中点,则
AD BC =u u u r u u u r
g .
【答案】
52
【解析】解:根据向量的加减法法则有:
此时
故答案为:
4.【2008天津,文14】已知平面向量(2,4)a =r ,
(1,2)
b =-r .若()
c a a b b
=-⋅r r r
r r ,则
||c =r
_____________.
【答案】2【解析】因为(2,4)6(1,2)(8,8)c =--=-r
,所以||82c =r
.
5.【2009天津,文15】若等边△ABC 的边长为32,平面内一点M 满足CA CB CM 3
2
61+=,则=•MB MA _______________________. 【答案】-2 解法一:由于CA CB CM
3
2
61+=,那么 6
1
31)3261(-=+-=-=,
6
5
32)3261(--=+-=-=,
则有
CB CA CB CA CB CA CB CA MB MA •+--=+-•-=•18
7
36592)6532()6131(22
260cos )32()32(18
7
)32(365)32(922222-=︒⨯⨯⨯+⨯-⨯-=.
解法二:本题如果采用建立直角坐标系,运用向量数量积的坐标运算较为简单,建立如图所示的
直
角
坐
标
系
,
根
据
题
设
条
件
即
可
知
A(0,3),B(3-,0),M(0,2),∴)1,0(=,)2,3(--=.∴2-=•.
6.【2011天津,文14】
1.【2012天津,文8】在△ABC 中,∠A =90°,AB =1,AC =2.设点P ,Q 满足AP u u u r
=
λAB u u u r ,AQ uuu
r =(1-λ)AC u u u r ,λ∈R .若2BQ CP ⋅=-u u u r u u u r ,则λ=( )
A .
13 B .23 C .4
3
D .2 【答案】B
7.【2013天津,文12】在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若
AC u u u r ·BE u u u r
=1,则AB 的长为__________.
【答案】
12
【解析】取平面的一组基底{AB u u u r
,AD u u u r
},则
AC u u u r =AB u u u r +AD u u u r ,BE u u u r =BC uuu r +CE u u u r =12-AB u u u
r +AD u u u r ,
AC u u u r ·BE u u u r =(AB u u u r +AD u u u r )·12AB AD ⎛⎫-+ ⎪⎝⎭u u u r u u u r =12-|AB u u u r |2+|AD u u u r |2+12AB u u u r ·AD u u u r =
12-
|AB u u u r |2+14|AB u u u r |+1=1,解方程得|AB u u u r |=1
2(舍去|AB u u u r
|=0),所以线段AB 的长
为12.
二.能力题组
1.【2014天津,文13】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边
BC 、DC 上,
3BC BE =,DC DF λ=.若
1,AE AF ⋅=u u u r u u u r ,则λ的值为________. 【答案】2 【解析】 试题分析:
建立如图所示直角坐标系,则11(1,0),(0,(1,0),(,(3A B C D E F λ-,
由1AE AF ⋅=u u u r u u u r 得
:41(,(1, 2.3λλ⋅+==
考点:向量坐标表示 2. 【2015
高考天津,文
13】在等腰梯形
ABCD 中,已知
AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且
21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r
的值为 .
【答案】29
18
【解析】在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o
得
12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r ,12
DC AB =u u u r u u u r ,所以()()
AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r
22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=
⎪ ⎪⎝⎭⎝⎭
u u u
r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .【考点定位】平面向量的数量积. 三.拔高题组
1.【2010天津,文9】如图,在△ABC 中,AD ⊥AB ,BC uuu r
u u r ,|AD u u u r |=1,则AC u u u r ·AD
u u u r
=(
)
A .
C.
3
【答案】D
【解析】 设|BD u u u r |=x ,则|BC uuu r
|
x ,
()AC AD AB BC AD BC AD ⋅=+⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r =|BC uuu r |·|AD u u u r
x·1·1x
=.
2. 【2016高考天津文数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC
AB ,
的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC ⋅u u u r u u u r
的值为
(A )8
5- (B )
81 (C )4
1 (D )
811
【答案】B
【考点】向量数量积
【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.。