平面向量的概念同步练习及答案
人教A版(2019)必修第二册《平面向量的概念》同步练习
人教A 版(2019)必修第二册《6.1 平面向量的概念》同步练习一 、单选题(本大题共12小题,共60分)1.(5分)已知平面向量a →=(−2,1),b →=(1,2),则|a →−2b →|的值是( )A. 1B. 5C. √3D. √52.(5分)已知向量a →=(2,4),b →=(−2,m),且|a →+b →|=|a →−b →|,则m =()A. √3B. 1C.2√33D. 23.(5分)已知四边形ABCD 满足AD →=14BC →,点M 满足DM →=MC →,若BM →=xAB →+yAD →,则x +y =()A. 3B. 52C. 2D. −124.(5分)已知四棱锥P −ABCD 底面为平行四边形,点M 为BC 中点,设AB →=a →,AD →=b →,AP →=c →,则下列向量中与PM →相等的向量是( )A. 12a →+b →−c →B. a →+12b →−c →C. −a →−12b →+c →D. a →+12b →+c →5.(5分)已知直线上OA →,OB →的坐标分别为−1,2,则下列结论不正确的是( )A. OA →<OB →B. |OA →|<|OB →| C. |AB →|=3D. AB 的中点坐标为126.(5分)在△ABC 中,已知BC →=3BD →,则AD →=()A. 13(AC →+2AB →) B. 13(AB →+2AC →) C. 14(AC →+3AB →)D. 14(AC →+2AB →)7.(5分)下列说法中错误的是()A. 零向量与任一向量平行B. 方向相反的两个非零向量不一定共线C. 单位向量的长度为1D. 相等向量一定是共线向量8.(5分)下列说法正确的是( )A. 单位向量均相等B. 单位向量e →=1 C. 零向量与任意向量平行D. 若向量a →,b →满足|a →|=|b →|,则a →=±b →9.(5分)若平面单位向量a →,b →,c →不共线且两两所成角相等,则|a →+b →+c →|=( )A. √3B. 3C. 0D. 110.(5分)已知不共线的向量a →,b →,|a →|=2,|b →|=3,a →.(b →−a →)=1,则|a →−b →|=( )A. √3B. 2√2C. √7D. √2311.(5分)有下列四个命题:①互为相反向量的两个向量模相等;①若向量AB →与CD →是共线的向量,则A ,B ,C ,D 必在同一条直线上;①若|a |=|b |,则a =b 或a =-b ;①若a ①b =0,则a =0或b =0;其中正确结论的个数是( )A. 4B. 3C. 2D. 112.(5分)已知a →,b →为两个单位向量,下列四个命题中正确的是( )A. 如果a →与b →平行,那么a →与b →相等 B. a →与b →相等C. 如果a →与b →平行,那么a →=b →或a →=−b →D. a →与b →共线二 、填空题(本大题共5小题,共25分)13.(5分)与向量a →=(1,2,−2)方向相同的单位向量是 ______.14.(5分)若向量AB →=−3CD →,则向量AB →与向量CD →共线.______ (判断对错) 15.(5分)给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同; ②若|a →|=|b →|,则a →=b →;③若AB →=DC →,则A ,B ,C ,D 四点构成平行四边形; ④在平行四边形ABCD 中,一定有AB →=DC →; ⑤若m →=n →,n →=p →,则m →=p →; ⑥若向a →//b →,b →//c →,则a →//c →. 其中错误的命题有______.(填序号)16.(5分)已知平面内三点A (2,-3),B (4,3),C (5,a )共线,则a=____ 17.(5分)已知向量a →=(m,1),b →=(4−n,2),m >;0,n >;0,若a →//b →,则1m+8n的最小值为__________;三 、多选题(本大题共4小题,共20分) 18.(5分)下列命题中正确的是( )A. 单位向量的模都相等B. 长度不等且方向相反的两个向量不一定是共线向量C. 若⇀ a 与b →满足|a |>|b |,且⇀ a 与b →同向,则a →>b →D. 两个有共同起点而且相等的向量,其终点必相同 19.(5分)下列说法中,正确的个数是( )A. 时间、摩擦力、压强、重力、身高、温度、加速度都是向量;B. 向量的模是一个正实数;C. 相等向量一定是平行向量;D. 向量a →与b →不共线,则a →与b →都是非零向量. 20.(5分)下列关于平面向量的说法中,正确的是()A. 若a →=b →,b →=c →,则a →=c →B. 若a →//b →,b →//c →,则a →//c →C. 若xa →+yb →=0→,x ,y ∈R ,a →,b →不共线,则x =y =0 D. 若|a →+b →|=|a →−b →|,则|a →|2+|b →|2=|a →+b →|221.(5分)已知点P 为△ABC 所在平面内一点,且PA →+2PB →+3PC →=0→,若E 为AC 的中点,F 为BC 的中点,则下列结论正确的是()A. 向量PA →与PC →可能平行 B. 向量PA →与PC →可能垂直 C. 点P 在线段EF 上D. PE :PF =1:2四 、解答题(本大题共4小题,共48分)22.(12分)已知四点A(x,0),B(2x ,1),C(2,x),D(6,2x ). (1)求实数x ,使向量AB →与CD →共线;(2)当向量AB →与CD →共线时,A ,B ,C ,D 四点是否存在同一直线上?23.(12分)如图,半圆的直径AB =6,C 是半圆上的一点,D ,E 分别是AB ,BC 上的点,且AD =1,BE =4,DE =3.[{"ℎ":"57.0","w":"837.0","x":"63.0","y":"509.0"}](1)求证:AC →//DE →;(2)求|AC →|.24.(12分)已知D,E,F 分别是ΔABC 各边AB ,BC ,CA 的中点,分别写出图中与DE →,EF →,FD →相等的向量.25.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知向量m→=(a,√3b),n→=(cosA,sinB),且m→//n→.(Ⅰ)求角A的大小;(Ⅰ)若c=5,cosB=√21,求a的值.7答案和解析1.【答案】B;【解析】解:a →−2b →=(−4,−3). ∴|a →−2b →|=√(−4)2+(−3)2=5. 故选:B .利用数量积运算性质即可得出.此题主要考查了数量积运算性质,考查了推理能力与计算能力,属于基础题.2.【答案】B;【解析】解:由题意可得|a →+b →|2=|a →−b →|2, 即a →2+2a →·b →+b →2=a →2−2a →·b →+b →2, 可得a →·b →=0,又a →=(2,4),b →=(−2,m), 即有2×(−2)+4m =0, 解得m =1, 故选:B.由已知条件结合向量模的求法可得a →·b →=0,再代入坐标运算即可求解. 此题主要考查了向量模的求法,向量数量积的坐标运算,属于基础题.3.【答案】C;【解析】解:∵四边形ABCD 满足AD →=14BC →,点M 满足DM →=MC →,∴BC →=4AD →,故点M 为线段DC 的中点, ∴BM →=BD →+BC →2=BA →+AD →+4AD→2=−12AB →+52AD →.又∵BM →=xAB →+yAD →,∴x =−12,y =52, 故 x +y =2, 故选:C.由题意先求得BC →=4AD →,故点M 为线段DC 的中点,再利用平面向量的线性运算,借助平面向量的基本定理即可求解.本题考查的知识点是平面向量的基本定理,平面向量的线性运算,属于中档题.4.【答案】B;【解析】解:∵四棱锥P −ABCD 底面为平行四边形,点M 为BC 中点,AB →=a →,AD →=b →,AP →=c →,∴PM →=PB →+12BC →=PA →+AB →+12BC →=−c →+a →+12b →, 故选:B.直接根据向量的三角形法则进行求解即可.此题主要考查了向量的三角形法则,考查了推理能力与计算能力,属于基础题.5.【答案】A;【解析】解:向量不能比较大小,故A 不正确, ∵|OA →|=1,|OB →|=2,∴|OA →|<|OB →|,故选项B 正确, ∵AB →=OB →−OA →=2−(−1)=3,∴|AB →|=3,故选项C 正确, ∵A 的坐标为−1,B 的坐标为2,∴AB 的中点坐标为−1+22=12,故选项D 正确.故选:A.利用直线上的向量的坐标运算求解.此题主要考查了直线上的向量的坐标运算,考查了中点坐标公式,是基础题.6.【答案】A;【解析】解:根据向量的三角形法则得到AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →−AB →)=23AB →+13AC →=13(2AB →+AC →);故选:A.利用平面向量的三角形法则,将AD →用AB →,AC →表示,找出正确答案. 此题主要考查了向量的三角形法则,属于基础题.7.【答案】B;【解析】解:零向量与任一向量平行,故A 正确; 方向相反的两个非零向量一定共线,故B 错误; 单位向量的长度为1,故C 正确;相等向量的模相等,方向相同,一定是共线向量,故D 正确. 故选:B.由零向量的概念判断A ;由相反向量的概念判断B ;由单位向量的概念判断C ;由相等向量的概念判断D.此题主要考查向量的基本概念,是基础题.8.【答案】C; 【解析】此题主要考查了向量的概念,属于基础题. 根据向量的概念逐一判定即可.解:单位向量的模相等且为1,但单位向量的方向不确定,故A 、B 错误; 零向量与任意向量平行,故C 正确;若向量a →,b →满足|a →|=|b →|,只能得出向量a →,b →的模相等,但向量a →,b →的方向不确定,故D 错误; 故选C.9.【答案】C;【解析】解:∵平面单位向量a →,b →,c →不共线且两两所成角相等; ∴a →,b →,c →两两夹角为120°,且|a →|=|b →|=|c →|=1;∴|a →+b →+c →|=√(a →+b →+c →)2=√(a →)2+(b →)2+(c →)2+2a →.b →+2a →.c →+2b →.c →=√3+6cos120° =0 故选:C .根据三个向量不共线且两两所成的角相等可知,它们两两夹角为120°;再根据平面向量模的计算公式即可得出答案.该题考查了平面向量模的运算,属基础题.10.【答案】A;【解析】解:∵|a →|=2,|b →|=3,a →⋅(b →−a →)=1, ∴a →⋅b→−a 2→=a →⋅b →−4=1,∴a →⋅b →=5,∴|a →−b →|2=a 2→−2a →⋅b →+b 2→=4−2×5+9=3,∴|a →−b →|=√3, 故选:A .由已知结合数量积的运算可得a →⋅b →=5,代入运算可得|a →−b →|2的值,求其算术平方根即得.此题主要考查平面向量数量积的运算,涉及向量的模长的求解,属中档题.11.【答案】D;【解析】此题主要考查平面向量的基本概念与应用问题,是基础题.根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可.解:对于①,互为相反向量的两个向量模相等,命题正确;对于①,向量AB 与CD 是共线的向量,点A ,B ,C ,D 不一定在同一条直线上, 如平行四边形的对边表示的向量,原命题错误; 对于①,当|a |=|b |时,a =b 或a =-b 不一定成立, 如单位向量模长为1,但不一定共线,原命题错误; 对于①,当a ①b =0时,a =0或b =0或a ①b ,原命题错误; 综上,正确的命题是①,共1个. 故选D.12.【答案】C;【解析】解:∵a →,b →为两个单位向量,∴如果a →与b →平行,那么a →=b →或a →=−b →,故A 不正确,C 正确; 因为两向量相等的充要条件是模相等且方向相同,所以B 不正确; ∵a →,b →为两个单位向量,∴a →,b →为两个向量不一定平行,故D 不正确. 故选:C .a →,b →为两个单位向量,它们的模是单位长度1,方向是任意的,根据两个单位向量的这两条性质,可以判断四个选项的真假.该题考查了命题的真假判断与应用,解答该题的关键是单位向量的定义及两向量相等的条件,同时考查了两向量的应用.13.【答案】(13,23,-23);【解析】解:向量a →=(1,2,−2), 可得|a →|=√1+4+4=3,所以与向量a →=(1,2,−2)方向相同的单位向量是:(13,23,−23). 故答案为:(13,23,−23).求出向量的模,然后求解单位向量即可.此题主要考查单位向量的求法,向量的模的计算,是基础题.14.【答案】对;【解析】解:向量AB →=−3CD →,根据平面向量的共线定理知, 向量AB →与向量CD →共线. 故答案为:对.根据平面向量的共线定理,判断即可.本题考查了平面向量的共线定理应用问题,是基础题.15.【答案】①②③⑥;【解析】解:在①中,两个零向量相等,则它们的起点相同,终点不一定相同,故①错误;在②中,若|a →|=|b →|,则a →与b →大小相等,方向不一定相同,故②错误; 在③中,若AB →=DC →,则A ,B ,C ,D 四点不一定构成平行四边形,故③错误; 在④中,在平行四边形ABCD 中,由向量相等的定义得一定有AB →=DC →,故④正确; 在⑤中,若m →=n →,n →=p →,则向量相等的定义得m →=p →,故⑤正确; 在⑥中,若向a →//b →,b →//c →,当b →=0→时,a →与c →不一定平行,故⑥不正确. 故答案为:①①①①.在①中,两个零向量相等,则它们的起点相同,终点不一定相同;在②中,a →与b →大小相等,方向不一定相同;在③中,若AB →=DC →,则A ,B ,C ,D 四点不一定构成平行四边形;在④中,由向量相等的定义得一定有AB →=DC →;在⑤中,由向量相等的定义得m →=p →;在⑥中,当b →=0→时,a →与c →不一定平行.该题考查命题真假的判断,是基础题,解题时要认真审题,注意向量相等、向量平行的合理运用.16.【答案】6;【解析】解:AB=(2,6) ,AC=(3,a+3) 由已知知AB ∥AC 所以2(a+3)=6×3 解得a=6 故答案为:617.【答案】92; 【解析】此题主要考查利用基本不等式求最值及平面向量共线的充要条件,属于中档题. 由a →//b →,可得:n +2m =4,则1m+8n=14(n +2m )(1m+8n),化简利用基本不等式求解即可.解:∵a →//b →,∴4−n −2m =0,即n +2m =4, ∵m >;0,n >;0, ∴1m +8n=14(n +2m )(1m +8n ) =14(10+n m+16m n)⩾14(10+2√n m·16mn)=92,当且仅当n =4m =83时取等号, ∴1m +8n 的最小值是92. 故答案为92.18.【答案】AD; 【解析】此题主要考查向量的有关概念,属于基础题.利用向量的有关概念,判断各个选项是否正确,从而得出结论.解:对于选项A :单位向量的模均为1,故A 正确,对于选项B :长度不等且方向相反的两个向量一定是共线向量,故B 错误, 对于选项C :向量不能比较大小,故C 错误, 对于选项D :根据相等向量的概念知,故D 正确. 故选AD .19.【答案】CD; 【解析】此题主要考查了向量的基本概念,熟练掌握向量,零向量,平行向量,向量的模的概念是解答该题的关键,属于基础题.直接由向量、零向量、向量相等,向量的模和向量共线的概念逐一核对四个命题得答案.解:对于A ,时间没有方向,不是向量,故A 错误;对于B ,零向量的模为0,故B 错误;对于C ,相等向量的方向相同,因此一定是平行向量,故C 正确;对于D ,根据零向量与任意向量共线,得到向量a →与b →不共线,则a →与b →都是非零向量,故D 正确.故选CD .20.【答案】ACD;【解析】解:若a →=b →,b →=c →,则一定a →=c →,∴A 正确;若a →与c →不平行,b →=0→,满足a →//b →,b →//c →,则得不出a →//c →,即B 错误;若xa →+yb →=0→,x,y ∈R,a →,b →不共线,则一定得出x =y =0,若x ,y 中有一个不为0,则可得出a →,b →共线,与已知不共线矛盾,∴C 正确;若|a →+b →|=|a →−b →|,则(a →+b →)2=(a →−b →)2,则a →·b →=0,从而得出|a →+b →|2=|a →|2+|b →|2,即D 正确.故选:ACD.A 显然正确;b →=0→时,可说明B 错误;根据平面向量基本定理即可说明C 正确;进行向量数量积的运算即可说明D 正确.此题主要考查了平面向量和共线向量基本定理,向量数量积的运算,考查了计算能力,属于基础题.21.【答案】BC;【解析】解:∵PA →+2PB →+3PC →=0→,∴PA →+PC →+2(PB →+PC →)=0→,∵E 为AC 的中点,F 为BC 的中点,∴2PE →+2×2PF →=0→,∴PE →=−2PF →,∴P 为FE 的三等分点(靠近点F),即PE :PF =2:1,故C 正确,D 错误,∴向量PA →与PC →不可能平行,故A 错误;当|AC →|=2|EP →|=43|EF →|=23|AB →|时,向量PA →与PC →垂直,B 正确.故选:BC.由题意并根据平面向量线性运算可知PE →=12(PA →+PC →),PF →=12(PB →+PC →),代入等式可得PE →=−2PF →,即可判断C 和D ;根据平面中的位置关系,可判断A 和B.本题考查平面向量的加法、减法和数乘运算及平面向量平行和垂直的判断,属中档题.22.【答案】解:(1)AB →=(x ,1),CD →=(4,x ),∵AB →与CD →共线,∴x 2-4=0,解得x=±2.∴当x=±2时,向量AB →与CD →共线.(2)取x=2时,A (2,0),B (4,1),C (2,2),D (6,4),直线AC ⊥x 轴,而点B ,D 不在直线AC 上,因此四点不共线.取x=-2时,A (-2,0),B (-4,1),C (2,-2),D (6,-4),直线AB 的方程为y-0=1−0−4−(−2)(x+2),化为:x+2y+2=0.点B ,D 满足直线AB 的方程,因此四点共线.;【解析】(1)AB →=(x,1),CD →=(4,x),利用向量共线定理解出x.(2)取x =2时,A(2,0),B(4,1),C(2,2),D(6,4),直线AC ⊥x 轴,而点B ,D 不在直线AC 上,即可判断出四点共线.取x =−2时,A(−2,0),B(−4,1),C(2,−2),D(6,−4),直线AB 的方程为:x +2y +2=0.验证点B ,D 是否满足直线AB 的方程,即可判断出结论.此题主要考查了向量共线定理、向量共线与直线平行的关系,考查了推理能力与计算能力,属于中档题.23.【答案】(1)证明:由题意知,在△DEB 中,BD =5,DE =3,BE =4,∴DE 2+BE 2=BD 2,∴△DEB 是直角三角形,∠DEB =90∘.又∵点C 为半圆上一点,∴∠ACB =90∘.∴AC//DE ,故AC →//DE →.(2)解:由AC//DE 知△ABC ∽△DBE.∴AC DE =AB BD ,即AC 3=65.∴AC =185,即|AC →|=185.;【解析】本题考查向量的概念及几何表示、平行向量的概念以及向量的模,属于基础题.(1)根据勾股定理可得DE ⊥BE ,因为AC ⊥BC ,故可得AC →//DE →;(2)由三角形相似得相似比,从而可求出答案.24.【答案】略;【解析】DE →=AF →=FC →;EF →=BD →=DA →;FD →=CE →=EB →.25.【答案】解:(Ⅰ)∵m →∥n →,∴asinB −√3bcosA =0,∴根据正弦定理得,sinAsinB −√3sinBcosA =0,且sinB >0,∴sinA =√3cosA ,tanA =√3,且A ∈(0,π),∴A =π3;(Ⅱ)∵cosB =√217,∴sinB =2√77,且C =2π3−B , ∴sinC =sin(2π3−B)=√32×√217+12×2√77=5√714,且c=5, ∴根据正弦定理得,c sinC =b sinB ,即5√714=2√77,解得b=4,∴根据余弦定理得,a 2=b 2+c 2-2bccosA=16+25-2×4×5×12=21,∴a =√21.;【解析】(Ⅰ)根据m →//n →即可得出asinB −√3bcosA =0,然后根据正弦定理即可得出sinA =√3cosA ,然后即可求出A =π3;(Ⅰ)可先求出sinB =2√77,sinC =5√714,然后根据正弦定理可求出b 的值,进而根据余弦定理可求出a 的值.本题考查了平行向量的坐标关系,正余弦定理,两角差的正弦公式,考查了计算能力,属于中档题.。
高一数学平面向量的概念试题答案及解析
高一数学平面向量的概念试题答案及解析1.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()A.向东南航行km B.向东南航行2kmC.向东北航行km D.向东北航行2km【答案】A【解析】根据题意由于向量表示“向东航行1km”,向量表示“向南航行1km”,那么可知向量表示向东南航行km ,故选A.【考点】向量的物理意义点评:主要是考查了向量的物理意义的运用,属于基础题。
2.在平行四边形ABCD中, + +等于()A.B.C.D.【答案】A【解析】结合图形,+ += + += ,故选A。
【考点】本题主要考查平面向量的线性运算。
点评:简单题,在平行四边形中,由平行四边形法则。
注意相等向量及相反向量。
3.已知点,向量,且,则点的坐标为。
【答案】【解析】设点的坐标为(x,y),则由得,(x-2,y-4)=2(3,4),所以x-2=6,y-4=8,所以x=8,y=12,即点的坐标为。
【考点】本题主要考查平面向量的概念及其坐标运算。
点评:简单题,注意若A(a,b),B(c,d),则。
4.作用于原点的两个力F1 ="(1,1)" ,F2 ="(2,3)" ,为使得它们平衡,需加力F3=【答案】(-3,-4)【解析】F3=-(F1+F2)=-(3,4)=(-3,-4).5.下列判断正确的是 ( )A.若向量与是共线向量,则A,B,C,D四点共线;B.单位向量都相等;C.共线的向量,若起点不同,则终点一定不同;D.模为0的向量的方向是不确定的。
【答案】D【解析】解:因为A.若向量与是共线向量,则A,B,C,D四点共线;可能构成四边形。
B.单位向量都相等;方向不一样。
C.共线的向量,若起点不同,则终点一定不同;不一定。
D.模为0的向量的方向是不确定的,成立6.下列命题中正确的是()A.若两个向量相等,则它们的起点和终点分别重合.B.模相等的两个平行向量是相等向量.C.若和都是单位向量,则.D.两个相等向量的模相等.【答案】D【解析】根据向量相等的定义易知两个相等向量的模相等,故选D相等向量只需要模相同,方向相同,所以(1)错;模相等的平行向量有可能方向相反,所以(2)错;都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;相等向量是模相同,方向相同的向量,所以(4)对.解:对于(1),相等向量只需要模相同,方向相同,所以(1)错;对于(2)模相等的平行向量有可能方向相反,所以(2)错;对于(3),都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;对于(4),相等向量是模相同,方向相同的向量,所以(4)对.故选C7.给出下列命题:①向量与是共线向量,则A、B、C、D四点必在一直线上;②两个单位向量是相等向量;③若, ,则;④若一个向量的模为0,则该向量的方向不确定;⑤若,则。
高中数学必修二 专题6 1 平面向量的概念-同步培优专练
专题6.1 平面向量的概念知识储备一 向量的概念1.向量:既有大小又有方向的量叫做向量.2.数量:只有大小没有方向的量称为数量.二 向量的几何表示1.有向线段具有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示.以A 为起点、B 为终点的有向线段记作AB ,线段AB 的长度叫做有向线段AB 的长度记作|AB |.2.向量的表示(1)几何表示:向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.(2)字母表示:向量可以用字母a ,b ,c ,…表示(印刷用黑体a ,b ,c ,书写时用c b a ,,).3.模、零向量、单位向量 向量AB 的大小,称为向量AB 的长度(或称模),记作|AB |.长度为0的向量叫做零向量,记作0;长度等于1个单位长度的向量,叫做单位向量.思考 “向量就是有向线段,有向线段就是向量”的说法对吗?答案 错误.理由是:①向量只有长度和方向两个要素;与起点无关,只要长度和方向相同,则这两个向量就是相同的向量;②有向线段有起点、长度和方向三个要素,起点不同,尽管长度和方向相同,也是不同的有向线段.三 相等向量与共线向量1.平行向量:方向相同或相反的非零向量叫做平行向量.(1)记法:向量a 与b 平行,记作a ∥b .(2)规定:零向量与任意向量平行.2.相等向量:长度相等且方向相同的向量叫做相等向量.3.共线向量:由于任一组平行向量都可以平移到同一直线上,所以平行向量也叫做共线向量.要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆.思考 (1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与任意向量都平行的向量是什么向量?(4)若两个向量在同一直线上,则这两个向量一定是什么向量?答案 (1)不一定;(2)不一定;(3)零向量;(4)平行(共线)向量.能力检测姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列关于空间向量的命题中,正确命题的个数是( )(1)长度相等、方向相同的两个向量是相等向量;(2)平行且模相等的两个向量是相等向量;(3)若a b ≠,则a b →→≠;(4)两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3【答案】B【解析】由相等向量的定义知(1)正确;平行且模相等的两个向量也可能是相反向量,(2)错;方向不相同且长度相等的两个是不相等向量,(3)错;相等向量只要求长度相等、方向相同,而表示两个向量的有向线段的起点不要求相同,(4)错, 所以正确答案只有一个.故选B .2.下列命题正确的是( )A .若||0a =,则0a =B .若||||a b =,则a b =C .若||||a b =,则//a bD .若//a b ,则a b =【答案】A 【解析】模为零的向量是零向量,所以A 项正确;||||a b =时,只说明向,a b 的长度相等,无法确定方向,所以B ,C 均错;a b 时,只说明,a b 方向相同或相反,没有长度关系,不能确定相等,所以D 错.故选A.3.若非零向量a 和b 互为相反向量,则下列说法中错误是( )A .//a bB .a b ≠C .a b ≠D .a b =-【答案】C 【解析】由平行向量的定义可知A 项正确;因为a 和b 的方向相反,所以a b ≠,故B 项正确;由相反向量的定义可知a b =-,故选项D 正确;由相反向量的定义知a b =,故C 项错误.故选C.4.如图,设O 是正六边形ABCDEF 的中心,则与BC 相等的向量为( )A .BAB .CDC .AD D .OD【答案】D 【解析】根据图形看出,四边形BCDO 是平行四边形//,BC OD BC OD ∴=BC OD ∴=故选:D 5.若向量a 与向量b 不相等,则a 与b 一定( )A .不共线B .长度不相等C .不都是单位向量D .不都是零向量 【答案】D 【解析】向量a 与向量b 不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A 、B 、C 错误,D 正确.故选:D.6.下列说法错误的是( )A .若非零向量a b c ,,有//a b ,//b c ,则//a cB .零向量与任意向量平行C .已知向量a b ,不共线,且//a c ,//b c ,则0c =D .平行四边形ABCD 中,AB CD =【答案】D【解析】选项A :因为a b c ,,都不是零向量,所以由//a b ,可知向量a 与向量b 具有相同或相反方向.又由//b c ,可得向量c 与向量b 具有相同或相反方向,所以向量a 与向量c 具有相同或相反方向,故//a c ,故本说法是正确的;选项B :零向量与任意向量平行这是数学规定,故本说法是正确的;选项C :由//a c ,//b c ,可知:c 与向量a 具有相同或相反方向,c 与向量b 具有相同或相反方向,但是向量a b ,不共线,所以0c ,故本说法是正确的;选项D :平行四边形ABCD 中,应该有AB DC =,故本说法是错误的.故选:D7.a ,b 为非零向量,且a b a b +=+,则( )A .a ,b 同向B .a ,b 反向C .a b =-D .a ,b 无论什么关系均可【答案】A 【解析】当两个非零向量a 与b 不共线时,a b +的方向与a ,b 的方向都不相同,且a b a b +<+;当向量a 与b 同向时,a b +的方向与a ,b 的方向都相同,且a b a b +=+; 当向量a 与b 反向且a b <时,a b +的方向与b 的方向相同(与a 的方向相反),且a b b a +=-, 故选:A8.如图是34⨯的格点图(每个小方格都是单位正方形),若起点和终点都在方格的顶点处,则与AB的向量共有( )A.12个B.18个C.24个D.36个【答案】C⨯的格点图中【解析】由题意知,每个小正方形的对角线与AB34包含12个小正方形,所以有12条对角线,与AB平行的向量包含方向相同和相反,所有共有24个向量满足.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分。
高中数学必修二6.1《平面向量的概念》高频考点练习题目含答案解析
第六章平面向量及其应用6.1 平面向量的概念课后篇巩固提升必备知识基础练1.有下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥功.其中,不是向量的个数是( )A.1B.2C.3D.4,又有方向,所以它们是向量;而质量、路程和功只有大小,没有方向,所以它们不是向量,故不是向量的个数是3.2.在同一平面上,把向量所在直线平行于某一直线的一切向量的起点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一条直线C.圆上一群孤立的点D.一个半径为1的圆,而向量所在直线平行于同一直线,所以随着向量模的变化,向量的终点构成的是一条直线.3.如图所示,在正三角形ABC 中,P ,Q ,R 分别是AB ,BC ,AC 的中点,则与向量PQ⃗⃗⃗⃗⃗ 相等的向量是( )A.PR ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗B.AR ⃗⃗⃗⃗⃗ 与RC⃗⃗⃗⃗⃗ C.RA ⃗⃗⃗⃗⃗ 与CR ⃗⃗⃗⃗⃗ D.PA ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗,方向相同,因此AR ⃗⃗⃗⃗⃗ 与RC ⃗⃗⃗⃗⃗ 都是和PQ ⃗⃗⃗⃗⃗ 相等的向量. 4.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 的形状为 ( )A.正方形B.矩形C.菱形D.等腰梯形BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ 知,AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形.5.(多选题)(2021福建福清期中)下列说法正确的是( )A.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 是菱形B.在平行四边形ABCD 中,一定有AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗C.若a =b ,b =c ,则a =cD.若a ∥b ,b ∥c ,则a ∥cA,由BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,知AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形,又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形,故A 正确;对于B,在平行四边形ABCD 中,对边平行且相等,AB ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的方向相同,所以AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,故B 正确;对于C,由向量相等的定义知,当a =b ,b =c 时,有a =c ,故C 正确;对于D,当b =0时不成立,故D 错误.故选ABC .6.(多选题)设点O 是正方形ABCD 的中心,则下列结论正确的是( ) A.AO ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ B.BO ⃗⃗⃗⃗⃗ ∥DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线 D.AO ⃗⃗⃗⃗⃗ =BO⃗⃗⃗⃗⃗图,∵AO ⃗⃗⃗⃗⃗ 与OC⃗⃗⃗⃗⃗ 方向相同,长度相等,∴选项A 正确; ∵BO ⃗⃗⃗⃗⃗ 与DB ⃗⃗⃗⃗⃗⃗ 的方向相反, ∴BO ⃗⃗⃗⃗⃗ ∥DB ⃗⃗⃗⃗⃗⃗ ,选项B 正确; ∵AB ∥CD ,∴AB⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线, ∴选项C 正确; ∵AO ⃗⃗⃗⃗⃗ 与BO ⃗⃗⃗⃗⃗ 方向不同,∴AO ⃗⃗⃗⃗⃗ ≠BO⃗⃗⃗⃗⃗ ,∴选项D 错误. 7.如图,四边形ABCD ,CEFG ,CGHD 都是全等的菱形,HE 与CG 相交于点M ,则下列关系不一定成立的是( )A.|AB ⃗⃗⃗⃗⃗ |=|EF ⃗⃗⃗⃗⃗ |B.AB ⃗⃗⃗⃗⃗ 与FH ⃗⃗⃗⃗⃗ 共线C.BD ⃗⃗⃗⃗⃗⃗ 与EH ⃗⃗⃗⃗⃗⃗ 共线D.DC ⃗⃗⃗⃗⃗ 与EC⃗⃗⃗⃗⃗ 共线,直线BD 与EH 不一定平行,因此BD ⃗⃗⃗⃗⃗⃗ 不一定与EH ⃗⃗⃗⃗⃗⃗ 共线,C 项错误. 8.如图所示,4×3的矩形(每个小方格的边长均为1),在起点和终点都在小方格的顶点处的向量中,试问: (1)与AB⃗⃗⃗⃗⃗ 相等的向量共有几个? (2)与AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有几个? (3)与AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有几个?与向量AB⃗⃗⃗⃗⃗ 相等的向量共有5个(不包括AB ⃗⃗⃗⃗⃗ 本身). (2)与向量AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有24个. (3)与向量AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有2个. 关键能力提升练9.已知a 为单位向量,下列说法正确的是( ) A.a 的长度为一个单位长度 B.a 与0不平行C.与a 共线的单位向量只有一个(不包括a 本身)D.a 与0不是平行向量已知a 为单位向量,∴a 的长度为一个单位长度,故A 正确;a 与0平行,故B 错误;与a 共线的单位向量有无数个,故C 错误;零向量与任何向量都是平行向量,故D 错误. 10.(多选题)如图,在菱形ABCD 中,∠DAB=120°,则以下说法正确的是( )A.与AB⃗⃗⃗⃗⃗ 相等的向量只有一个(不包括AB ⃗⃗⃗⃗⃗ 本身) B.与AB⃗⃗⃗⃗⃗ 的模相等的向量有9个(不包括AB ⃗⃗⃗⃗⃗ 本身) C.BD ⃗⃗⃗⃗⃗⃗ 的模为DA ⃗⃗⃗⃗⃗ 模的√3倍 D.CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 不共线项,由相等向量的定义知,与AB⃗⃗⃗⃗⃗ 相等的向量只有DC ⃗⃗⃗⃗⃗ ,故A 正确;B 项,因为AB=BC=CD=DA=AC ,所以与AB ⃗⃗⃗⃗⃗ 的模相等的向量除AB ⃗⃗⃗⃗⃗ 外有9个,故B 正确;C 项,在Rt △ADO 中,∠DAO=60°,则DO=√32DA ,所以BD=√3DA ,故C 正确;D 项,因为四边形ABCD 是菱形,所以CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 共线,故D 错误.11.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是 .(填序号)a =b ,则a 与b 大小相等且方向相同,所以a ∥b ;若|a |=|b |,则a 与b 的大小相等,而方向不确定,因此不一定有a ∥b ;方向相同或相反的向量都是平行向量,因此若a 与b 方向相反,则有a ∥b ;零向量与任意向量平行,所以若|a |=0或|b |=0,则a ∥b .12.如图,四边形ABCD 和ABDE 都是边长为1的菱形,已知下列说法: ①AE ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ 都是单位向量; ②AB ⃗⃗⃗⃗⃗ ∥DE ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ ∥DC ⃗⃗⃗⃗⃗ ; ③与AB⃗⃗⃗⃗⃗ 相等的向量有3个(不包括AB ⃗⃗⃗⃗⃗ 本身); ④与AE ⃗⃗⃗⃗⃗ 共线的向量有3个(不包括AE⃗⃗⃗⃗⃗ 本身); ⑤与向量DC⃗⃗⃗⃗⃗ 大小相等、方向相反的向量为DE ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ . 其中正确的是 .(填序号)由两菱形的边长都为1,故①正确;②正确;③与AB ⃗⃗⃗⃗⃗ 相等的向量是ED ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,故③错误;④与AE ⃗⃗⃗⃗⃗ 共线的向量是EA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,DB⃗⃗⃗⃗⃗⃗ ,故④正确;⑤正确.13.已知在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,tan D=√3,判断四边形ABCD 的形状.在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ , ∴AB DC ,∴四边形ABCD 是平行四边形. ∵tan D=√3,∴∠B=∠D=60°.又|AB⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,∴△ABC 是等边三角形. ∴AB=BC ,故四边形ABCD 是菱形.学科素养创新练14.如图所示的方格纸由若干个边长为1的小正方形组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC⃗⃗⃗⃗⃗ |=√5.(1)画出所有的向量AC⃗⃗⃗⃗⃗ ;⃗⃗⃗⃗⃗ |的最大值与最小值.(2)求|BC⃗⃗⃗⃗⃗ 如图所示.(2)由(1)所画的图知,⃗⃗⃗⃗⃗ |取得最小值√12+22=√5;①当点C位于点C1或C2时,|BC⃗⃗⃗⃗⃗ |取得最大值√42+52=√41.②当点C位于点C5或C6时,|BC⃗⃗⃗⃗⃗ |的最大值为√41,最小值为√5.∴|BC。
平面向量知识点+例题+练习+答案
五、平面向量1.向量的概念①向量 既有大小又有方向的量。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
高一数学平面向量的概念及几何运算试题答案及解析
高一数学平面向量的概念及几何运算试题答案及解析1.设是两个单位向量,则下列结论中正确的是()A.B.C.D.【答案】D【解析】根据单位向量的定义:把模为1的向量称为单位向量,依题可知,而这两个向量的方向并没有明确,所以这两个单位向量可能共线,也可能不共线,所以A、B、C错误,D正确.【考点】平面向量的基本概念.2.已知均为单位向量,它们的夹角为,那么()A.B.C.D.4【答案】C【解析】因为且,所以,所以,因此,选C.【考点】1.平面向量的模;2.平面向量的数量积.3.给出下列命题:(1)两个具有公共终点的向量,一定是共线向量。
(2)两个向量不能比较大小,但它们的模能比较大小。
(3)a=0(为实数),则必为零。
(4),为实数,若a=b,则a与b共线。
其中错误的命题的个数为A.1B.2C.3D.4【答案】C【解析】对于(1)两个具有公共终点的向量,一定是共线向量,不一定,方向不确定。
错误(2)两个向量不能比较大小,但它们的模能比较大小。
成立。
(3)a=0(为实数),则必为零。
可能不是零,错误。
(4),为实数,若a=b,则a与b共线,当其中一个b为零向量时不成立,故错误,选C.【考点】向量的概念点评:主要是考查了共线向量以及向量的概念的运用,属于基础题。
4.以下说法错误的是()A.零向量与任一非零向量平行B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量【答案】C【解析】平行向量的方向相同或相反,所以,说法错误的是“平行向量方向相同”,选C。
【考点】本题主要考查向量的基础知识。
点评:简单题,确定说法错误的选项,应将各选项逐一考察。
5. P是所在平面内一点,,则P点一定在()A.内部B.在直线AC上C.在直线AB上D.在直线BC上【答案】B【解析】∵,∴,∴点P在直线AC上,故选B【考点】本题考查了向量的运算及共线基本定理点评:熟练掌握向量的概念及向量的运算是求解此类问题的关键,属基础题6.下列命题正确的是A.若·=·,则=B.若,则·="0"C.若//,//,则//D.若与是单位向量,则·=1【答案】B【解析】解:因为选项A中不能约分,选项B中,两边平方可知成立,选项C中,当为零向量时不成立,选项D中,夹角不定,因此数量积结果不定,选B7.定义平面向量之间的一种运算“”如下:对任意的向量,令,给出下面四个判断:①若与共线,则;②若与垂直,则;③;④.其中正确的有(写出所有正确的序号).【答案】①④【解析】①若,则,即,正确.②由①知错.③错.④,正确.8.下面给出四种说法,其中正确的个数是( )①对于实数m和向量a、b,恒有m(a-b)=ma-mb;②对于实数m、n和向量a,恒有(m-n)a=ma-na;③若ma=mb(m∈R),则a=b;④若ma=na(a≠0),则m=n.A.1B.2C.3D.4【答案】C【解析】解:因为①对于实数m和向量a、b,恒有m(a-b)=ma-mb;成立②对于实数m、n和向量a,恒有(m-n)a=ma-na;成立③若ma=mb(m∈R),则a=b;不一定④若ma=na(a≠0),则m=n.,成立9.下列命题:(1)若向量,则与的长度相等且方向相同或相反;(2)对于任意非零向量若且与的方向相同,则;(3)非零向量与满足,则向量与方向相同或相反;(4)向量与是共线向量,则四点共线;(5)若,且,则正确的个数:()A.0B.1C.2D.3【答案】C【解析】解:因为(1)若向量,则与的长度相等且方向相同或相反;不成立(2)对于任意非零向量若且与的方向相同,则;满足定义(3)非零向量与满足,则向量与方向相同或相反;成立(4)向量与是共线向量,则四点共线;可能构成能四边形,错误(5)若,且,则,当为零向量时,不成立。
高中数学必修二 6 1 平面向量的概念(精练)(含答案)
6.1 平面向量的概念(精练)【题组一向量与数量的区别】1.(2021·江苏·泰兴市第三高级中学高一月考)给出下列量:①角度;①温度;①海拔;①弹力;①风速;①加速度.其中是向量的有( )A.2个B.2个C.4个D.5个【答案】B【解析】根据题意,在①角度、①温度、①海拔、①弹力、①风速、①加速度中,是向量的有①弹力、①风速、①加速度,有3个,故选:B.2.(2021·浙江·高一课时练习)下列各量中是向量的是( )A.时间B.速度C.面积D.长度【答案】B【解析】既有大小,又有方向的量叫做向量;时间、面积、长度只有大小没有方向,因此不是向量.而速度既有大小,又有方向,因此速度是向量.故选:B.3.(2021·全国·高一课时练习)给出下列物理量:①密度;①路程;①速度;①质量;①功;①位移.下列说法正确的是A.①①①是数量,①①①是向量B.①①①是数量,①①①是向量C.①①是数量,①①①①是向量D.①①①①是数量,①①是向量【答案】D【解析】由物理知识可知,密度,路程,质量,功只有大小,没有方向,因此是数量而速度,位移既有大小又有方向,因此是向量.故选:D4.(2021·上海·高一课时练习)下列各量中,哪些是向量(即矢量),哪些是数量(即标量)?(1)密度(2)体积(3)电阻(4)推进力(5)长度(6)加速度向量:__________;数量:____________.(填写相应编号).【答案】(4)(6) (1)(2)(3)(5)【解析】密度、体积、电阻、长度都是只有大小没有方向的量,是数量;推进力、加速度是既有大小又有方向的量,是向量.故答案为:(4)(6);(1)(2)(3)(5).【题组二 向量的几何表示】1.(2021·全国·高一课时练习)一位模型赛车手遥控一辆赛车沿正东方向行进1米,逆时针方向转变α度,继续按直线向前行进1米,再逆时针方向转变α度,按直线向前行进1米,按此方法继续操作下去.(1)按1①100比例作图说明当α=45°时,操作几次时赛车的位移为零;(2)按此法操作使赛车能回到出发点,α应满足什么条件?【答案】见解析.【解析】(1)如图所示,操作8次后,赛车的位移为零;(2)要使赛车能回到出发点,只需赛车的位移为零.按(1)的方式作图,则所作图形是内角为180α︒-的正多边形,由多边形的内角和定理可得(180)(2)180n n α︒-=-⋅︒, 解得360nα︒=,且3,*n n N ≥∈.故α应满足的条件为360nα︒=,且3,*n n N≥∈.2.(2021·全国·高一课时练习)如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B.点C为小正方形的顶点,且5AC=.(1)画出所有的向量AC;(2)求BC的最大值与最小值.【答案】(1)见解析;(2)【解析】(1)画出所有的向量AC,如图所示:(2)由(1)所画的图知,①当点C位于点C1或C2时,|BC|①当点C位于点C5或C6时,|BC|所以|BC|3(2021·全国·高一课时练习)在如图的方格纸(每个小方格的边长为1)上,已知向量a.(1)试以B为起点画一个向量b,使=b a;(2)画一个以C为起点的向量c,使|c|=2,并说出c的终点的轨迹是什么.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)根据相等向量的定义,所作向量b应与a同向,且长度相等,如下图所示.(2)由平面几何知识可作满足条件的向量c,所有这样的向量c的终点的轨迹是以点C为圆心,2为半径的圆,如下图所示.4.(2021·江苏·高一课时练习)在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为起点画一个向量b,使b a=;c=,并说出向量c的终点的轨迹是什么?(2)在图中画一个以A为起点的向量c,使5【答案】(1)作图见解析;(2)向量c的终点的轨迹是以A.【解析】(1)由题意,B为起点画一个向量b,使b a=,如图所示.c=,则向量c的终点表示以A(2)因为5【题组三向量相关概念的辨析】1.(2021·湖南·武广实验高级中学高一期末)下列四个命题正确的是( )A.两个单位向量一定相等B.若a与b不共线,则a与b都是非零向量C.共线的单位向量必相等D.两个相等的向量起点、方向、长度必须都相同【答案】B【解析】两个单位向量一定相等错误,可能方向不同;若a与b不共线,则a与b都是非零向量正确,原因是零向量与任意向量共线;共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移.故选:B.2.(2021·全国·高一课时练习)下列关于向量的描述正确的是A .若向量a ,b 都是单位向量,则a b =B .若向量a ,b 都是单位向量,则1a b ⋅=C .任何非零向量都有唯一的与之共线的单位向量D .平面内起点相同的所有单位向量的终点共圆【答案】D【解析】对于选项A :向量包括长度和方向,单位向量的长度相同均为1,方向不定,故向量a 和b 不一定相同,故选项A 错误;对于选项B :因为cos cos a b a b θθ⋅=⋅⋅=,由[]cos 1,1θ∈-知,1a b ⋅=不一定成立,故选项B 错误; 对于选项C :任意一个非零向量有两个与之共线的单位向量,故选项C 错误;对于选项D :因为所有单位向量的模为1,且共起点,所以所有单位向量的终点在半径为1的圆周上,故选项D 正确;故选:D.3.(2021·广西·田东中学)下列命题中,正确的个数是( ) ①单位向量都相等;①模相等的两个平行向量是相等向量;①若a →,b →满足a b →→>且a →与b →同向,则a b →→>; ①若两个向量相等,则它们的起点和终点分别重合;①若a →①,b b →→①c →,则b →①c →.A .0个B .1个C .2个D .3个 【答案】A【解析】对于①,单位向量的模长相等,但方向不一定相同,故①错误;对于①,模相等的两个平行向量是相等向量或相反向量,故①错误;对于①,向量是有方向的量,不能比较大小,故①错误;对于①,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故①错误;对于①,0b →→=时,若a b b c →→→→∥,∥,则a →与c →不一定平行.综上,以上正确的命题个数是0.故选:A.4.(2021·全国·高一课时练习)下列说法中,正确的个数是( )①时间、摩擦力、重力都是向量;①向量的模是一个正实数;①相等向量一定是平行向量;①向量a→与b→不共线,则a→与b→都是非零向量( )A.1B.2C.3D.4【答案】B【解析】①时间没有方向,不是向量,摩擦力,重力都是向量,故①错误;①零向量的模为零,故①错;①相等向量的方向相同,模相等,所以一定是平行向量,故①正确;①零向量与任意向量都共线,因此若向量a→与b→不共线,则a→与b→都是非零向量,即①正确.故选:B.5.(2021·全国·高一课时练习)下列命题中正确的个数是①向量就是有向线段①零向量是没有方向的向量①零向量的方向是任意的①任何向量的模都是正实数A.0B.1C.2D.3【答案】B【解析】有向线段只是向量的一种表示形式,但不能把两者等同起来,故①错;零向量有方向,其方向是任意的,故①错,①正确;零向量的模等于0,故①错.故选:B.6.(2021·江苏·高一)下列各说法:①有向线段就是向量,向量就是有向线段;①向量的大小与方向有关;①任意两个零向量方向相同;①模相等的两个平行向量是相等向量.其中正确的有A.0个B.1个C.2个D.3个【答案】A【解析】有向线段是向量的几何表示,二者并不相同,故①错误;①向量不能比较大小,故①错误;①由零向量方向的任意性知①错误;①向量相等是向量模相等,且方向相同,故①错误.故选:A.7.(2021·全国·高一课时练习)下列说法中,正确的是( )①长度为0的向量都是零向量;①零向量的方向都是相同的;①单位向量都是同方向;①任意向量与零向量都共线.A.①①B.①①C.①①D.①①【答案】D【解析】①长度为0的向量都是零向量,正确;①零向量的方向任意,故错误;①单位向量只是模长都为1的向量,方向不一定相同,故错误;①任意向量与零向量都共线,正确;故选:D8.(2021·全国·高一课时练习)下列命题中正确的个数有( )①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;①单位向量都相等;①任一向量与它的相反向量不相等;①共线的向量,若起点不同,则终点一定不同.A.0B.1C.2D.3【答案】AAB CD,或A,B,C,D在同条直线上,故①错误;【解析】对于①,若向向量AB与CD是共线向量,则//对于①,因为单位向量的模相等,但是它们的方向不一定相同,所以单位向量不一定相等,故①错误;对于①,相等向量的定义是方向相同模相等的向量为相等向量,而零向量的相反向量是零向量,因为零向量的方向是不确定的,可以是任意方向,所以相等,故①错误;对于①,比如共线的向量AC与BC(A,B,C在一条直线上)起点不同,则终点相同,故①错误.故选:A.【题组四相等向量与平行向量】1.(2021·全国·高一课时练习)下图中与向量a相等的向量是( )A.b,c,e,f B.c,f C.f D.c【答案】D【解析】由相等向量的定义可知:两个向量的长度要相等,方向要相同,结合图形可知c满足条件,故选:D2.(2021·全国·高一课时练习)如图,点O是正六边形ABCDEF的中心,图中与CA共线的向量有( )A.1个B.2个C.3个D.4个【答案】C【解析】由图可知,根据正六边形的性质,与CA共线的有AC,DF,FD,共3个,故选:C.3.(2021·全国·高一课时练习)如图,四边形ABCD和ABDE都是边长为1的菱形,已知下列说法:①AE AB AD CD CB DE,,,,,都是单位向量;①AB①DE DE,①DC①与AB相等的向量有3个;①与AE共线的向量有3个;①与向量DC大小相等、方向相反的向量为DE CD BA,,.其中正确的是____.(填序号)【答案】①①①①【解析】①由两菱形的边长都为1,故①正确;①正确;①与AB 相等的向量是ED DC ,,故①错误;①与AE 共线的向量是EA BD DB ,,,故①正确;①正确.故答案为:①①①①4.(2021·上海·高一课时练习)如图,在长方体1111ABCD A B C D -中,3AB =,2AD =,11AA =,以长方体的八个顶点中两点为起点和终点的向量中.(1)单位向量共有______个;(2)______;(3)与AB 相等的向量有______;(4)1AA 的相反向量有______.【答案】8 1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB 11A B 、DC 、11DC 1A A 、1B B 、1C C 、1D D【解析】(1)由图可知,11111AA BB CC DD ====,所以单位向量有428⨯=个;(2)由图可知,1111A D AD BC BC ====1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;(3)由图可知,1111AB DC A B D C ===,所以与AB 相等的向量有:11A B 、DC 、11DC ;(4)由图可知,11111AA BB CC DD ====,所以1AA 的相反向量有:1A A 、1B B 、1C C 、1D D ; 故答案为:8;1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;11A B 、DC 、11DC ;1A A 、1B B 、1C C 、1D D .5.(2021·全国·高一课时练习)O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在如图所示的向量中:(1)分别找出与AO ,BO 相等的向量;(2)找出与AO 共线的向量;(3)找出与AO 模相等的向量;(4)向量AO 与CO 是否相等?【答案】(1)AO BF =,BO AE =;(2)BF ,CO ,DE ;(3)CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)不相等.【解析】因为O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形, 所以OA AE OD DE OC CF BF BO =======,AB CD BC AD ===;(1)由题中图形可得:AO BF =,BO AE =;(2)由图形可得,与AO 共线的向量有:BF ,CO ,DE ;(3)与AO 模相等的向量有:CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)向量AO 与CO 不相等,因为它们的方向不相同.6.(2021·全国·高一课时练习)如图所示,O 是正六边形ABCDEF 的中心,且OA =a ,OB =b ,OC =c .(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c .相等的向量.【答案】(1)OD ,BC ,AO ,FE .(2)EF ,BC ,OD ,FE ,CB ,DO ,AO ,DA ,AD .(3)与a 相等的向量有EF ,DO ,CB ;与b 相等的向量有DC ,EO ,FA ;与c 相等的向量有FO ,ED ,AB .【解析】(1)因为正六边形中各线段长度都相等,且方向相反的有:OD,BC,AO,FE.(2)由共线向量定理得:EF,BC,OD,FE,CB,DO,AO,DA,AD.与a共线.(3)由相等向量的定义得:与a相等的向量有EF,DO,CB;与b相等的向量有DC,EO,FA;与c 相等的向量有FO,ED,AB.。
高一数学(必修二)平面向量的概念及其应用练习题及答案
高一数学(必修二)平面向量的概念及其应用练习题及答案一、单选题1.下列说法错误的是( ) A .向量CD 与向量DC 长度相等 B .单位向量都相等C .0的长度为0,且方向是任意的D .任一非零向量都可以平行移动2.设e 是单位向量,3AB e =,3CD e =-,3AD =,则四边形ABCD 是( ) A .梯形B .菱形C .矩形D .正方形3.已知向量,a b 满足2π1,2,,3a b a b ===,则()a ab ⋅+=( ) A .2-B .1-C .0D .24.已知向量a ,b 满足1a b ==,23a b +=,则向量a ,b 的夹角为( )A .30B .60C .120D .1505.如图,D 是AB 上靠近B 的四等分点,E 是AC 上靠近A 的四等分点,F 是DE 的中点,设AB a =,AC b =,则AF =( )A .344a b - B .344a b + C .388a b + D .388a b - 6.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥()a b +”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知45A =︒,2a =,2b =B 的大小为( ) A .30︒ B .60︒ C .30︒或150︒D .60︒或120︒8.已知平面四边形ABCD 满足13AD BC =,平面内点E 满足52BE CE =,CD 与AE 交于点M ,若BM x AB y AD =+,则yx等于( ) A .52B .52-C .43D .43-二、多选题9.下列说法正确的是( )A .a 与b 是非零向量,则a 与b 同向是a b =的必要不充分条件B .,,A BC 是互不重合的三点,若AB 与BC 共线,则,,A B C 三点在同一条直线上 C .a 与b 是非零向量,若a 与b 同向,则a 与b -反向D .设,λμ为实数,若a b λμ=,则a 与b 共线10.在ABC 中,已知π32A C ==,3CD DB =,则( ) A .+AB AC BC = B .2AC AD = C .13+44AD AB AC =D .AD BC ⊥11.已知向量()()()1,3,2,,a b y a b a ==+⊥,则( ) A .()2,3b =- B .向量,a b 的夹角为3π4C .172a b +=D .a 在b 方向上的投影向量是1,212.在ABC 中,内角,,A B C 的对边分别为,,a b c ,下列说法中正确的是( ) A .“ABC 为锐角三角形”是“sin cos A B >”的充分不必要条件 B .若sin 2sin 2A B =,则ABC 为等腰三角形 C .命题“若A B >,则sin sin A B >”是真命题D .若8a =,10c =,π3B =,则符合条件的ABC 有两个三、填空题13.P 在线段12PP 的反向延长线上(不包括端点),且12PP PP λ=,则实数λ的取值范围是___________.14.已知四边形ABCD 是边长为2的正方形,若3BC DE =,且F 为BC 的中点,则EA EF ⋅=______. 15.已知||1a =,()1,3b =,()b a a +⊥,则向量a 与向量b 的夹角为______.16.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b sin A =2c sin B ,cos B =14,b =3,则△ABC 的面积为________.四、解答题17.设1e ,2e 是两个不共线的向量,如果1232AB e e =-,124BC e e =+,1289CD e e =-. (1)求证:A ,B ,D 三点共线;(2)试确定λ的值,使122e e λ+和12e e λ+共线; (3)若12e e λ+与12e e λ+不共线,试求λ的取值范围.18.化简:(1)()()532423a b b a -+-; (2)()()()111232342a b a b a b -----;(3)()()x y a x y a +--.19.已知4a =,2b =,且a 与b 夹角为120°,求: (1)2a b -;(2)a 与a b +的夹角;(3)若向量2a b λ-与3a b λ-平行,求实数λ的值.20.如图,在菱形ABCD 中,1,22CF CD CE EB ==.(1)若EF xAB y AD =+,求23x y +的值; (2)若6,60AB BAD ∠==,求AC EF ⋅.21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭.(1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.22.已知:a 、b 是同一平面内的两个向量,其中()1,2a =. (1)若5||2b =且a b +与b 垂直,求a 与b 的夹角θ ; (2)若()1,1b =且a 与a b λ+的夹角为锐角,求实数λ的取值范围.参考答案1.B 2.B 3.C 4.C 5.C 6.A 7.A 8.B 9.ABC 10.ABD 11.BD 12.AC 13.()1,0- 14.409 15.2π31691517.(1)证明:因为()121212124891284324BD BC CD e e e e e e e e AB=+=++-=-=-=,所以AB 与BD 共线.因为AB 与BD 有公共点B , 所以A ,B ,D 三点共线.(2)因为122e e λ+与12e e λ+共线, 所以存在实数μ,使()12122e e e e λλμ=++. 因为1e ,2e 不共线,所以2,1,λμλμ=⎧⎨=⎩所以22λ=±. (3)假设12e e λ+与12e e λ+共线,则存在实数m ,使()1212e e m e e λλ+=+.因为1e ,2e 不共线,所以1,,m m λλ=⎧⎨=⎩所以1λ=±.因为12e e λ+与12e e λ+不共线, 所以1λ≠±.18.(1)()()()()532423*********a b b a a a b b a b -+-=-+-+=-. (2)()()()111131211232342342322a b a b a b a a a b b b ⎛⎫⎛⎫-----=--+-++ ⎪ ⎪⎝⎭⎝⎭ 111123a b =-+.(3)()()()()2x y a x y a xa xa ya ya ya +--=-++=. 19.(1)解:因为()2224246844164a b a a b b -⋅+=-=++=,所以2221a b -=(2)因为()2222168412a b a a b b +=+⋅+=-+=,所以23a b +=,又()216412a b a a a b ⋅=+=-+⋅=, 所以()123cos ,43a ab a a b a a b⋅+<+>===⨯+ 所以a 与a b +的夹角为6π.(3)因为向量2a b λ-与3a b λ-平行, 所以()233a b k a b k a kb λλλ-=-=-, 因为向量a 与b 不共线,所以23k kλλ=⎧⎨=⎩,解得6λ=±20.(1)因为1122CF CD AB ==-,2CE EB =所以2233EC BC AD ==,所以21213232EF EC CF BC CD AD AB =+=+=-, 所以12,23x y =-=, 故231x y +=.(2)AC AB AD =+,()221211223263AC EF AB AD AB AD AB AB AD AD ⎛⎫∴⋅=+⋅-+=-+⋅+ ⎪⎝⎭,ABCD 为菱形,||||6,60AD AB BAD ∠∴===,所以66cos6018AB AD ⋅=⨯⨯=,2211261869263AC EF ∴⋅=-⨯+⨯+⨯=.21.(1)πππππ2sin cos cos cos 3636A A A A ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+=--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2πcos 21π13cos 624A A ⎛⎫++ ⎪⎛⎫⎝⎭=+== ⎪⎝⎭,∴π31cos 22A ⎛⎫+=- ⎪⎝⎭,因为0πA <<,得ππ7π2333A <+<,所以π2π233A +=或4323ππA +=,解得π6A =或π2A =,因为a c <,得π2A <,∴π6A =. (2)由(1)知,6A π=,sin sin 43sin a A c C B +=,由正弦定理,得22312a c b +==,由余弦定理,得2222cos a b c bc A =+-⋅,即22312323c c c -=+-, 整理,得22390c c --=,由0c >得3c =, 所以11133sin 33222ABC S bc A ==⨯=△ 22.(1)解:由()a b b +⊥得()0a b b +⋅=,即2+0a b b ⋅= ,所以254a b b ⋅=-=-,得514cos 2552a b a bθ-⋅===-⋅⨯,又[]0,πθ∈,所以2π3θ=; (2)解:因为()1,2a =,()1,1b =,所以()()()1,21,11,2a b λλλλ+=+=++ 所以()0a a b λ⋅+>,则512403λλλ+++>⇒>-, 由//a a b λ+得0λ=,由与a 与a b λ+的夹角为锐角,所以5,0(0,)3λ⎛⎫∈-+∞ ⎪⎝⎭。
(完整版)平面向量练习题集答案(可编辑修改word版)
a •aa •a平面向量练习题集答案典例精析题型一向量的有关概念【例1】下列命题:①向量AB 的长度与BA 的长度相等;②向量a 与向量b 平行,则 a 与 b 的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB 与向量CD 是共线向量,则A、B、C、D 必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB 与CD 是共线向量,则A、B、C、D 可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:①|a|=;②(a •b) •c=a •(b •c);③OA -OB =BA ;④在任意四边形ABCD 中,M 为AD 的中点,N 为BC 的中点,则AB +DC =2 MN ;⑤a=(cos α,sin α),b=(cos β,sin β),且a 与 b 不共线,则(a+b)⊥(a-b).其中正确的个数为( )A.1B.2C.3D.4【解析】选D.| a|=正确;(a •b) •c≠a •(b •c);OA -OB =BA 正确;如下图所示,MN = MD + DC + CN 且MN = MA + AB + BN ,两式相加可得2 MN =AB +DC ,即命题④正确;因为a,b 不共线,且|a|=|b|=1,所以a+b,a-b 为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二与向量线性运算有关的问题【例2】如图,ABCD 是平行四边形,AC、BD 交于点O,点M 在线段DO上,且 DM = 1 DO ,点 N 在线段 OC 上,且ON = 1OC ,设 AB =a , AD =b ,试用 a 、b 表示 AM , AN ,33MN .【解析】在▱ABCD 中,AC ,BD 交于点 O ,1 1 1所以 DO = DB = ( AB - AD )= (a -b ),2 2 2 AO = OC =1 AC =1( AB + AD )=1+b ).(a2 2 2 1 1又 DM = DO , ON = OC ,3 31所以 AM = AD + DM =b + DO31 1 1 5 =b + × (a -b )= a + b ,3 2 6 6AN = AO + ON = OC 1+ OC34 4 1 2 = OC = × (a +b )= (a +b ). 3 3 2 3所以 MN = AN - AM 2 1 5 1 1 = (a +b )-( a + b )= a - b . 3 6 6 2 6【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.【变式训练 2】O 是平面 α 上一点,A 、B 、C 是平面 α 上不共线的三点,平面 α 内的动点 P 满足OP =1OA +λ( AB + AC ),若 λ= 时,则 PA • ( PB + PC )的值为 .2【解析】由已知得OP - OA =λ( AB + AC ),1 1即 AP =λ( AB + AC ),当 λ= 时,得 AP = ( AB + AC ),2 2所以 2 AP = AB + AC ,即 AP - AB = AC - AP , 所以 = ,所以 + = + =0,所以 PA • ( PB + PC )= PA • 0=0,故填 0. 题型三 向量共线问题【例 3】 设两个非零向量 a 与 b 不共线.(1) 若 AB =a +b , BC =2a +8b , CD =3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数 k ,使 k a +b 和 a +k b 共线.【解析】(1)证明:因为 AB =a +b , BC =2a +8b , CD =3(a -b ), 所以 BD = BC + CD =2a +8b +3(a -b )=5(a +b )=5 AB , 所以 , 共线.又因为它们有公共点 B , 所以 A ,B ,D 三点共线. (2)因为 k a +b 和 a +k b 共线, 所以存在实数 λ,使 k a +b =λ(a +k b ), 所以(k -λ)a =(λk -1)b .因为 a 与 b 是不共线的两个非零向量,所以 k -λ=λk -1=0,所以 k 2-1=0,所以 k =±1.【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练 3】已知 O 是正三角形 BAC 内部一点, OA +2 OB +3 OC =0,则△ OAC 的面积与△OAB 的面积之比是()3 A.2 2 B.3 1 C.2D.3【解析】如图,在三角形 ABC 中, OA +2 OB +3 OC =0,整理可得OA + OC +2( OB + OC )=0.1令三角形 ABC 中 AC 边的中点为 E ,BC 边的中点为 F ,则点 O 在点 F 与点 E 连线的 处,即 OE =2OF .31 h h 1设三角形 ABC 中 AB 边上的高为 h ,则 S △OAC =S △OAE +S △OEC = • OE • ( + )= OE ·h ,2 2 2 21 1 1S △OAB = AB • h = AB ·h ,2 2 42由于 AB =2EF ,OE = EF ,所以 AB =3OE ,3 1S △ OAC OE • h 2 所以 = 2 = .故选 B.S △ OAB 总结提高1 AB • h 341. 向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2. 判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3. 当向量 a 与 b 共线同向时,|a +b |=|a |+|b |;当向量 a 与 b 共线反向时,|a +b |=||a |-|b ||; 当向量 a 与 b 不共线时,|a +b |<|a|+|b |.典例精析题型一 平面向量基本定理的应用【例 1】如图▱ABCD 中,M ,N 分别是 DC ,BC 中点.已知 AM =a , AN =b ,试用 a ,b 表示 AB , AD 与 AC【解析】易知 AM = AD + DM1= AD + AB ,21AN = AB + BN = AB + AD ,2⎧AD + 1 AB = a , ⎪即⎨⎪AB + ⎩ 2 1AD = b . 2 2 2所以 AB = (2b -a ), AD = (2a -b ).3 32所以 AC = AB + AD = (a +b ).3【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知D 为△ABC 的边BC 上的中点,△ABC 所在平面内有一点P ,满足 PA + BP + CP =| PD |0,则1 等于( )1A.3B.2C.1D.2【解析】由于 D 为 BC 边上的中点,因此由向量加法的平行四边形法则,易知 PB + PC =2 PD ,因| PD |此结合 PA + BP + CP =0 即得 PA =2 PD ,因此易得 P ,A ,D 三点共线且 D 是 PA 的中点,所以即选 C.题型二 向量的坐标运算【例 2】 已知 a =(1,1),b =(x ,1),u =a +2b ,v =2a -b . (1)若 u =3v ,求 x ;(2)若 u ∥v ,求 x . 【解析】因为 a =(1,1),b =(x ,1),所以 u =(1,1)+2(x ,1)=(1,1)+(2x ,2)=(2x +1,3), v =2(1,1)-(x ,1)=(2-x ,1).=1,⎪3 3 3⎨(1)u =3v ⇔(2x +1,3)=3(2-x ,1) ⇔(2x +1,3)=(6-3x ,3), 所以 2x +1=6-3x ,解得 x =1. (2)u ∥v ⇔(2x +1,3)=λ(2-x ,1)⎧2x +1 = (2 - x ),⇔ ⎩3 =⇔(2x +1)-3(2-x )=0⇔x =1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视. n π n π【变式训练 2】已知向量 a n =(cos 7 ,sin 7 )(n ∈N *),|b|=1.则函数 y =|a 1+b|2+|a 2+b|2+|a 3+b|2+…+|a 141+b|2 的最大值为.π【解析】设 b =(cos θ,sin θ),所以 y =|a 1+b|2+|a2+b|2+|a 3+b|2+…+|a 141+b|2=(a 1)2+b 2+2(cos7,sin π 141π 141π π 7)(cos θ,sin θ)+… +(a 141)2+b 2+2(cos 7 ,sin 7 )(cos θ,sin θ)=282+2cos(7-θ),所以 y 的最大值为 284. 题型三 平行(共线)向量的坐标运算【例 3】已知△ABC 的角 A ,B ,C 所对的边分别是 a ,b ,c ,设向量 m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若 m ∥n ,求证:△ABC 为等腰三角形; π(2) 若 m ⊥p ,边长 c =2,角 C =3,求△ABC 的面积.【解析】(1)证明:因为 m ∥n ,所以 a sin A =b sin B . 由正弦定理,得 a 2=b 2,即 a =b .所以△ABC 为等腰三角形. (2)因为 m ⊥p ,所以 m ·p =0,即 a (b -2)+b (a -2)=0,所以 a +b =ab .由余弦定理,得 4=a 2+b 2-ab =(a +b )2-3ab , 所以(ab )2-3ab -4=0. 所以 ab =4 或 ab =-1(舍去). 1 1 3 所以 S △ABC = ab sin C = ×4× = 3.2 2 2 【点拨】设 m =(x 1,y 1),n =(x 2,y 2),则 ①m ∥n ⇔x 1y 2=x 2y 1;②m ⊥n ⇔x 1x 2+y 1y 2=0.【变式训练 3】已知 a ,b ,c 分别为△ABC 的三个内角 A ,B ,C 的对边,向量 m =(2cos C -1,-2),n =(cos C ,cos C +1).若 m ⊥n ,且 a +b =10,则△ABC 周长的最小值为()A.10-5B.10+5C.10-2D.10+2 1 【解析】由 m ⊥n 得 2cos 2C -3cos C -2=0,解得 cos C =- 或cos C =2(舍去),所以 c 2=a 2+b 2-2ab cos 2C =a 2+b 2+ab =(a +b )2-ab =100-ab ,由 10=a +b ≥2 ab ⇒ab ≤25,所以 c 2≥75,即 c ≥5 3,所以 a +b +312 4 ×2 3 c ≥10+5 3,当且仅当 a =b =5 时,等号成立.故选 B.典例精析题型一 利用平面向量数量积解决模、夹角问题 【例 1】 已知 a ,b 夹角为 120°,且|a |=4,|b |=2,求: (1)|a +b |;(2)(a +2b ) ·(a +b );(3) a 与(a +b )的夹角 θ.【解析】(1)(a +b )2=a 2+b 2+2a ·b 1 =16+4-2×4×2× =12,2 所以|a +b |=2 3.(2)(a +2b ) ·(a +b )=a 2+3a ·b +2b 2 1 =16-3×4×2× +2×4=12.21(3)a ·(a +b )=a 2+a ·b =16-4×2× =12.2 所以 cos θ= a • (a + b ) = = | a || a + b |3 ,所以 2 πθ=6.【点拨】利用向量数量积的定义、性质、运算律可以解决向量的模、夹角等问题.【变式训练 1】已知向量 a ,b ,c 满足:|a|=1,|b|=2,c =a +b ,且 c ⊥a ,则 a 与 b 的夹角大小是 .【解析】由 c ⊥a ⇒c ·a =0⇒a 2+a ·b =0, 1所以 cos θ=- ,所以 θ=120°.2题型二 利用数量积来解决垂直与平行的问题【例 2】 在△ABC 中, AB =(2,3), AC =(1,k ),且△ABC 的一个内角为直角,求 k 的值.【解析】①当∠A =90°时,有 AB · AC =0, 2 所以 2×1+3·k =0,所以 k =- ;3②当∠B =90°时,有 AB · BC =0,又 BC = AC - AB =(1-2,k -3)=(-1,k -3), 11 所以 2×(-1)+3×(k -3)=0⇒k = 3 ;③当∠C =90°时,有 AC · BC =0, 所以-1+k ·(k -3)=0, 所以 k 2-3k -1=0⇒k =3 ±213.2 113 ±13所以k 的取值为-,或.3 3 2【点拨】因为哪个角是直角尚未确定,故必须分类讨论.在三角形中计算两向量的数量积,应注意方向及两向量的夹角.【变式训练2】△ABC 中,AB=4,BC=5,AC=6,求AB ·BC +BC ·CA +CA ·AB .【解析】因为2 AB ·BC +2 BC ·CA +2 CA ·AB=( AB ·BC +CA ·AB )+( CA ·AB +BC ·CA )+( BC ·CA +BC ·AB )( AB +BC )+BC ·( CA +AB )( BC +CA )+CA ·=AB ·C B=AB ·BA +C A ·AC +BC ·=-42-62-52=-77.77所以AB ·BC +BC ·CA +CA ·AB =-.2题型三平面向量的数量积的综合问题π,构成一个平面斜坐标系,e1,e2分别是与Ox,Oy 同向【例3】数轴Ox,Oy 交于点O,且∠xOy=3的单位向量,设P 为坐标平面内一点,且OP =x e1+y e2,则点P 的坐标为(x,y),已知Q(-1,2). (1)求| OQ |的值及OQ 与Ox 的夹角;(2)过点Q 的直线l⊥OQ,求l 的直线方程(在斜坐标系中).1e2=,【解析】(1)依题意知,e1·2且OQ =-e1+2e2,所以OQ 2=(-e1+2e2)2=1+4-4e1·e2=3.所以| OQ |=3.e1=-e21+2e1•e2=0.又OQ ·e1=(-e1+2e2) ·所以OQ ⊥e1,即OQ 与Ox 成90°角.(2)设l 上动点P(x,y),即OP =x e1+y e2,又OQ ⊥l,故OQ ⊥ QP ,(-e1+2e2)=0.即[(x+1)e1+(y-2)e2] ·1所以-(x+1)+(x+1)-(y-2) ·+2(y-2)=0,2所以y=2,即为所求直线l 的方程.【点拨】综合利用向量线性运算与数量积的运算,并且与不等式、函数、方程、三角函数、数列、解析几何等相交汇,体现以能力立意的命题原则是近年来高考的命题趋势.k 2+a 2k 4 k 2+a 2k 4 k 2+a 2k 4 k 2+a 2k 4 k + k 2+a 2k 4 k + k 2+a 2k 4 【变式训练 3】在平面直角坐标系 xOy 中,点 A (5,0).对于某个正实数 k ,存在函数 f (x )=ax 2(a >0),使得OP =λ • (OAOQ+ | OQ |)(λ 为常数),其中点 P ,Q 的坐标分别为(1,f (1)),(k ,f (k )),则 k 的取值范围为()A.(2,+∞)B.(3,+∞)C.(4,+∞)D.(8,+∞)【解析】如图所示,设OA= OM ,| OA |OQ= ON , OM + ON = OG ,则OP =λ OG .因为 P (1,a ), | OQ | kak 2kak 2Q (k ,ak 2), OM =(1,0), ON =(, ), OG =( +1, ),则直线 OG 的ak 2 ak 2方程为 y = x ,又OP =λ OG ,所以 P (1,a )在直线 OG 上,所以 a = ,所以 a 2=1-2k . 因为| OP |=1+a 2>1,所以 1 2 0,所以 k >2. 故选 A.- > k。
平面向量练习题及答案
平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
高一数学平面向量的概念练习题(解析版)
练习11 平面向量的概念一、单选题1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A.4个B.5个C.6个D.7个【答案】A【解析】【分析】根据向量的定义即可判断;【详解】解:速度、位移、力、加速度4个物理量是向量,它们都有大小和方向.故选:A【点睛】本题考查向量的定义的理解,属于基础题.2.下列各说法:①有向线段就是向量,向量就是有向线段;②向量的大小与方向有关;③任意两个零向量方向相同;④模相等的两个平行向量是相等向量.其中正确的有( )A.0个B.1个C.2个D.3个【答案】A【分析】根据向量的基本概念分析即可.【详解】有向线段是向量的几何表示,二者并不相同,故①错误;②向量不能比较大小,故②错误;③由零向量方向的任意性知③错误;④向量相等是向量模相等,且方向相同,故④错误.故选:A.【点睛】本题主要考查了向量中的基本概念,属于基础题型.3.如图,在O中,向量,,OB OC AO是()A.有相同起点的向量B.共线向量C.模相等的向量D.相等向量【答案】C【分析】向量是既有大小又有方向的量,通过大小和方向两个方面逐一判断即可.【详解】解:,,OB OC AO起点并不全相同,故A错误;,,OB OC AO的方向均不相同,也不相反,故BD 错误;||||||OB OC AO===圆的半径,故C正确,故选C.【点睛】本题考查向量的概念,是基础题.4.下列说法正确的是( )A.有向线段AB与BA表示同一向量B.两条有公共终点的有向线段表示的向量是平行向量C.零向量与单位向量是平行向量D.对任一向量a,aa是一个单位向量【答案】C【分析】由平面向量的定义、平行向量及单位向量的可依次对选项判断.【详解】对于选项A,向量AB与BA方向相反,不是同一向量,故选项A错误;对于选项B ,有公共终点的有向线段的方向不一定相同或相反,故B 错误;对于选项C ,零向量与任意向量都是平行向量,故C 正确;对于选项D ,当0a =时,a a 无意义,故D 错误. 故选:C 【点睛】本题考查了平面向量的定义与平行向量的应用,属于基础题.二、多选题5.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC = C .AB DC >D .BC AD ∥【答案】BD【分析】 根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.6.下列说法正确的是( )A .长度相等的向量是相等向量B .若a b =,b c =,则a c =C.共线向量是在一条直线上的向量D.向量AB与CD共线是A,B,C,D四点共线的必要不充分条件【答案】BD【分析】根据向量的相关概念判断可得.【详解】解:相等向量不仅要求长度相等,还要求方向相同,故A说法错误;B说法显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故C说法错误;A,B,C,D四点共线⇒向量AB与CD共线,反之不成立,所以向量AB与CD共线是A,B,C,D四点共线的必要不充分条件,故D说法正确.故选:BD【点睛】本题考查向量的相关概念的理解,相等向量、共线向量,属于基础题.三、填空题7.下列结论正确的序号是_______.=;①若a,b都是单位向量,则a b②物理学中作用力与反作用力是一对共线向量;③方向为南偏西60°的向量与北偏东60°的向量是共线向量;④直角坐标平面上的x轴,y轴都是向量.【答案】②③【分析】根据题意,对题目中的命题进行分析、判断正误即可.【详解】解:对于①,a,b都是单位向量,则不一定有a b=,①错误;对于②,物理学中的作用力与反作用力大小相等,方向相反,是一对共线向量,②正确;对于③,如图所示,方向为南偏西60︒的向量与北偏东60︒的向量在一条直线上,是共线向量,③正确;对于④,直角坐标平面上的x 轴、y 轴只有方向,没有大小,不是向量,④错误;综上,正确的命题序号是②③.故答案为:②③.【点睛】本题通过命题真假的判断考查了平面向量的概念与应用问题,属于基础题.8.把同一平面内所有模不小于1,不大于2的向量的起点,移到同一点O ,则这些向量的终点构成的图形的面积等于__________.【答案】3π【解析】【分析】本题首先可以通过题意确定向量的终点构成的图形的形状,然后根据圆的面积公式即可得出结果.【详解】由题意可知,这些向量的终点构成的图形是一个圆环,圆环的小圆半径为1,圆环的大圆半径为2,所以圆环的面积为22213πππ⨯-⨯=,故答案为3π.【点睛】本题考查向量的定义的应用,考查圆的面积公式的使用,向量是有方向和大小的量,考查推理能力与运算能力,是简单题.四、解答题9.如图的方格由若干个边长为1的小正方形组成,方格中有定点A ,点C 为小正方形的顶点,且5AC =,画出所有的向量AC.【答案】见解析【分析】利用向量模长的几何意义,即可画出图形.【详解】AC ,∴C点落在以A为圆心,以5为半径的圆上,又∵点C为小正方形的顶点,∵||5根据该条件不难找出满足条件的点C,解析所有的向量AC,如图所示:【点睛】本题考查了向量模长的几何意义,轨迹问题,属于基础题.10.如图所示,平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集{}S A B C D O =,,,,,向量集合{|,,}T MN M N S M N =∈且,不重合,试求集合T 中元素的个数.【答案】12【分析】本题首先可根据题意明确集合T 中所包含的元素,然后根据平行四边形法则找出其中的相等向量,最后根据集合元素的互异性即可得出结果。
新课标数学必修4第2章平面向量同步练习(含答案)
第1课时 平面向量的实际背景及基础概念一、选择题1.下列各量中不是向量的是(A.浮力 B .风速 C.位移 D.2.下列命题正确的是(A.向量AB 与BA 是两平行向量B.若a 、b 都是单位向量,则a=bC.若=,则A 、B 、C 、D四点构成平行四D.3. 在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则(A. 与AC 共线B. 与CB 共线C. 与相等D. 与相等 4.在下列结论中,正确的结论为((1)|a |=|b |⇒a =b ; (2) a ∥b 且|a |=|b | ⇒ a =b ; (3) a =b ⇒a ∥b 且|a |=|b |(4) a ≠b ⇒ a 与b 方向相反 A. (3) B.(2)(3) C.(2)(4) D.(1)(3)(4) 二、填空题:5.物理学中的作用力和反作用力是模 且方向 的共线向量.6.把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是 .7.已知||=1,| AC |=2,若∠BAC=60°,则|BC |= .8.在四边形ABCD 中, =,且||=||,则四边形ABCD 是 .三、解答题:9. 某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北60°走了450m 到达C点,最后又改变方向,向东走了200m 到达D 点. (1)作出向量、、 (1 cm 表示200 m).(2)求的模.10.如图,已知四边形ABCD 是矩形,设点集M ={A ,B ,C ,D },求集合T ={、P 、Q ∈M ,且P 、Q 不重合}.第10题图A B一、选择题1.下列等式: a +0=a , b +a =a +b ,AB +AC =BC , AB +BC =BC 正确的个数是( ) A.2 B .3 C.4 D.52.化简++的结果等于( ) A. B . C. SPD.3.若C 是线段AB 的中点,则 AC +为A. B . C. 0D. 以上都错4.O 为平行四边形ABCD 平面上的点,设=a ,=b ,=c ,=d ,则( )A.a +b =c +d B .a +c =b +d C.a +d =b +c D.a +b +c +d =0 二、填空题:5.化简:(OM BO MB AB +++)= ; 6.如图,在四边形ABCD 中,根据图示填空:b +e = , f +d = ,a +b +c = .7.已知向量a 、b 分别表示“向北走5km ”和“向西走5公里”,则a +b 表示 ; 8、一艘船从A 点出发以23km/h 的速度向垂直于对岸的方向行驶,而船实际行驶速度的大小为4 km/h ,则河水的流速的大小为 . 三、解答题:9.一架飞机向北飞行300公里,然后改变方向向东飞行400公里,求飞机飞行的路程和位移.10.如图所示,O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a 、b 、c 、d 的方向(用箭头表示),使a +b =AB ,c -d =,并画出a +d.Dd e c A f Ca bBC一、选择题1.下列等式:①AB -= ②AB -= ③-(-a )=a ④a +(-a )=0 ⑤a +(-b )=a -b( )A.2 B .3 C.4D.52. 在△ABC 中, =a , =b ,则AB 等于( ) A.a +bB .-a +(-b ) C.a -bD.b -a3.在下列各题中,正确的命题个数为( )(1)若向量a 与b 方向相反,且|a |>|b |,则a +b 与a (2)若向量a 与b 方向相反,且|a |>|b |,则a -b 与a +b(3)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a (4)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a +b A.1 B.2 C.3 D.44.若a 、b 是非零向量,且|a -b |=|a |=|b ,则a 和a +b 的夹角是( ) A.090 B . 600 C.300 D.045二、填空题5. 在正六边形ABCDEF 中, AE =m , AD =n ,则BA = .6. 已知a 、b 是非零向量,则|a -b |=|a |+|b |时,应满足条件. 7. 如图,在四边形ABCD 中,根据图示填空: c -d = ,a +b +c -d= .8.已知=a , =b ,若||=12,||=5,且∠AOB =90°,则|a -b |= . 三、解答题9. 试用向量方法证明:对角线互相平分的四边形是平行四边形.10. 已知O 是平行四边形ABCD 的对角线AC 与BD 的交点,若=a , BC =b ,=c ,试证明:c +a -b =.Dd e c A fa b C B第4、5课时 向量的数乘运算及其几何意义一、选择题 1.设e 1、e2A.e 1、e2 B .e 1、e2C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .C.相等D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -yA.3B .-3C.0D.24. 下面向量a 、b 共线的有( )(1)a =2e 1,b =-2e 2 (2)a =e 1-e 2,b =-2e 1+2e2(3)a =4e 1-52e 2,b =e 1-101e 2 (4)a =e 1+e 2,b =2e 1-2e 2.(e 1、e 2不共线)A.(2)(3) B .(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)(4) 二、填空题5.若a 、b 不共线,且λa +μb =0(λ,μ∈R )则λ= ,μ= .6.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .7.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).8. 如图,在△ABC 中,=a, =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= 三、解答题:9. 如图,平行四边形ABCD 中,=a,=b,N 、M 是AD 、DC 之中点,F 使BF =31BC ,以a、b为基底分解向量与.DABCa bB FC MA N D10.如图,O 是三角形ABC 内一点,PQ ∥BC ,且BCPQ=t,=a,=b,=с,求OP 与.第6课时 平面向量基本定理一、选择题1.设e 1、e 2是同一平面内的两个向量,则有( ) A. e 1、e 2一定平行 B. e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .共线 C.相等 D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )A.3 B .-3 C.0 D.2 4.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 二、填空题5.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .6. 已知λ1>0,λ2>0,e 1、e 2是一组基底,且 a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).7. 已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .8. 已知矩形ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 三、解答题9. 已知梯形ABCD 中,AB ∥CD 且AB=2CD ,M , N 分别是DC , AB 中点,设AD =a , AB =b ,试以a, b 为基底表示DC , BC , MN .10. 化简++++.第7课时 平面向量的正交分解和坐标表示及运算一、选择题 1.设a =(23,sin α),b=(cosα,31),且a ∥b ,则锐角α为( ) A.30° B .60° C.45° D.75°2.设k ∈R,下列向量中,与向量a =(1,-1)一定不平行的向量是( )A.(k ,k ) B .(-k ,-k )C.(k 2+1,k2+1)D.(k2-1,k2-1)3.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-36 4.已知|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 二、填空题5.已知a =(3,2),b =(2,-1),若λa +b 与a +λb (λ∈R )平行,则λ= . 6.若a=(-1,x)与b=(-x ,2)共线且方向相同,则x= . 7.若A(0, 1), B(1, 2), C(3, 4) 则-2=8.在△ABC 中,AB =a, BC =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= .三、解答题9.若M(3, -2) N(-5, -1) 且 21=MP MN , 求P 点的坐标.10.在中,设对角线AC =a ,BD =b 试用a, b 表示AB ,BC .11.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD 是梯形.12.设1e , 2e 是两个不共线向量,已知=21e +k 2e , =1e +32e ,=21e -2e , 若三点A , B , D 共线,求k 的值.第8课时 平面向量共线的坐标表示一、选择题1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( ) A.6 B .5 C.7 D.82.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A.-3 B .-1 C.1 D.33.若=i +2j , =(3-x )i +(4-y )j (其中i 、j 的方向分别与x 、y 轴正方向相同且为单位向量). 与共线,则x 、y 的值可能分别为( )A.1,2 B .2,2 C.3,2 D.2,44.若a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则坐标满足的条件为( ) A.x 1x 2-y1y2=0 B .x1y1-x2y2=0 C.x1y2+x2y1=0 D.x1y2-x2y1=0 二、填空题5.已知a =(4,2),b =(6,y ),且a ∥b ,则y = .6已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .7.已知□ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 8.若A (-1,-1),B (1,3),C (x ,5)三点共线,则x = . 三、解答题9.已知a =(1,2),b =(-3,2),当k 为何值时k a +b 与a -3b 平行?10.已知A 、B 、C 、D 四点坐标分别为A (1,0),B (4,3),C (2,4),D (0,2),试证明:四边形ABCD 是梯形.11.已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),AE =AC 3131=, 求证:∥.12.△ABC 顶点A(1, 1), B(-2, 10), C(3, 7) ,∠BAC 平分线交BC 边于D , 求D 点坐标第9课时 平面向量的数量积的物理背景及其含义一、选择题1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 2.已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A.2 B .23材 C.6 D.123.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( )A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件4.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是( )A.λ>310 B .λ≥310 C.λ<310 D.λ≤310 二、填空题5.已知a =(3,0),b =(k ,5)且a 与b 的夹角为43π,则k 的值为 . 6.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= . 7.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = .8.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 三、解答题9.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.10.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角.11.对于两个非零向量a 、b ,求使|a +t b |最小时的t 值,并求此时b 与a +t b 的夹角.12.已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |.第10课时 平面向量数量积的运算律一、选择题1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 4.给定两个向量a =(3,4),b =(2,-1)且(a +x b )⊥(a -b ),则x 等于( ) A.23 B .223 C. 323 D. 423 二、填空题5.已知a =(1,2),b (1,1),c=b -k a ,若c ⊥a ,则c = .6.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 7.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 8.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 三、解答题5. 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°).6. 已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1.7. 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x .12.如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒, 求点B 和向量的坐标.第11课时 平面向量数量积的坐标表示、模、夹角一、选择题1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.832.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( )A.)54,53(或)53,54( B .)54,53(或)54,53(--C.)54,53(-或)53,54(-D.)54,53(-或)54,53(-4.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为( ) A.13 B .513 C.565D.65 二、填空题5.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .6.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 7.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 8.已知|a |=10,b =(1,2)且a ∥b ,则a 的坐标为 .三、解答题9.已知a =(3,-1),b =(1,2),求满足条件x ·a =9与x ·b =-4的向量x .10.已知点A (1,2)和B (4,-1),问能否在y 轴上找到一点C ,使∠ACB=90°,若不能,说明理由;若能,求C 点坐标.11.四边形ABCD 中=AB (6,1), BC =(x ,y ),CD =(-2,-3), (1)若BC ∥DA ,求x 与y 间的关系式;(2)满足(1)问的同时又有⊥,求x ,y 的值及四边形ABCD 的面积.12.在△ABC 中,=(2, 3),=(1, k ),且△ABC 的一个内角为直角, 求k 值..第12课时 平面向量的应用举例一选择题1.在四边形ABCD 中,若则,AD AB AC += ( ) A .ABCD 是矩形 B.ABCD 是菱形C ABCD 是正方形 D.ABCD 是平行四边形 2已知:在是则中,ABC ABC ∆<∙∆,0( )A 钝角三角形B 直角三角形C 锐角三角形D 任意三角形二.解答题3.设M 、N 分别是四边形ABCD 的对边AB 、CD 的中点,求证:)(21MN +=4.求证:对角线相等的四边形是矩形.5.求证:圆的直径所对的圆周角为直角.6.求证:直角三角形斜边上的中线等于斜边的一半.7.证明:三角形的三条高交于一点.8..AC AB CE BD CE BD ABC ==∆,求证:为中线,且,中,第13课时 向量在物理中的应用一选择题1某人以时速为a km 向东行走,此时正刮着时速为a km 的南风,则此人感到的风向及风速分别为( )A .东北, 2akm/h B.东南, akm/hC .西南, 2akm/h D.东南, 2akm/h2.一船以4km/h 的速度沿与水流方向成1200的方向航行,已知河水流速为2km/h ,则ABCDA E3h 后船的实际航程为( )A .63km B.6km C .53km D.5km二、填空题3.力F 1,F 2共同作用在某质点上,已知F 1=5N, F 2=12N,且F 1与F 2互相垂直,则质点所受合力的大小为_______________4.在200米山顶上.测得山下一塔顶与塔底的俯角分别为 60,30则塔高为__________米 5.某人向正东方向走x 千米后,他向右转150,然后朝新方向走3千米.结果他离开出发点恰好3千米,则 x=_________________.6.若用两根完全相同的绳子向两侧呈“V ”挂重物,每根绳子最大拉力为100N ,两根绳子间的夹角为600,则能挂重物的最大重量是 . 三、解答题7.一个质量为100g 的球从1.8m 的. 高处落到水平板上又弹回到1.25m 的高度,求在整个过程中重力对球所做的功。
高中数学同步训练:第2章 平面向量 21 苏教必修4 含答案
第2章 平面向量2.1 向量的概念及表示一、填空题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中是向量的有______.(填相应序号)2.在四边形ABCD 中,AB →=DC →且|AB →|=|AD →|,则四边形的形状为________.3.下列各种情况中,向量的终点在平面内各构成什么图形.①把所有单位向量移到同一起点;②把平行于某一直线的所有单位向量移到同一起点;③把平行于某一直线的一切向量移到同一起点.①__________;②____________;③____________.4.下列各命题中,正确的命题的序号是________.①两个有共同起点且共线的向量,其终点必相同;②模为0的向量与任一向量平行;③向量就是有向线段;④|a |=|b |⇒a =b .5.下列说法正确的有________.(填相应的序号)①方向相同的向量叫相等向量;②零向量的长度为0;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同.6.下列结论中,正确的是________.(填相应的序号)①向量AB →,CD →共线与向量AB →∥CD →同义;②若向量AB →∥CD →,则向量AB →与DC →共线;③若向量AB →=CD →,则向量BA →=DC →;④只要向量a ,b 满足|a |=|b |,就有a =b .7.下列说法正确的是________.(填相应的序号)①向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线;②长度相等的向量叫做相等向量;③零向量长度等于0;④共线向量是在一条直线上的向量.8.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是________.(填相应的序号)二、解答题9. 一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶2千米才到达B 地.(1)画出AD →,DC →,CB →,AB →;(2)求B 地相对于A 地的位置向量. 10. 如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些?(3)与a 共线的向量有哪些?(4)请一一列出与a ,b ,c 相等的向量.11. 如图平面图形中,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′;(2)AB →=A ′B ′→,AC →=A ′C ′→.三、探究与拓展12. 在矩形ABCD 中,AB =2BC =2,M 、N 分别为AB 和CD 的中点,在以A 、B 、C 、D 、M 、N 为起点和终点的所有向量中,回答下列问题:(1)与向量AD →相等的向量有哪些?向量AD →的相反向量有哪些?(2)与向量AM →相等的向量有哪些?向量AM →的相反向量有哪些?(3)在模为2的向量中,相等的向量有几对?(4)在模为1的向量中,相等的向量有几对?答案1.②③④⑤ 2.菱形3.单位圆 相距为2的两个点 一条直线4.② 5.②⑤ 6.①②③7.③8.①③④9.解 (1)向量AD →,DC →,CB →,AB →如图所示.(2)由题意知AD →=BC →, ∴AD 綊BC ,则四边形ABCD 为平行四边形,∴AB →=DC →,则B 地相对于A 地的位置向量为“北偏东60°,6千米”.10.解 (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →.(3)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(4)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.11.证明 (1)∵AA ′→=BB ′→,∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.又∵A 不在BB ′→上,∴AA ′∥BB ′.∴四边形AA ′B ′B 是平行四边形.∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.12.解 (1)与AD →相等的向量有:MN →,BC →;与向量AD →相反的向量有:DA →,NM →,CB →.(2)与AM →相等的向量有:MB →,DN →,NC →;与向量AM →相反的向量有:MA →,BM →,ND →,CN →.(3)在模为2的向量中,相等的向量有:AN →与MC →,DM →与NB →,NA →与CM →,MD →与BN →,共4对.(4)在模为1的向量中,相等的向量有18对.其中与AD →同向的有3对,与AD →反向的有3对,与AM →同向的有6对,与AM →反向的有6对,共18对.。
平面向量复习(含练习+答案)
向量知识清单一、向量的有关概念1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也就是用来表示向量的有向线段的长度).2.向量的表示方法:⑴字母表示法:如,,,a b c r r rL 等.⑵几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r等.⑶坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量ar与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. 二、向量的运算 (一)运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。
研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言 符号语言 坐标语言加法与减法 OA --→+OB --→=OC --→ OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2) 则OA OB +uu u r uuu r =(x 1+x 2,y 1+y 2)OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积 AB --→=λa → λ∈R 记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积 cos ,a b a b a b ⋅=⋅r r r r r r记1122(,),(,)a x y b x y ==r r 则a →·b →=x 1x 2+y 1y 2 加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r(结合律)实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b →)2=222a a b b →→→→±⋅+ (三)运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。
高中数学《平面向量的概念》知识点及练习题(含答案)
高中数学《平面向量的概念》一、知识点1.向量的定义把既有大小又有方向的量叫做向量,如力、位移等。
只有大小没有方向的量称为数量,如年龄、身高、温度、面积等。
2.向量的表示(1)有向线段:具有方向的线段叫做有向线段,以A 为起点,B 为终点的有向线段记为AB 。
(2)向量的表示:向量可以用有向线段表示,以A 为起点、B 为终点的向量记作AB ,向量也可用字母⋅⋅⋅c b a ,,表示。
(3)向量的模:向量AB 的大小称为向量AB 的长度(或称模)AB 。
(4)零向量:长度为0的向量叫做零向量,记为,其方向是任意的。
(5)单位向量:长度等于1个单位长度的向量,叫做单位向量。
注意:①向量可以用有向线段表示,但不能说向量就是有向线段。
②向量不能比较大小,向量的模可以比较大小。
3.相等向量与共线向量(1)平行向量:方向相同或相反的非零向量叫做平行向量.规定零向量与任意向量平行,即对于任意向量,都有.(2)相等向量:长度相等且方向相同的向量叫做相等向量。
(3)平行向量也叫做共线向量。
注意:①向量不具有平行的传递性,因为零向量与任意向量平行。
②向量平行与直线平行是有区别的,平行向量可以共线,但平行直线不可以共线。
0 a a //0二、单项选择题1.下列说法正确的个数为( )①零向量没有方向 ②向量就是有向线段,有向线段就是向量③若c b b a ////,,则c a // ④若b a //,则b a ,的方向相同或相反A .0B .1C .2D .32.下列关于向量的结论,正确的是( )A .若b a =,则b a =或b a -=B .若两个向量相等,则它们的起点相同,终点相同C .零向量与任意向量平行D .向量可以比较大小,向量的模也可以比较大小3.下列说法正确的是( )A .若b a >,则b a >B .若b a =,则b a =C .若b a =,则b a //D .若b a ≠,则a 与b 不是共线向量 4.下列不能使b a //成立的是( )A .b a =B .b a =C .a 与b 方向相反D .0=a 或0=b5.在四边形ABCD 中,BD AC =且CD BA =,则四边形ABCD 的形状为( )A .平行四边形B .矩形C .菱形D .等腰梯形6.在四边形ABCD 中,已知DC AB =,BC AB =,则四边形ABCD 一定是( )A .梯形B .矩形C .菱形D .正方形7.下列各命题中假命题的个数为( ) ①向量AB 的长度与向量BA 的长度相等.②向量a 与向量b 平行,则a 与b 的方向相同或相反.③两个有共同起点而且相等的向量,其终点必相同.④两个有共同终点的向量,一定是共线向量. ⑤向量AB 与向量CD 是共线向量,则点D C B A 、、、必在同一条直线上.A .0B .1C .2D .3参考答案1、A,2、C,3、C,4、B5、B6、C,7、D②④⑤。
平面向量练习题大全及答案
平面向量练习题大全及答案平面向量练习题大全及答案平面向量是数学中的重要概念,广泛应用于几何、物理等领域。
通过练习平面向量的题目,可以帮助我们巩固和深化对平面向量的理解。
本文将为大家提供一些平面向量的练习题,并给出详细的答案解析。
一、基础练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的和。
解析:向量的和等于对应分量相加,所以a + b = (2 + (-1), 3 + 4) = (1, 7)。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的差。
解析:向量的差等于对应分量相减,所以a - b = (3 - 5, -2 - 1) = (-2, -3)。
3. 已知向量a = (4, 5),求向量a的模长。
解析:向量的模长等于各分量平方和的平方根,所以|a| = √(4^2 + 5^2) =√(16 + 25) = √41。
4. 已知向量a = (3, -2),求向量a的单位向量。
解析:向量的单位向量等于将向量除以其模长,所以a的单位向量为a/|a| = (3/√41, -2/√41)。
二、综合练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的数量积。
解析:向量的数量积等于对应分量相乘再相加,所以a·b = 2*(-1) + 3*4 = -2 + 12 = 10。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的向量积。
解析:向量的向量积等于两个向量的模长乘以它们夹角的正弦值,所以a×b =|a|*|b|*sinθ,其中θ为a和b的夹角。
首先计算|a|和|b|:|a| = √(3^2 + (-2)^2) = √(9 + 4) = √13,|b| = √(5^2 +1^2) = √(25 + 1) = √26。
然后计算夹角θ的正弦值:sinθ = |a×b|/(|a|*|b|),其中|a×b|为向量a×b的模长。
平面向量的概念同步练习及答案
平面向量的概念同步练习及答案
1.在三角形ABC中,AB=AC,D和E分别是AB和AC
的中点,则(B)DE与CB共线。
此题考察了中点连线与三角形的性质。
2.下列各量中不是向量的是(D)密度。
此题考察了向量
的定义和密度的性质。
3.下列说法中错误的是(A)零向量是没有方向的。
此题
考察了零向量的定义和性质。
4.下列命题正确的是(A)向量AB与BA是两平行向量。
此题考察了向量的基本性质。
5.把平面上所有单位向量的始点放在同一点,则这些向量
的终点所构成的图形是(D)一个单位圆。
此题考察了单位向
量和向量的几何意义。
6.在下列结论中,正确的结论为(D)a与b方向相同且
|a|=|b|是a=b的充要条件。
此题考察了向量的比较和判定。
7.“两个向量共线”是“这两个向量方向相反”的条件。
此题
考察了向量共线的定义和性质。
8.把平行于某一直线的所有向量归结到共同的始点,则终
点所构成的图形是一条直线;若这些向量为单位向量,则终点构成的图形是两点。
此题考察了向量的平移和单位向量的性质。
9.已知非零向量a∥b,若非零向量c∥a,则c与b必定平行。
此题考察了向量平行的定义和性质。
10.已知|AB|=1,|AC|=2,若∠BAC=60°,则|BC|=3.此题
考察了三角形的性质和向量的长度。
11.已知a、b是两非零向量,且a与b不共线,若非零向
量c与a共线,则c与b必定不共线。
此题考察了向量共线和
不共线的定义和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量的概念同步练习及参考答案
1.在△ABC中,AB=AC,D、E分别是AB、AC的中点,则( B )
A.与共线
B.与共线
C.与相等
D.与相等
2.下列各量中不是向量的是( D )
A.浮力
B.风速
C.位移
D.密度
3.下列说法中错误
..的是( A )
A.零向量是没有方向的
B.零向量的长度为0
C.零向量与任一向量平行
D.零向量的方向是任意的
4.下列命题正确的是( A )
A.向量与是两平行向量
AB BA
B.若a、b都是单位向量,则a=b
C.若=,则A、B、C、D四点构成平行四边形
D.两向量相等的充要条件是它们的始点、终点相同
5.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( D )
A.一条线段
B.一段圆弧
C.圆上一群孤立点
D.一个单位圆
6.在下列结论中,正确的结论为( D )
(1)a∥b且|a|=|b|是a=b的必要不充分条件
(2)a∥b且|a|=|b|是a=b的既不充分也不必要条件
(3)a与b方向相同且|a|=|b|是a=b的充要条件
(4)a与b方向相反或|a|≠|b|是a≠b的充分不必要条件
A.(1)(3)
B.(2)(4)
C.(3)(4)
D.(1)(3)(4)
7.“两个向量共线”是“这两个向量方向相反”的条件.
答案:7.必要非充分
8.把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是;若这些向量为单位向量,则终点构成的图形是.
答案:8.一条直线,两点
9.已知非零向量a∥b,若非零向量c∥a,则c与b必定.
答案:9.c∥b
10.已知||=1,||=2,若∠BAC=60°,则||=.
答案:10.
3
11.已知a、b是两非零向量,且a与b不共线,若非零向量c与a共线,则c与b必定.
答案:11.不共线
12.在四边形ABCD中,=,且||=||,则四边形ABCD是.
答案:12.菱形。