一次函数与方案设计问题
《4.2一次函数》作业设计方案-初中数学湘教版12八年级下册
《一次函数》作业设计方案(第一课时)一、作业目标本作业设计旨在通过一次函数的初步学习,使学生掌握一次函数的基本概念、性质及图像特征,并能够根据实际情境设立和解决与一次函数相关的问题。
同时,通过实践操作加深对一次函数知识的理解和运用。
二、作业内容本作业内容包括以下几个方面:1. 理论知识:学习一次函数的基本定义,包括函数的概念、自变量和因变量的关系,以及一次函数的表达式形式。
2. 函数图像:掌握一次函数的图像特点,理解斜率和截距的几何意义,并能根据函数表达式绘制其图像。
3. 实际应用:结合生活实例,学会用一次函数描述和解决实际问题,如路程、时间与速度的关系等。
4. 练习题:设计一系列练习题,包括选择题、填空题和解答题,以巩固学生对一次函数知识的掌握。
三、作业要求学生需按照以下要求完成作业:1. 理论学习:认真阅读教材中关于一次函数的内容,理解并掌握一次函数的基本概念和性质。
2. 图像绘制:利用数学软件或手工绘制一次函数的图像,标明斜率和截距。
3. 实际应用:选取一个实际情境,用一次函数进行描述,并解决相关问题。
要求问题描述清晰,解答过程完整。
4. 练习题:独立完成练习题,注意审题,理解题目意图,运用所学知识进行解答。
5. 作业格式:作业需整洁、规范,答案要清晰明了,步骤要完整。
如有需要,可附上解题过程或思路说明。
四、作业评价教师将根据以下标准对学生的作业进行评价:1. 理论知识掌握程度:是否理解一次函数的基本概念和性质。
2. 图像绘制质量:图像是否准确反映了一次函数的特性,斜率和截距的标示是否正确。
3. 实际应用能力:问题描述是否清晰,解答过程是否完整,是否能运用所学知识解决实际问题。
4. 练习题完成情况:答案是否准确,步骤是否完整,解题思路是否清晰。
五、作业反馈教师将根据学生的作业情况给予相应的反馈和建议:1. 对掌握较好的部分给予肯定和鼓励,激励学生继续努力。
2. 对存在问题的部分进行指导和纠正,帮助学生找出问题所在并加以改进。
一次函数应用题(选择方案)(一)
一次函数应用题(选择方案)(一)1类型一: 利用函数值的大小选择方案例1 紧俏商品,经过市场调查发现,如果月初出售,可获得15%的利润,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付存储费700元,请根据商场的资金情况,判断一下选择哪种销售方式获利较多,并说明商场投资25000元时,哪种销售方式获利较多。
2 类型二选择购买方案例2 甲乙两家体育器材商店出售同样地乒乓球拍和乒乓球,球拍每幅定价60元,乒乓求每盒定价10元。
今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠。
某校乒乓球队需要2副乒乓球拍,乒乓球若干盒(不少于4盒)设该校要买乒乓求x盒,所需商品在甲商店购买需用y1元,在乙商店购买需要用y2元。
(1)请分别写出y1、y2与之间的函数解析式(不注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案。
例3、商店出售茶壶和茶杯,茶壶每只定价为20元,茶杯每只定价为5元,该店制定了两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款。
某顾客需购茶壶4只,茶杯若干只(不少于4只),若设购买茶杯数为x(只),付款数为y(元),试分别写出两种优惠办法中y(元)与x(只)之间的函数解析式,并讨论两种办法中哪种更省钱。
3类型三选择生产方案问题例4、某工厂生产某种产品,每件产品出厂价为1万元,其原材料成本价(含其他损耗)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产出,为达到国家环保要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元。
方案二:工厂将废渣集中到废渣厂处理,每处理一吨需付0.1万元的处理费。
培优专题20一次函数与方案的设计与选择
数表达式为 y =- x +30.
(3)10:00时,甲容器中的水面高度为多少?当甲容器中的水面高度为20cm时
是
几点钟?
◉答案 解:(3)10:00时, x =60, y =-
器中的水面高度为27cm.当 y =20时,20=-
×60+30=27,∴10:00时,甲容
x +30,解得 x =200.∵9:00经过
(2)假设你是决策者,你认为应该选择哪种方案?请说明理由.
◉答案 解:(2) y2- y1=2.4 x +16 000-4 x =16 000-1.6 x .由 y1= y2得16
000-
1.6 x =0,解得 x =10 000,∴当 x <10 000时, y1< y2,选择方案一,从纸箱厂定
2.4元.
(1)若需要这种规格的纸箱 x 个,请分别写出从纸箱厂定制购买纸箱的费用 y1
(元)和蔬菜加工厂自己加工制作纸箱的费用 y2(元)关于 x (个)的函数关系式.
◉答案 解:(1)从纸箱厂定制购买纸箱费用 y1关于 x 的函数关系式为 y1=4 x .蔬菜
加工厂自己加工制作纸箱费用 y2关于 x 的函数关系式为 y2=2.4 x +16 000.
制购买纸箱所需的费用低;当 x >10 000时, y1> y2,选择方案二,蔬菜加工厂自己
加工制作纸箱所需的费用低;当 x =10 000时, y1= y2,选择两个方案的费用相同.
5. [应用意识]某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的
羽毛球拍,每副球拍配 x ( x ≥2)个羽毛球,供社区居民免费借用.该社区附近
第六章 一次函数
培优专题20:一次函数与方案的设计与选择
一次函数的实际应用(1)
一次函数的实际应用(1)辅导教案精准突破:知识点:一次函数的实际应用1、思路:一次函数的实际应用就是把实际问题抽象成数学问题,建立一次函数模型,通过解决一次函数问题从而解决实际问题.2、利用一次函数的知识解应用题的一般步骤:(1)设定实际问题中的变量.(2)建立一次函数表达式.(3)确定自变量的取值范围,保证函数具有实际意义.(4)解答一次函数问题,如最大(小)值.(5)写出答案.3、一次函数实际应用中四种应用问题的注意事项:一、行程问题:路程速度时间二、方案设计问题:(1)在方案问题中,往往要通过计算不同方案的收费总额,从而比较出哪一种方案比较优惠.(2)在方案问题中,有时需要根据已经提供的方案设计一种新方案,从而让优惠幅度最大化.三、阶梯收费问题:阶梯收费问题主要集中在电费,水费,出租车费用等问题中,重在分段计算.四、最大利润问题:利润售价进价(或成本).总价单价数量一、一次函数行程问题1、,两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中,表示两人离地的距离与时间的关系,请结合图象解答下列问题:(1)表示乙离地的距离与时间关系的图象是(填或);甲的速度是,乙的速度是;(2)甲出发多少小时两人恰好相距?2、年月日时分四川汶川发生里氏级强力地震,某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点千米的灾区,乙组由于要携带一些救灾物资,比甲组迟出发小时(从甲组出发时开始计时),图中的折线、线段分别表示甲、乙两组的所走路程(千米)、(千米)与时间(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区,请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过千米,请通过计算说明,按图象所表示的走法是否符合约定?二、一次函数方案设计问题1、某电信局收取网费如下:网网费为每小时元,网网费为每小时元,但要收取元月租费.设网费为(元),上网时间是(小时),分别写出两种网的和的函数关系式,某网民每月上网小时,他应选哪种上网方式比较划算?2、“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.3、为更新果树品种,某果园计划新购进、两个品种的果树苗栽植培育,若计划购进这两种果树苗共棵,其中种树苗的单价为元棵,购买种苗所需费用(元)与购买数量(棵)之间存在如图所示的函数关系.(1)求与的函数关系式;(2)若在购买计划中,种树苗的数量不超过棵,但不少于种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.1、某地出租车计费方法如图,表示行驶里程,(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)当时,求与之间的函数关系式;(3)若某乘客有一次乘出租车的里程为,则这位乘客需付出租车车费多少元?2、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过吨(含吨)时,每吨按政府补贴优惠价收费;每月超过吨,超过部分每吨按市场调节价收费,小黄家月份用水吨,交水费元,月份用水吨,交水费元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为吨,应交水费为元,写出与之间的函数关系式;(3)小黄家月份用水吨,他家应交水费多少元?1、某人在再就业中心的扶持下,创办了“亦杨”报刊零售点,对经营的某种晚报,并提供了如下信息:①买进每份元,卖出每份元;②一个月内(以天计),有天每天可以卖出份,其余天每天只能卖出份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸以每份元退回给报社:(1)填表:(2)设每天从报社买进该种晚报份时,月利润为元,试求出于的函数关系式,并求月利润的最大值.2、新学期开学了,文具店张经理购进只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)张经理如何进货,才能使进货款恰好为元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的,请你帮张经理设计一个进货方案,并求出其所获利润的最大值.3、某房地产开发公司计划建甲、乙两种户型的住房共套,该公司所用建房资金不少于万元,甲种户型每套成本和售价分别为万元和万元,乙种户型每套成本和售价分别为万元和万元,设计划建甲种户型套.(1)该公司最少建甲种户型多少套?(2)若甲种户型不超过套,选择哪种建房方案,该公司获利最大?最大利润是多少?(3)在(2)的条件下,根据国家房地产政策,公司计划每套甲种户型住房的售价降低万元,乙种户型住房的售价不变,且预计所建的两种住房能全部售出,直接写出该公司获得最大利润的方案.4、为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1 000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?。
中考题中“方案设计型”问题的解法
中考题中“方案设计型”问题的解法2001年各地中考试题中出现了许多高质量的方案设计型题目,以激励学生运用数学知识和思想方法去解决现实生活中的问题,现介绍这类中考题的几种解法,供同学们毕业复习时参考。
一、用一元一次方程来解例1:我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。
当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售加工完毕。
为此,公司研制了在种可行方案:方案一:将蔬菜全部进行粗加工。
方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接出售。
方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成。
你认为哪种方案获利最多?为什么?二、用一元一次不等式来解例2:某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除了保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分为A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购买门票:B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元,C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方法,并且你计划在一年中用80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算?三、用方程与不等式混合组来解例3:在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派四、用分式方程来解例4:“丽园”开发公司生产的960件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。
一次函数的方案设计问题
一次函数与方案设计问题一、生产方案的设计例1(河北)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A,B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A,B两种产品获总利润是y (元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?练习:(2012.攀枝花)煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨煤炭要全部运往A、B两厂,通过了解获得A、B两厂的有关信息如下表(表中运费栏“元/t?km”表示:每吨煤炭运送一千米所需的费用):厂别运费(元/t?km)路程(km)需求量(t)A 0.45 200 不超过600B a(a为常数)150 不超过800(1)写出总运费y(元)与运往A厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)例2(湖北)一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以0.20元的价格退回报社.在一个月内(以30天计算),有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同.若以报亭每天从报社订购的份数为自变量x,每月所获得的利润为函数y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?练习:(2012鸡西)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180 元,售价320 元;乙种服装每件进价150 元,售价280元.⑴若该专卖店同时购进甲、乙两种服装共200 件,恰好用去32400 元,求购进甲、乙两种服装各多少件?⑵该专卖店为使甲、乙两种服装共200 件的总利润(利润= 售价- 进价)不少于26700 元,且不超过26800 元,则该专卖店有几种进货方案?⑶在⑵的条件下,专卖店准备在 5 月 1 日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠 a (0 <a <20 )元出售,乙种服装价格不变. 那么该专卖店要获得最大利润应如何进货?例3(2012?郴州)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算练习:某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠.四.调运方案的设计例4(2012?温州)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C 三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地B地C地合计产品件数x 2x 200(件)运费(元)30x②若运往B 地的件数不多于运往C 地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n 的最小值.练习:(深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A 、B两馆,其中运往A 馆18台、运往B 馆14台;运往A 、B 两馆的运费如表1:(1)设甲地运往A 馆的设备有x 台,请填写表2,并求出总运费元y (元)与x (台)的函数关系式;表2(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x 为多少时,总运费最小,最小值是多少?出发地目的地甲地乙地A 馆800元/台700元/台B 馆500元/台600元/台出发地目的地甲地乙地A 馆B 馆。
构造一次函数模型解方案设计应用题
甲公 司 乙公 司 丙公 司 6 0 5 0 1o 0 6 8 1 0 4 2 3 10 5o 10 O0 7o 0
解 答下列 问题 : ( 若乙 1 ) 丙两家公 司的包装与装卸及运输 的费用总和恰好是 甲公 司的2 , 、两市的 倍 求A B
距离( 精确到个位) ; ( 如果A、两市 的距离为s 2 ) 曰 千米 , 且这批水 果在包装与装卸以及运输过程中的损耗 为30 0 元/、 那么要使公 司支付的总费用( / 时, J 包装与装 卸费用 、 运输 费用及损耗三项之 和) 最小 , 应选 择哪家运输公司? 解析: 这是一道结合实际设计的应用题. 其 背景是我们熟悉的运输问题 , 所涉及的数据用 表格给m, 同学们只要仔细看懂表格 , 运用所收 集的数据建立一次函数模型,再根据一次函数 的增减性及函数 自变量的取值范围, 就能够解
yz 8+00 [ +) 30 1s10, =s10+ s 2 ]× 0=4+60
:O+ 0 ls7 o
加工的水产品全部出售 , 那么如何安排生产可 使一天所获得的利润最大? 最大利润是多少? 解析: 本题要求最大利润, 只要建立起一次 3 × 0=3+ 60- o. , ) 3o l 10・ ] s ・ ,) .2 ・ 函数模型, 根据增减性即可求解.
时’ 一, _ l J 2・= +, } . = .
。
i
业 船 拿 }
J
J
} } } } } } } 警} }— } j } } } } } } }
当b-1, I =2 ' 从而 一一 1k J= 2‘
} jI }, 凶 业 } jI 警拿,l | }
一次函数的应用——方案选择问题“微课”教学设计
一次函数的应用——方案选择问题“微课”教学设计一. 教材分析本次微课的教学内容是一次函数的应用——方案选择问题。
一次函数是初中数学中的重要内容,也是实际生活中应用广泛的知识点。
通过本次微课的学习,让学生能够理解一次函数的概念,掌握一次函数的图像特征,并能运用一次函数解决实际问题。
二. 学情分析学生在学习本次微课之前,已经掌握了二次函数的相关知识,具备了一定的数学思维能力。
但部分学生对于一次函数的图像特征和实际应用可能还有一定的困惑。
因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。
三. 教学目标1.让学生掌握一次函数的概念和图像特征。
2.培养学生运用一次函数解决实际问题的能力。
3.提高学生分析问题和解决问题的能力。
四. 教学重难点1.一次函数的概念和图像特征。
2.一次函数在实际问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过生动的案例引导学生思考和探究,让学生在解决问题的过程中掌握一次函数的知识和应用。
同时,运用互动式教学,鼓励学生提问和发表见解,提高学生的参与度和积极性。
六. 教学准备1.准备相关的教学案例和问题,以便进行课堂讨论和练习。
2.准备一次函数的图像资料,以便进行直观讲解和分析。
七. 教学过程1.导入(5分钟)通过一个实际问题引出一次函数的概念,激发学生的兴趣。
例如:某商场举行打折活动,商品的原价可以表示为一次函数y=2x+1,其中x表示购买的商品数量,y表示需要支付的总金额。
请根据这个一次函数,回答以下问题:购买2件商品需要支付多少金额?购买5件商品需要支付多少金额?2.呈现(10分钟)讲解一次函数的一般形式y=kx+b,解释k和b的含义,并通过图像展示一次函数的特征。
同时,引导学生思考一次函数在实际生活中的应用,如路程、速度、单价等问题。
3.操练(10分钟)让学生通过实例计算和绘制一次函数的图像,加深对一次函数的理解。
例如:给出一次函数y=3x-2,让学生计算x=0、x=1、x=2时的y值,并绘制出函数的图像。
《6.4用一次函数解决问题》作业设计方案-初中数学苏科版12八年级上册
《用一次函数解决问题》作业设计方案(第一课时)一、作业目标本节课的作业设计旨在使学生掌握一次函数的基本概念,理解一次函数图像及其性质,并能运用一次函数解决简单的实际问题。
通过作业练习,提高学生分析问题和解决问题的能力,加深对一次函数的理解与运用。
二、作业内容1. 掌握一次函数的概念及基本形式,能准确识别一次函数表达式。
2. 理解一次函数的图像及其性质,包括斜率、截距等概念。
3. 通过实例练习,学会用一次函数解决与速度、距离、时间等相关的实际问题。
4. 练习绘制一次函数的图像,理解图像与函数表达式之间的关系。
5. 掌握一次函数在实际生活中的应用,如电价计算、销售问题等。
三、作业要求1. 学生对一次函数的基本概念要熟悉,能准确判断给定的表达式是否为一次函数。
2. 学生需掌握一次函数的图像画法,并理解斜率和截距的意义。
3. 针对实际问题,学生需分析问题中的已知条件和未知量,建立一次函数模型,并求解。
4. 学生在完成作业时,需注意解题步骤的完整性,思路要清晰,答案要准确。
5. 学生在作业中需体现出对一次函数在实际生活中的应用理解,如结合实际问题进行思考和解答。
四、作业评价1. 评价学生是否掌握了一次函数的基本概念和性质。
2. 评价学生是否能正确绘制一次函数的图像,并理解图像与函数表达式之间的关系。
3. 评价学生是否能正确分析实际问题,建立一次函数模型并求解。
4. 评价学生的解题步骤是否完整,思路是否清晰,答案是否准确。
5. 评价学生在作业中是否体现出对一次函数在实际生活中的应用理解。
五、作业反馈1. 教师需对每位学生的作业进行认真批改,指出错误并给出修改意见。
2. 对于普遍存在的问题,教师需在课堂上进行讲解和指导。
3. 对于优秀作业,教师需给予表扬和鼓励,激发学生的学习积极性。
4. 教师需根据学生的作业情况,调整教学进度和教学方法,以更好地满足学生的学习需求。
5. 教师应及时将学生的作业情况反馈给家长,与家长共同关注学生的学习进步。
初二数学一次函数与方案设计问题
1.生产方案的设计例1某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。
已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。
(1)要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?(98年河北)解 (1)设安排生产A种产品x件,则生产B种产品是(50-x)件。
由题意得解不等式组得30≤x≤32。
因为x是整数,所以x只取30、31、32,相应的(50-x)的值是20、19、18。
所以,生产的方案有三种,即第一种生产方案:生产A种产品30件,B种产品20件;第二种生产方案:生产A种产品31件,B种产品19件;第三种生产方案:生产A种产品32件,B种产品18件。
(2)设生产A种产品的件数是x,则生产B种产品的件数是50-x。
由题意得y=700x+1200(50-x)=-500x+6000。
(其中x只能取30,31,32。
)因为 -500<0, 所以此一次函数y随x的增大而减小,所以当x=30时,y的值最大。
因此,按第一种生产方案安排生产,获总利润最大,最大利润是:-500·3+6000=4500(元)。
本题是利用不等式组的知识,得到几种生产方案的设计,再利用一次函数性质得出最佳设计方案问题。
2.调运方案设计例2北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。
如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台。
求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?解设上海厂运往汉口x台,那么上海运往重庆有(4-x)台,北京厂运往汉口(6-x)台,北京厂运往重庆(4+x)台,则总运费W关于x的一次函数关系式:W=3x+4(6-x)+5(4-x)+8(4+x)=76+2x。
一次函数的方案设计问题
一次函数中的方案设计问题1.某市的C地和D地8月份发生水灾,急需救灾物资10吨和8吨,该市的A地和B地伸出援助之手,分别募集到救灾物资12吨和6吨,全部赠送给C地和D地,已知A地运货到C、D两地的运费(元╱吨),如表所示:(1)设B地到C地的救灾物资为x吨,求总运费w(元)关于x的函数关系式,并指出x的取值范围;(2)求最低的总运费,并说明总运费最低时的运送方案2.已知A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?3.某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县.已知C,D两县运化肥到A,B两县的运费(元/吨)如下表所示.(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.4.A地与B地市分别准备了同型号的取暖器1700台和1500台支援C地市与D地市两个地震灾区,现支援C地市1800台,D地市1400台,从A地、B地分别运到C地和D地的费用如下表:若从A地调运x台给C地,完成以上调运共需总费用y元.(1)写出y与x的函数关系式及x的取值范围;(2)设计调运总费用最少的运送方案,最少运费为多少?5.甲乙两仓库要向A、B两地运送钢材,已知甲库可调出100吨钢材,乙库可调出80吨钢材,A地需70吨钢材,B地需110吨钢材,两库到A、B两地的路程和运费如下表:(表中运费栏“元/吨·千米”表示每吨钢材送1千米所需钱数), 设甲库运往A地钢材x吨,由甲乙两仓库要向A、B两地运送钢材的总运费为y(元).①求总运费y(元)关于x(吨)的函数关系式;②当甲、乙两库各运往A、B两地多少吨钢材时,总运费最省,是多少?6.某公司在A、B两地分别有库存机器16台和12台。
《12.2一次函数》作业设计方案-初中数学沪科版12八年级上册
《一次函数》作业设计方案(第一课时)一、作业目标本次《一次函数》作业设计的目标旨在使学生:1. 掌握一次函数的概念及表达式形式。
2. 理解一次函数中斜率、截距的几何意义和实际应用。
3. 能够利用一次函数进行简单的图形分析,如求交点、判断增减性等。
4. 培养学生的逻辑思维能力和解决实际问题的能力。
二、作业内容作业内容围绕一次函数的核心知识点展开,具体包括:1. 概念理解:要求学生掌握一次函数的概念,并能够正确书写一次函数的表达式。
2. 函数图象:指导学生根据函数的解析式,在坐标系中画出函数图象,理解图象的斜率、截距及图像的变化趋势。
3. 代数应用:学生需要解答一些与一次函数有关的代数式子计算,如求解直线方程中的未知数等。
4. 几何运用:要求学生能够应用一次函数知识解决一些简单的几何问题,如利用直线方程求解几何图形的交点等。
5. 实际情境分析:设计一些实际生活中的问题,如计算物体匀速运动中的速度、路程等,以检验学生对一次函数在实际应用中的理解。
三、作业要求1. 准时完成:学生需在规定时间内完成作业,培养时间管理能力和责任感。
2. 独立完成:严禁抄袭,应独立思考解决问题。
3. 清晰表达:在解题过程中,要求思路清晰、步骤完整、结果准确。
4. 细心检查:作业完成后需进行自查,确保答案的准确性。
5. 附加思考题:鼓励学生在完成基础题后,尝试解决一些附加的思考题,以拓展思维和深化理解。
四、作业评价教师将根据以下标准进行作业评价:1. 知识点的掌握程度。
2. 解题思路的清晰性和正确性。
3. 计算结果的准确性。
4. 学生的独立性和自主性。
5. 学生是否能将所学知识应用到实际问题中。
教师将对学生的作业进行评分,并给出详细的评语和建议,鼓励学生继续努力并改进不足。
五、作业反馈教师将对每位学生的作业进行反馈,指出优点和不足,并提供改进建议。
对于共性问题,将在课堂上进行讲解和讨论。
同时,鼓励学生之间互相交流学习,共同进步。
一次函数应用及方案选择问题(含阶梯计费问题)
(升)(小时)6014504540302010876543210y t 一次函数应用题与方案选择问题一次函数图像及应用1.某企业有甲、乙两个长方体的蓄水池,两个蓄水池中水的深度y (m )与注水时间x (h )之间的函数图像如图所示,结合图像回答下列问题:(1)未注水前甲池水高____m ,乙池水高_____m(2)分别求出甲,乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式,并说明斜率表示的实际意义(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)若甲池中的水以6立方米/小时的速度注入乙池,求注水多长时间甲,乙两个蓄水池水的体积相同.2.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示. 请根据图象回答下列问题: (1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.3.小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。
(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答4.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2 min后沿原路以原速返回.设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间函数关系的图象。
(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?阶梯定价问题OA BCED F t(min) 24001012s(m)1.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分 b超过300千瓦时的部分a+0.32012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?2.为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?3.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.生产方案的设计1.某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.2.某高科技公司根据市场需求,计划生产A.B两种型号的医疗器械,其部分信息如下:信息一:A.B两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.根据上述信息.解答下列问题:(1)该公司对此两种医疗器械有哪几种生产方案?哪种生产方案能获得最大利润?(2)根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0).每台B型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价﹣成本)营销方案的设计1.某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x台,三种家电国家财政共需补贴农民y元.(1)求出y与x之间的函数关系;(2)在不超出现有资金的前提下,商场有哪几种进货方案?(3)在(2)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?2.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.优惠方案的设计1.实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位,学校决定租8辆车。
一次函数方案选择问题
利用一次函数选择最佳方案(1)根据自变量的取值范围选择最佳方案:A 、列出所有方案,写出每种方案的函数关系式;B 、画出函数的图象,求出交点坐标,利用图象来讨论自变量在哪个范围内取哪种方案最佳; 2根据一次函数的增减性来确定最佳方案:A 、首先弄清最佳方案量与其他量之间的关系,设出最佳方案量和另外一个量,建立函数关系式;B 、根据条件列出不等式组,求出自变量的取值范围;C 、根据一次函数的增减性,确定最佳方案; 根据自变量的取值范围选择最佳方案:例1、某校实行学案式教学,需印制若干份数学学案;印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要;两种印刷方式的费用y 元与印刷份数x 份之间的函数关系如图所示:1填空:甲种收费方式的函数关系式是_______ ____;乙种收费方式的函数关系式是___________;(2)该校某年级每次需印制100∽450含100和450份学案, 选择哪种印刷方式较合算;例2、某校一名老师将在假期带领学生去北京旅游,甲旅行社说:“如果老师买全票,其他人全部半价优惠,”乙旅行社说:“所有人按全票价的6折优惠,”已知全票价为240元,设学生人数为x,甲旅行社的收费为甲y 元,乙旅行社的收费为乙y 元;(1)分别表示两家旅行社的收费甲y ,乙y 与x 的函数关系式; (2)就学生人数讨论哪家旅行社更优惠; 2根据一次函数的增减性来确定最佳方案:例3、博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如下表所示:甲种图书 乙种图书 进价元/本 16 28 售价元/本 26 40 请解答下列问题: 1有哪几种进书方案2在这批图书全部售出的条件下,1中的哪种方案利润最大最大利润是多少3博雅书店计划用2中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个请你直接写出答案;例4、某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师;现有甲、乙两种大客车,它们的载客量和租金如表 :甲种客车 乙种客车载客量单位:人/辆 45 30 租金 单位:元/辆 4002801共需租多少辆汽车2给出最节省费用的租车方案;例5、某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县,已知C 、D 两县运化肥到A 、B 两县的运费元/吨如下表所示: 1设C 县运到A 县的化肥为,并写出自变量x 的取值范围;2求最低总运费,一、 生产方案的设计例1 ,某医药器械厂接受了生产一批高,其中A型口罩不得少于万只,该厂的生产能力是:若生产A型口罩每天能生产万只,若生产B型口罩每天能生产万只,已知生产一只A型口罩可获利元,生产一只B型口罩可获利元.1设该厂在这次任务中生产了A型口罩x 万只.问:1该厂生产A型口罩可获利润_____万元,生产B型口罩可获利润_____万元;2设该厂这次生产口罩的总利润是y 万元,试写出y 关于x 的函数关系式,并求出自变量x 的取值范围;3如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大最大利润是多少②若要在最短时间内完成任务,你又如何来安排生产A型和B型口罩的只数最短时间是多少 分析:1x ,5-x ; 2y =x +5-x =x +,首先,≤x ≤5,但由于生产能力的限制,不可能在8天之内全部生产A型口罩,假设最多用t 天生产A型,则8-t 天生产B型,依题意,得t +8-t =5,解得t =7,故x 最大值只能是×7=,所以x 的取值范围是万只≤x ≤万只;3错误!要使y 取得最大值,由于y =x +是一次函数,且y 随x 增大而增大,故当x 取最大值时,y 取最大值×+=万元,即按排生产A型万只,B型万只,获得的总利润最大,为万元;错误!若要在最短时间完成任务,全部生产B型所用时间最短,但要求生产A型万只,因此,除了生产A型万只外,其余的万只应全部改为生产B型.所需最短时间为÷+÷=7天.1、2011岳阳某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天1设加工甲种配件的人数为x,加工乙种配件的人数为y,求y 与x 之间的函数关系式.2如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种并写出每种安排方案.3要使此次加工配件的利润最大,应采用2中哪种方案并求出最大利润值. 二、营销方案的设计例2湖北 一报刊销售亭从报社订购某晚报的价格是每份元,销售价是每份1元,卖不掉的报纸还可以元的价格退回报社.在一个月内以30天计算,有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同.若以报亭每天从报社订购的份数为自变量x ,每月所获得的利润为函数y .1写出y 与x 之间的函数关系式,并指出自变量x 的取值范围;2报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大最大利润是多少分析:1由已知,得x 应满足60≤x ≤100,因此,报亭每月向报社订购报纸30x 份,销售20x +60×10份,可得利润20x +60×10=6x +180元;退回报社10x -60份,亏本×10x -60=5x -300元,故所获利润为y =6x +180-5x -300=x +480,即y =x +480.自变量x 的取值范围是60≤x ≤100,且x 为整数.2因为y 是x 的一次函数,且y 随x 增大而增大,故当x 取最大值100时,y 最大值为100+480=580元.2、2011营口某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售价如下表所示:其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x 台,三种家电国家财政共需补贴农民y 元. 1求出y 与x 之间的函数关系;2在不超出现有资金的前提下,商场有哪几种进货方案3在2的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元三、优惠方案的设计例3南通市 某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:解答下列问题:1若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A,B两市的距离精确到个位;2如果A,B两市的距离为s 千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用包装与装卸费用、运输费用及损耗三项之和最小,应选择哪家运输公司分析:1设A,B两市的距离为x 千米,则三家运输公司包装与装卸及运输的费用分别是:甲公司为6x +1500元,乙公司为8x +1000元,丙公司为10x +700元,依题意,得8x +1000+10x +700=2×6x +1500,解得x =21632≈217千米;2设选择甲、乙、丙三家公司的总费用分别为1y ,2y ,3y 单位:元,则三家运输公司包装及运输所需的时间分别为:甲60s +4小时;乙50s +2小时;丙100s +3小时.从而 1y =6s +1500+60s+4×300=11s +2700,2y =8s +1000+50s+2×300=14s +1600,3y =10s+700+100s+3×300=13s+1600, 现在要选择费用最少的公司,关键是比较1y ,2y ,3y 的大小.∵s >0,∴2y >3y 总是成立的,也就是说在乙、丙两家公司中只能选择丙公司;在甲和丙两家中,究竟应选哪一家,关键在于比较1y 和3y 的大小,而1y 与3y 的大小与A,B两市的距离s 的大小有关,要一一进行比较.当1y >3y 时,11s +2700>13s +1600,解得s <550,此时表明:当两市距离小于550千米时,选择丙公司较好;当1y =3y 时,s =550,此时表明:当两市距离等于550千米时,选择甲或丙公司都一样; 当1y <3y 时,s >550,此时表明:当两市的距离大于550千米时,选择甲公司较好.3、实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位,学校决定租8辆车;1写出符合要求的租车方案,并说明理由; 2设租甲种客车x 辆人,总租金共y 元,写出y 与x 之间的函数关系式;3在1方案中,求出租金最少租车方案;四.调运方案的设计例4 A城有化肥200吨,B城有化肥300吨,现要把化肥运往C,D两农村,如果从A城运往C,D两地运费分别是20元/吨与25元/吨,从B城运往C,D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请你帮他算一算,怎样调运花钱最小分析:根据需求,库存在A,B两城的化肥需全部运出,运输的方案决定于从某城运往某地的吨数.也就是说.如果设从A城运往C地x 吨,则余下的运输方案便就随之确定,此时所需的运费y 元也只与x 吨的值有关.因此问题求解的关键在于建立y 与x 之间的函数关系.解:设从A城运往x 吨到C地,所需总运费为y 元,则A城余下的200-x 吨应运往D地,其次,C地尚欠的220-x 吨应从B城运往,即从B城运往C地220-x 吨,B城余下的300-220-x =15220-x +2280+x ,即y =2x +10060,因为y 随x 增大而增大,故当x 取最小值时,y 的值最小.而0≤x ≤200, 故当x =0时,y 最小值=10060元.因此,运费最小的调运方案是将A城的200吨全部运往D地,B城220吨运往C地,余下的80吨运往D地.4、某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润元如下表:y元.1求y关于x的函数关系式,并求出x的取值范围;2为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大练习题:1.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.1要求安排A,B两种产品的生产件数,有哪几种方案请你设计出来;2生产A,B两种产品获总利润是y元,其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明1中的哪种生产方案获总利润最大最大利润是多少2.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台.求:1若总运费为8400元,上海运往汉口应是多少台2若要求总运费不超过8200元,共有几种调运方案3求出总运费最低的调运方案,最低总运费是多少元3.某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折即按全票价的60%收费优惠.”若全票价为240元.1设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费建立表达式;2当学生数是多少时,两家旅行社的收费一样;3就学生数x讨论哪家旅行社更优惠.4.下表所示为装运甲、乙、丙三种蔬菜的重量及利润.某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售每辆汽车按规定满载,1若用82公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售每种蔬菜不少于一车,如何安排装运,可使公司获得最大利润最大利润是多少5.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料米,乙种布料米,可获利润30元.设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y元.1写出y元关于x套的函数解析式;并求出自变量x的取值范围;2该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大最大利润为多少。
一次函数相关决策问题
一次函数相关决策问题一、购买方案决策题1、小王大学毕业后去两家超市应聘:A超市底薪为1000元再加上每月销售额的10%;B超市底薪为600元再加上每月销售额的20%;如果你是小王该选择去哪家超市。
2、电视台在某天晚上黄金时段的3分钟内插播时长为20秒和40秒的两种广告,20秒广告每次收费6000元,40秒广告每次收费10000元,若要求每种广告播放不少于2 次,且电视台选择收益最大的播放方式,则在这一天黄金时段的3分钟内插播广告的最大收益是多少元?3、某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元/月基础费,然后每通话1分钟,再付电话费0.4元,“神州行”不缴月基础费,每通话1分钟,付电话费0.6元,若一个月通话x分钟,两种通讯方式的费用分别为y1元和y2元.(1)分别写出y1、y2与x之间的函数关系式(不要求写出定义域);(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内通话费200元,则应选择哪种通讯方式较合算?4、新知中学初二年级准备购买10只米奇品牌的笔袋,每只笔袋配x(x≥3)支水,两家超市都有这个牌子的笔袋和水笔出售,而且每只笔笔作为奖品,已知A B袋的标价都为20元,每支水笔的标价都为1元,现两家超市正在促销,A超市所有商品均打九折销售,而B超市买1只笔袋送3支水笔,若仅考虑购买笔袋和水笔的费用,请解答下列问题:(1)如果只在某一家超市购买所需笔袋和水笔,那么去A超市还是B超市买更合算?x 时,请设计最省钱的购买方案.(2)当125、某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销期间,向客户提供两种优惠方案:(1)买一套西装送一条领带;(2)西装和领带均按定价的90%付款.某商店老板现要到该服装厂购买西装20套,领带 (x>20)条.请你根据X的不同情况帮助商店老板选择最省钱的购买方案.6、“五一”黄金周,国美、苏宁两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.国美规定:凡购买超过2000元电器的,超出的金额按80%实收;苏宁规定:凡购买超过1000元电器的,超出的金额按90%实收.问:顾客应怎样选择商场,使得购买的电器能获得更大的优惠?7、小刚家装修,准备安装照明灯.他和爸爸到市场进行调查,了解到某种优质品牌的一盏40瓦白炽灯的售价为1.5元,一盏8瓦节能灯的售价为22.38元,这两种功率的灯发光效果相当.假定电价为0.45元/度,设照明时间为x(小时),使用一盏白炽灯和一盏节能灯的费用分别为y1(元)和y2(元)[耗电量(度)=功率(千瓦)×用电时间(小时),费用=电费+灯的售价].(1)分别求出y1、y2与照明时间x之间的函数表达式;(2)你认为选择哪种照明灯合算?(3)若一盏白炽灯的使用寿命为2000小时,一盏节能灯的使用寿命为6000小时,如果不考虑其他因素,以6000小时计算,使用哪种照明灯省钱?省多少钱?二、利润最大决策题8、某商场计划投资一笔资金采购一批紧俏商品,经市场调查发现,如果月初售出,可获利15%,并可用本利和在投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费700元。
初二数学一次函数方案设计问题试题及解析
《一次函数与方案设计问题》试题优选及分析一次函数是最基本的函数,它与一次方程、一次不等式有着亲密联系,在实质生活、生产中有宽泛的应用,特别是利用一次函数的增减性及其相关的知识能够为某些经济活动中的方案设计和选择做出最正确的决议.下边以近几年来全国各地的中考题为例说明一次函数在方案设计中的重要作用.一、生产方案的设计例 1 (镇江市)在举国上下万众一心,共同抗击非典的特别期间,某医药器材厂接受了生产一批高质量医用口罩的任务.要求在8天以内(含8天)生产A型和B型两种型号的口罩共5万只,此中A型口罩不得少于 1.8 万只,该厂的生产能力是:若生产A型口罩每天能生产0.6 万只,若生产B型口罩每天能生产0.8 万只,已知生产一只A型口罩可赢利0.5 元,生产一只B型口罩可赢利0.3 元.设该厂在此次任务中生产了A型口罩x 万只.问:(1)该厂生产A型口罩可获收益_____万元,生产B型口罩可获收益_____万元;(2)设该厂此次生产口罩的总收益是y 万元,试写出y 对于x的函数关系式,并求出自变量x 的取值范围;(3)假如你是该厂厂长:①在达成任务的前提下,你如何安排生产A型和B型口罩的只数,使获取的总收益最大?最大收益是多少?②若要在最短时间内达成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是多少?剖析:(1) 0.5 x, 0.3( 5-x);(2) y =0.5x+0.3(5-x)=0.2x+1.5,第一, 1.8≤x≤5,但因为生产能力的限制,不行能在8天以内所有生产A型口罩,假定最多用天生产A型,则(8-t )天生产B型,依题意,得0.6 t+0.8(8-t)=5,解得t =7,故t x 最大值只好是 0.6× 7=4.2,所以x的取值范围是 1.8(万只)≤x ≤4.2(万只);(3)○要使y获得最大值,因为y=x +是一次函数,且y随 x 增大而增大,故当 x 取10.2 1.5最大值 4.2 时,y取最大值 0.2× 4.2+ 1.5= 2.32(万元),即按排生产A型 4.2 万只,B型 0.8 万只,获得的总收益最大,为 2.32 万元;○1.8 万只,所以,除2 若要在最短时间达成任务,所有生产B型所用时间最短,但要求生产A型了生产A型 1.8 万只外,其他的 3.2 万只应所有改为生产B型.所需最短时间为 1.8÷ 0.6+ 3.2÷ 0.8=7(天).二、营销方案的设计例2(湖北)一报刊销售亭从报社订购某晚报的价钱是每份0.7 元,销售价是每份1元,卖不掉的报纸还能够0.20 元的价钱退回报社.在一个月内(以30 天计算),有 20 天每天可卖出 100 份,其他10 天每天只好卖出60 份,但每天报亭从报社订购的份数一定同样.若以报亭每天从报社订购的份数为自变量 x ,每个月所获取的收益为函数y .(1)写出 y 与x之间的函数关系式,并指出自变量x 的取值范围;(2)报亭应当每天从报社订购多少份报纸,才能使每个月获取的收益最大?最大收益是多少?剖析:(1)由已知,得 x 应知足60≤x≤ 100,所以,报亭每个月向报社订购报纸30 x份,销售( 20 x+ 60× 10)份,可得收益 0.3( 20 x+ 60× 10)= 6 x+ 180(元);退回报社10(x- 60)份,赔本 0.5× 10(x- 60)= 5 x- 300(元),故所获收益为y =(6x+180)-(5x-300)=x+480,即 y =x+ 480.自变量 x 的取值范围是60≤x≤ 100,且x为整数.(2)因为 y 是 x 的一次函数,且 y 随 x 增大而增大,故当 x 取最大值 100 时, y 最大值为100+480= 580(元).三、优惠方案的设计例3(南通市) 某果品企业急需将一批不易寄存的水果从A市运到B市销售. 现有三家运输企业可供选择,这三家运输企业供给的信息以下:运输 运 输 速 运 输 费 包装与 包装与 单位度 ( 千 用 ( 元 装卸时 装卸费 米 // 千间 ( 小 用(元)时)米)时)甲企业 60 6 4 1500 乙企业508 2 1000 丙企业100103700解答以下问题 :(1)若乙、丙两家企业的包装与装卸及运输的花费总和恰巧是甲企业的2倍,求A,B两市的距离(精准到个位) ;(2)假如A,B两市的距离为s 千米,且这批水果在包装与装卸以及运输过程中的消耗为300 元/小时,那么要使果品企业支付的总花费(包装与装卸花费、运输花费及消耗三项之和)最小,应选择哪家运输企业?剖析 :(1)设A,B两市的距离为 x 千米,则三家运输企业包装与装卸及运输的花费分别是:甲企业为( 6 x + 1500)元,乙企业为( 8 x + 1000 )元,丙企业为( 10 x + 700)元,依题意,得( 8 x + 1000)+( 10 x +700)=2×( 6 x + 1500 ), 解得 x = 216 2≈ 217(千米);3(2)设选择甲、乙、丙三家企业的总花费分别为y 1 , y 2 , y 3 (单位:元),则三家运输企业包装及运输所需的时间分别为:甲(s+4)小时;乙(s+2)小时;丙(s+3)小时.进而y 1 = 6 s + 1500+( s6050100+4)× 300= 11 s + 2700 ,60y 2 = 8 s + 1000 +( s+2)× 300= 14 s + 1600,50y 3 = 10s+ 700+( s +3)× 300= 13s+ 1600 ,100此刻要选择花费最少的企业,重点是比较y 1 , y 2 , y 3 的大小.∵ s >0,∴ y 2 > y 3 老是成立的,也就是说在乙、丙两家企业中只好选择丙企业;在甲和丙两家中,终究应选哪一家, 重点在于比较 y 1 和 y 3 的大小,而 y 1 与 y 3 的大小与A, B两市的距离 s 的大小有 关,要一一进行比较.当 y 1 > y 3 时, 11 s + 2700> 13 s + 1600,解得 s < 550,此时表示:当两市距离小于550 千米时,选择丙企业较好;当 y 1 = y 3 时, s = 550,此时表示:当两市距离等于550 千米时,选择甲或丙企业都同样;当 y1< y3时, s >550,此时表示:当两市的距离大于550 千米时,选择甲企业较好.四.调运方案的设计例4A城有化肥 200 吨,B城有化肥 300 吨,现要把化肥运往C,D两乡村,假如从A城运往C,D两地运费分别是 20 元/吨与 25 元/吨,从B城运往C,D两地运费分别是 15 元/吨与 22 元/吨,现已知C地需要 220 吨,D地需要 280 吨,假如个体户承包了这项运输任务,请你帮他算一算,如何调运花费最小 ?剖析:依据需求,库存在A,B两城的化肥需所有运出,运输的方案决定于从某城运往某地的吨数.也就是说.假如设从A城运往C地x 吨,则余下的运输方案便就随之确立,此时所需的运费y (元)也只与 x (吨)的值相关.所以问题求解的重点在于成立y 与x之间的函数关系.解:设从A城运往x 吨到C地,所需总运费为y 元,则A城余下的(200-x)吨应运往D地,其次,C地尚欠的( 220-x)吨应从B城运往,即从B城运往C地(220-x)吨,B城余下的300-( 220-x )=15(220- x )+22(80+ x ),即 y =2x+10060,y 的值最小.而0≤x ≤200,因为 y 随x增大而增大,故当x 取最小值时,故当 x =0时,y 最小值=10060(元).所以,运费最小的调运方案是将A城的200 吨所有运往D地,B城220 吨运往C地,余下的80 吨运往D地.练习题:1. ( 河北 ) 某工厂现有甲种原料360 千克,乙种原料290 千克,计划利用这两种原料生产 A, B 两种产品,共 50 件.已知生产一件 A 种产品需用甲种原料9 千克、乙种原料3千克,可获收益700 元;生产一件 B 种产品,需用甲种原料 4 千克、乙种原料10 千克,可获收益 1200 元.(1)要求安排 A,B 两种产品的生产件数,有哪几种方案 ?请你设计出来;(2)生产 A,B 两种产品获总收益是 y ( 元) ,此中一种的生产件数是x,试写出 y 与x之间的函数关系式,并利用函数的性质说明(1) 中的哪一种生产方案获总收益最大?最大收益是多少 ?2.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可增援外处10 台,上海厂可增援外处 4 台,此刻决定给重庆8 台,汉口 6 台.假如从北京运往汉口、重庆的运费分别是 4 百元 / 台、 8 百元 / 台,从上海运往汉口、重庆的运费分别是 3 百元 / 台、 5 百元/台.求:(1)若总运费为 8400 元,上海运往汉口应是多少台 ?(2)若要求总运费不超出 8200 元,共有几种调运方案 ?(3)求出总运费最低的调运方案,最低总运费是多少元 ?3.某新建商场设有百货部、服饰部和家电部三个经营部,共有 190 名售货员,计划全商场日营业额 ( 指每天卖出商品所收到的总金额 ) 为 60 万元.因为营业性质不一样,分派到三个部的售货员的人数也就不等,依据经验,各种商品每 1 万元营业额所需售货员人数如表 1,每 1 万元营业额所得收益状况如表 2.表 1表 2每 1万元每1万元商品营业额所商品营业额所需人数得收益百货5百货类0.3 万元类服饰4服饰类0.5 万元类家电2家电类0.2 万元类商场将计划日营业额分派给三个经营部,设分派给百货部、服饰部和家电部的营业额分别为 x (万元)、y (万元)、 z (万元)(x , y , z 都是整数).(1)请用含 x 的代数式分别表示y和z;(2) 若商场估计每天的总收益为 C ( 万元 ) ,且 C 知足 19 ≤ C ≤ 19.7 ,问这个商场应如何分派日营业额给三个经营部 ?各部应分别安排多少名售货员 ?4.某校校长暑期将率领该校市级“三好生”去北京旅行.甲旅行社说:“假如校长买全票一张,则其他学生可享受半价厚待.”乙旅行社说:“包含校长在内,所有按全票价的 6 折( 即按全票价的 60%收费 ) 优惠.”若全票价为 240 元.(1)设学生数为 x ,甲旅行社收费为y,乙旅行社收费为y,分别计算两家旅行社的收费( 成立表达式 ) ;(2)当学生数是多少时,两家旅行社的收费同样;(3)就学生数 x 议论哪家旅行社更优惠.5.某童装厂现有甲种布料38 米,乙种布料26 米,现计划用这两种布料生产L、M两种型号的童装共50 套,已知做一套L 型号的童装需用甲种布料0.5 米,乙种布料1 米,可赢利45 元;做一套 M型号的童装需用甲种布料 0.9 米,乙种布料 0.2 米,可获收益 30元.设生产 L 型号的童装套数为x ,用这批布料生产这两种型号的童装所获收益为y ( 元) .(1)写出 y ( 元) 对于x ( 套) 的函数分析式;并求出自变量x的取值范围;(2)该厂在生产这批童装中,当 L 型号的童装为多少套时,能使该厂所获的收益最大 ?最大收益为多少 ?6.下表所示为装运甲、乙、丙三种蔬菜的重量及收益.某汽车运输企业计划装运甲、乙、丙三种蔬菜到外处销售 ( 每辆汽车按规定满载,而且每辆汽车只装一种蔬菜 )甲乙丙每辆汽车能装21 1.5的吨数每吨蔬菜可获574收益(百元)(1)若用 8 辆汽车装运乙、丙两种蔬菜 11 吨到 A 地销售,问装运乙、丙两种蔬菜的汽车各多少辆 ?(2) 企业计划用 20 辆汽车装运甲、乙、丙三种蔬菜 36 吨到 B 地销售 ( 每种蔬菜许多于一车 ) ,如何安排装运,可使企业获取最大收益 ?最大收益是多少 ?4.有批货物,若年初销售可赢利2000 元,而后将本利一同存入银行.银行利息为10%,若年终销售,可赢利 2620 元,但要支付 120 元库房保存费,问这批货物是年初仍是年终销售为好 ?。
《19.2.3一次函数与方程、不等式》作业设计方案-初中数学人教版12八年级下册
《一次函数与方程、不等式》作业设计方案(第一课时)一、作业目标本课时作业设计的目标是让学生:1. 熟练掌握一次函数的定义及基本性质;2. 学会通过一次函数与一元一次方程、不等式的联系,解决实际问题;3. 培养数学思维能力和逻辑推理能力。
二、作业内容作业内容主要围绕一次函数的基本概念和性质展开,具体包括:1. 复习一次函数的定义,包括自变量x和因变量y的关系式,并要求学生能够识别和绘制一次函数的图像。
2. 练习一次函数与一元一次方程的关联,包括如何通过函数图像求交点,并建立相应的一元一次方程。
3. 探究一次函数与一元一次不等式的联系,理解函数图像在不同区间内的变化与不等式解集的关系。
4. 布置实际问题解决练习,如利用一次函数描述速度与时间的关系,并解决相应的行程问题。
5. 拓展延伸:介绍一次函数在实际生活中的应用,如电费计算、速度与距离等,并鼓励学生寻找生活中的数学实例。
三、作业要求为确保学生能够独立完成作业并达到教学目标,作业要求如下:1. 基础练习:要求学生必须独立完成作业,并保证答案的准确性。
对于基本概念和性质的理解要牢固。
2. 探究拓展:鼓励学生进行拓展性学习,对一次函数在不同领域的应用进行探索,并尝试用所学知识解决实际问题。
3. 解题思路:在解题过程中,要求学生清晰表达解题思路,每一步骤都应详细阐述。
4. 时间安排:作业应在规定时间内完成,以保证学生能够合理分配学习时间,培养时间管理的能力。
5. 规范书写:要求学生在解答过程中,字迹工整、规范书写,以提高数学表达能力。
四、作业评价作业评价将根据以下标准进行:1. 正确性:答案的正确性是评价的首要标准。
2. 解题思路:清晰的解题思路和逻辑性强的答案将得到更高的评价。
3. 创新性:对于有创新思路和独特解法的同学给予额外加分。
4. 规范性:字迹工整、格式规范的答案将得到额外的评价。
五、作业反馈作业反馈是提高学生学习效果的重要环节,具体包括:1. 教师批改:教师将对每位学生的作业进行批改,并给出详细的评语和建议。
谈谈数学模型之一:一次函数在方案设计问题中的应用
所 以甲公 司每天的施 工费是 5 0 0 0元 ,乙公司每天的施工费
是 3 5 0 0元 .
导 我 们 的 生 活 和 生 产 。 因为 我 们 的 一 生 是 动 态 的 , 乃 至 整 个世 界
( 3 ) 由0 . 2 x + 5 0 = 1 1 0 , 解得 = 3 0 0 ( 分钟) ; 由0 . 4 x = l 1 0 , 得 = 2 7 5 ( 分钟) .
・ . ‘
由以上计算可知 : 承包商选择甲公 司施工 比较合算 。 点评 : 对 于承包商来讲 , 不能将工程盲 目的出包 , 需通 过精准 的计算 , 确定预算内的最佳承包方案, 以确保工程的质量顺利施工。
四、 调运 问题方案设计 例4 . 某 山区有 A、 曰两个村庄盛产苹果 , A村有苹果 2 0 0吨 ,
3 0 0 > 2 7 5 , . ・ . 选择第一种通话方式 比较合算.
点评 : 商家 以利为重 , 但是老百性能掌握一 门技能 , 通过科学 的计算 , 就可 以从 中受益。 三、 优惠 问题方案设计
都处 于运动变化之 中, 因此无论是数量 关系中还是 空间形式 中都 充满 了有关运 动变化 的问题 。一次函数是其 中之 一 , 是一种研 究 运动 变化的重要数 学模型 , 关注它并 能综合灵 活运 用有 着深远的 意义。本文举例谈 了一 次函数在设计方案 中的应 用。 关键 词: 数学模型 ; 一次 函数 ; 方案设计 问题 ; 应用 中图 分类号: G 6 3 3 . 6 文献标识码: A 文章编号: 1 9 9 2 — 7 7 1 1 ( 2 0 1 3 ) 2 4 — 0 1 5 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与方案设计问题一次函数是最基本的函数,它与一次方程、一次不等式有密切联系,在实际生活中有广泛的应用。
例如,利用一次函数等有关知识可以在某些经济活动中作出具体的方案决策。
近几年来一些省市的中考试题中出现了这方面的应用题,这些试题新颖灵活,具有较强的时代气息和很强的选拔功能。
1.调运方案设计例1 北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。
如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台。
求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?解 设上海厂运往汉口x 台,那么上海运往重庆有(4-x)台,北京厂运往汉口(6-x)台,北京厂运往重庆(4+x)台,则总运费W 关于x 的一次函数关系式:W=3x+4(6-x)+5(4-x)+8(4+x)=76+2x 。
(1) 当W=84(百元)时,则有76+2x=84,解得x=4。
若总运费为8400元,上海厂应运往汉口4台。
(2) 当W ≤82(元),则⎩⎨⎧≤+≤≤8227640x x解得0≤x ≤3,因为x 只能取整数,所以x 只有四种可的能值:0、1、2、3。
答:若要求总运费不超过8200元,共有4种调运方案。
(3) 因为一次函数W=76+2x 随着x 的增大而增大,又因为0≤x ≤3,所以当x=0时,函数W=76+2x 有最小值,最小值是W=76(百元),即最低总运费是7600元。
此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台,运往重庆4台。
本题运用了函数思想得出了总运费W 与变量x 的一般关系,再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题。
并求出了最低运费价。
2.生产方案的设计例2 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件。
已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。
(1)要求安排A 、B 两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A 、B 两种产品获总利润是y(元),其中一种的生产件数是x ,试写出y 与x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?解 (1)设安排生产A 种产品x 件,则生产B 种产品是(50-x)件。
由题意得⎩⎨⎧≤-+≤-+290)50(103360)50(49x x x x )2()1(解不等式组得 30≤x ≤32。
因为x 是整数,所以x 只取30、31、32,相应的(50-x)的值是20、19、18。
所以,生产的方案有三种,即第一种生产方案:生产A 种产品30件,B 种产品20件;第二种生产方案:生产A 种产品31件,B 种产品19件;第三种生产方案:生产A 种产品32件,B 种产品18件。
(2)设生产A 种产品的件数是x ,则生产B 种产品的件数是50-x 。
由题意得y=700x+1200(50-x)=-500x+6000。
(其中x 只能取30,31,32。
)因为 -500<0, 所以 此一次函数y 随x 的增大而减小,所以 当x=30时,y 的值最大。
因此,按第一种生产方案安排生产,获总利润最大,最大利润是:-500·3+6000=4500(元)。
本题是利用不等式组的知识,得到几种生产方案的设计,再利用一次函数性质得出最佳设计方案问题。
3、营销方案的设计例3 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元。
由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2。
表1 表2商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x(万元)、y(万元)、z(万元)(x,y,z 都是整数)。
(1) 请用含x 的代数式分别表示y 和z ;(2) 若商场预计每日的总利润为C(万元),且C 满足19≤C ≤19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?解 (1)由题意得⎩⎨⎧=++=++19024560z y x z y x ,解得 .225,2335xz x y +=-=(2) C=0.3x+0.5y+0.2z=-0.35x+22.5。
因为 19≤C ≤19.7, 所以 9≤-0.35x+22.5≤19.7,解得 8≤x ≤10。
因为 x,y,z 是正整,且x 为偶数,所以 x=8或10。
当x=8时,y=23,z=29,售货员分别为40人,92人,58人;当x=10时,y=20,z=30,售货员分别为50人,80人,60人。
本题是运用方程组的知识,求出了用x 的代数式表示y 、z ,再运用不等式和一次函数等知识解决经营调配方案设计问题。
4.优惠方案的设计例4某校校长暑假将带领该校市级“三好生”去北京旅游。
甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待。
”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠。
”若全票价为240元。
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠。
解 (1)y甲=120x+240, y乙=240·60%(x+1)=144x+144。
(2)根据题意,得120x+240=144x+144, 解得 x=4。
答:当学生人数为4人时,两家旅行社的收费一样多。
(3)当y甲>y乙,120x+240>144x+144,解得 x<4。
当y甲<y乙,120x+240<144x+144, 解得 x>4。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;本题运用了一次函数、方程、不等式等知识,解决了优惠方案的设计问题。
综上所述,利用一次函数的图象、性质及不等式的整数解与方程的有关知识解决了实际生活中许多的方案设计问题,如果学生能切实理解和掌握这方面的知识与应用,对解决方案问题的数学题是很有效的。
练习1.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元。
设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元)。
(1)写出y(元)关于x(套)的函数解析式;并求出自变量x的取值范围;(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?2.A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?3.下表所示为装运甲、乙、丙三种蔬菜的重量及利润。
某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只装一种蔬菜)(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?4.有批货物,若年初出售可获利2000元,然后将本利一起存入银行。
银行利息为10%,若年末出售,可获利2620元,但要支付120元仓库保管费,问这批货物是年初还是年末出售为好?答案:1. (1) y=15x+1500;自变量x的取值范围是18、19、20。
(2) 当x=20时,y的最大值是1800元。
2. 设A城化肥运往C地x吨,总运费为y元,则y=2x+10060 (0≤x≤200),当x=0时,y的最小值为10060元。
3. (1) 应安排2辆汽车装运乙种蔬菜,6辆汽车装运丙种蔬菜。
(2) 设安排y辆汽车装运甲种蔬菜,z辆汽车装运乙种蔬菜,则用[20-(y+z)]辆汽车装运丙种蔬菜。
得 2y+z+1.5[20-(y+z)]=36,化简,得 z=y-12,所以 y-12=32-2y。
因为 y≥1, z≥1, 20-(y+z)≥1,所以 y≥1, y-12≥1, 32-2y≥1,所以 13≤y≤15.5。
设获利润S百元,则S=5y+108,当y=15时,S的最大值是183,z=y-12=3, 20-(y+z)=2。
4. (1) 当成本大于3000元时,年初出售好;(2) 当成本等于3000元时,年初、年末出售都一样;(3) 当成本小于3000元时,年末出售好。