电控发动机辅助控制系统
5章发动机电控技术- 辅助控制系统29
授人以鱼不如授人以渔
4. 2 汽油机进气控制系统及检修
4.2.1 谐波增压控制系统(ACIS)
1.压力波的产生
当气体高速流向进气门时,如进气门突然关闭,进气门附近气流流动突然停止,但 由于惯性,进气管仍在进气,于是将进气门附近气体被压缩,压力上升。当气 体的惯性过后,被压缩的气体开始膨胀,向进气气流相反方向流动,压力下降。 膨胀气体的波传到进气管口时又被反射回来,形成压力波。 2.压力波的利用方法 一般而言,进气管长度长时,压力波长,可使发动机中低转速区功率增大;进气管 长度短时,压力波波长短,可使发动机高速区功率增大。
授人以鱼不如授人以渔
4. 2 汽油机进气控制系统及检修
4.2.2 动力阀控制系统
朱明工作室 zhubob@
功用:根据发动机不同的负荷,改变进气流量去改善发动机的动力性能。
工作原理:受真空控制的动力阀在进气管上,控制进气管空气通道的大小。 发动机小负荷运转时,受ECU控制的真空电磁阀关闭,真空室的真空度不 能进入动力阀上部的真空室,动力阀关闭,进气通道变小,发动机输出小 功率。当发动机负荷增大时,ECU根据转速、温度、空气流量信号将真空 电磁阀电路接通,真空电磁阀打开,真空室的真空度进入动力阀,将动力 阀打开,进气通道变大,发动机输出大的扭矩和功率。
朱明工作室 zhubob@
(4-2-1)
授人以鱼不如授人以渔
发动机电控系统的组成及作用
发动机电控系统的组成及作用发动机电控系统是现代内燃机车辆中的重要部分,它由多个组件组成,包括传感器、执行器、控制器等,这些组件通过电子信号的传输和处理,协调发动机的工作状态,以提高发动机的效率、可靠性和环保性能。
以下将详细介绍发动机电控系统的组成及作用。
1.传感器:传感器是发动机电控系统的重要组成部分,它们可以感知发动机各种物理量的变化,并将其转化为电信号输入到控制器中。
常见的发动机传感器包括进气压力传感器、进气温度传感器、曲轴位置传感器、氧传感器等。
通过传感器提供的实时数据,控制器可以实时监控发动机的运行状态,并根据需要进行调整。
2.执行器:执行器是发动机电控系统的另一个重要组成部分,它们通过控制流体或电力等方式,调整发动机的工作参数,以实现对发动机的控制。
常见的发动机执行器包括喷油器、进气门控制器、点火线圈等。
通过执行器的控制,可以实现对发动机的点火时间、燃油喷射量以及气缸进气门的开闭时间等参数的精确控制。
3.控制器:控制器是发动机电控系统的核心部件,它接收传感器的输入信号,根据事先编程好的逻辑和算法进行信号处理和控制决策,然后输出控制信号给执行器,以调整发动机的工作状态。
控制器通常采用微处理器或单片机等集成电路实现。
现代的发动机电控系统一般使用专用的电控单元(ECU)作为控制器,它可以实现高速、高精度的信号处理和控制功能。
4.电源系统:电源系统为发动机电控系统提供电力供应,确保各个组件正常工作。
其中主要包括蓄电池和发电机。
蓄电池负责提供电力给发动机电控系统,在发动机熄火时,蓄电池为电控系统提供电力供应;发电机则在发动机运行时,向蓄电池充电,并维持系统的电力供应稳定。
5.诊断系统:诊断系统是发动机电控系统中的重要组成部分,它通过对发动机工作状态的监测和故障码的记录,能够帮助技师准确定位和排除故障。
现代发动机电控系统通常配备了OBD(On-board Diagnostic)接口,可以通过连接诊断仪器,实现故障码的读取和系统参数的实时监测,以提供技术支持和便捷的维修服务。
汽车发动机电控系统的组成及工作原理
汽车发动机电控系统的组成及工作原理一、引言汽车发动机电控系统是现代汽车的核心部件之一,它通过对发动机的各种参数进行监测和控制,实现了发动机的高效、低排放运行。
本文将从组成和工作原理两个方面详细介绍汽车发动机电控系统。
二、组成汽车发动机电控系统主要由以下几个部分组成:1. 传感器传感器是汽车发动机电控系统中最重要的组成部分之一。
它们的作用是将各种参数转换为电信号,供电脑进行处理。
常见的传感器包括氧气传感器、水温传感器、空气流量计等。
2. 电脑电脑是控制整个汽车发动机电控系统的核心部件。
它接收来自各种传感器的信号,并根据程序进行计算和处理,最终输出指令到执行机构。
不同型号和品牌的汽车使用不同类型和规格的电脑。
3. 执行机构执行机构负责根据来自电脑的指令,对发动机进行各种操作。
常见的执行机构包括喷油嘴、点火线圈等。
4. 通讯总线通讯总线用于将各个部件之间的信号进行传输和交换。
它可以分为CAN总线、LIN总线等。
5. 电源系统电源系统是汽车发动机电控系统的基础。
它包括蓄电池、发电机等。
三、工作原理汽车发动机电控系统的工作原理可以分为以下几个步骤:1. 传感器采集数据当发动机运转时,各种传感器会不断采集发动机的数据,比如水温、氧气含量、空气流量等。
2. 信号转换传感器采集到的数据会被转换成数字信号,并通过通讯总线发送给电脑。
3. 数据处理电脑接收到来自传感器的数据后,会根据预设程序进行计算和处理,并输出指令到执行机构。
4. 执行操作执行机构会根据来自电脑的指令,对发动机进行各种操作。
比如喷油嘴会根据指令喷出适量燃油,点火线圈则会在合适时刻点火。
5. 监测反馈整个过程中,电脑不断监测和反馈各种参数,并根据反馈信息对操作进行微调。
比如当水温过高时,电脑会减少燃油喷射量,以降低发动机温度。
四、总结汽车发动机电控系统是现代汽车的核心部件之一,它通过对发动机的各种参数进行监测和控制,实现了发动机的高效、低排放运行。
简述电控发动机的特点
电控发动机的特点一、引言电控发动机是一种集成了电子控制系统的内燃机,相较于传统的机械控制发动机,电控发动机具有许多独特的特点和优势。
本文将对电控发动机的特点进行全面、详细、完整地探讨。
二、电控发动机的工作原理电控发动机通过使用传感器收集发动机的工作参数,并通过电子控制单元(ECU)对这些数据进行处理和分析,最终控制发动机的各个部分和系统,以实现优化的燃烧过程和增强发动机性能。
三、电控发动机的特点3.1 高精度控制电控发动机利用电子控制单元对发动机进行精确的控制,能够实现更高的控制精度。
传统的机械控制发动机受限于机械系统的各种因素,控制精度往往较低。
而电控发动机通过实时的数据采集和精确的计算,能够根据不同的工况和需求,提供精确的控制指令,从而实现更高的控制精度和响应速度。
3.2 自适应调节电控发动机具有自适应调节的能力,能够根据外部环境和工况的变化,自动调整各个系统的参数和工作方式,以适应不同的工况和需求。
通过不断优化和调节,电控发动机能够在不同的工况下保持最佳的工作状态,提高燃烧效率和动力输出。
3.3 可编程性电控发动机的控制系统是由软件程序实现的,可以通过编程对其进行修改和升级。
这种可编程性使得电控发动机具有更高的灵活性和可扩展性。
通过软件的升级和修改,可以改变发动机的工作方式、提升性能、增加功能等,满足不同用户的需求。
3.4 故障诊断和维修电控发动机具有良好的故障诊断和维修性能。
电子控制单元能够实时监测发动机的各个参数和系统状态,并通过故障码等方式提供详细的故障信息。
这大大简化了故障诊断的过程,并缩短了维修的时间。
此外,电控发动机还可以通过软件进行在线诊断和更新,减少了维修的成本和周期。
3.5 节能环保电控发动机由于能够实现精确的燃烧控制和自适应调节,可以在不同工况下尽量减少燃料的浪费和排放的不完全燃烧产物。
通过优化的燃烧过程和辅助系统的协调工作,电控发动机可以达到更高的燃烧效率和更低的排放水平,使得车辆更加节能环保。
简述发动机电控系统的组成
简述发动机电控系统的组成发动机电控系统是现代汽车中不可或缺的一个部分,它负责控制发动机的运行状态,以确保其正常工作。
本文将详细介绍发动机电控系统的组成。
一、发动机电控系统的概述发动机电控系统是指由一系列传感器、执行器和控制器组成的系统,它可以监测和调节发动机的燃油供应、点火时间、排放和其他参数,以确保发动机始终处于最佳状态。
该系统通过计算机来实现对发动机的精确控制。
二、传感器1. 气流传感器气流传感器是用于测量进气量的传感器。
它通常安装在空气滤清器后面,可以检测到进入发动机的空气量,并将这些信息发送到计算机中进行处理。
2. 进气温度传感器进气温度传感器用于测量进入发动机的空气温度。
这个信息对于计算燃油供应量非常重要,因为冷空气需要更多燃料才能达到理想的混合比。
3. 位置传感器位置传感器通常安装在油门阀上,用于监测油门踏板的位置。
这个信息可以用来计算油门开度,以便调整燃油供应量。
4. 氧气传感器氧气传感器用于测量排放物中的氧气含量,并将这些信息发送到计算机中进行处理。
根据这个信息,计算机可以调整燃油供应量以确保发动机正常工作。
5. 曲轴位置传感器曲轴位置传感器用于测量曲轴的转速和相位。
这个信息对于计算点火时间和燃油喷射时间非常重要。
6. 冷却液温度传感器冷却液温度传感器用于测量冷却液的温度。
这个信息可以用来控制冷却系统,确保发动机不会过热。
三、执行器1. 燃油喷射器燃油喷射器是一种执行器,它通过控制燃油的喷射时间和数量来调整发动机的工作状态。
当计算机接收到来自各种传感器的数据后,它会向喷射器发送指令,以便按需释放适当数量的燃料。
2. 点火线圈点火线圈是一种执行器,它负责在正确的时机点燃混合气。
它通过接收来自计算机的信号来控制点火时间。
3. 油门阀油门阀是一种执行器,它负责控制发动机的油门开度。
当计算机接收到来自各种传感器的数据后,它会向油门阀发送指令,以便按需调整油门开度。
四、控制器发动机电控系统中最重要的部分是控制器。
简述发动机电控系统的功能和组成
简述发动机电控系统的功能和组成发动机电控系统是现代汽车中非常重要的一个系统,它负责控制发动机的运行,保证发动机能够高效、稳定地工作。
本文将从功能和组成两个方面来介绍发动机电控系统。
功能:1. 点火控制:发动机电控系统通过控制点火时机和点火能量,确保发动机在每个气缸的最佳点火时刻点火,以提高燃烧效率和动力输出。
2. 燃油供给控制:根据发动机工况和驾驶员的需求,发动机电控系统可以精确控制燃油的供给量,以满足发动机的动力需求,并同时保证燃油经济性和排放要求。
3. 怠速控制:发动机电控系统通过控制气门和燃油喷射量,使发动机在怠速工况下保持稳定的转速,以确保供电系统和辅助设备正常工作。
4. 过热保护:发动机电控系统通过监测冷却液温度和油温等参数,当温度过高时会触发警告或保护措施,以防止发动机过热造成损坏。
5. 故障诊断:发动机电控系统具有故障自诊断功能,能够实时监测发动机各个传感器和执行器的工作状态,并通过故障码诊断出具体故障原因,方便技师进行维修和故障排除。
组成:1. 传感器:发动机电控系统依靠各种传感器来获取发动机运行的实时数据,如气流传感器、氧气传感器、水温传感器等。
这些传感器将采集到的数据传输给电控单元,供其进行处理和判断。
2. 电控单元:电控单元是发动机电控系统的核心部件,它接收传感器传来的数据,并根据预设的程序和策略进行处理,控制点火和燃油喷射等操作。
电控单元还具备自我学习和故障诊断功能,能够根据运行状况和环境变化进行实时调整和优化。
3. 执行器:发动机电控系统通过执行器来实现控制命令的执行,常见的执行器包括点火线圈、喷油嘴和节气门等。
这些执行器受到电控单元的控制,按照指令进行工作,以保证发动机的正常运行。
4. 供电系统:发动机电控系统需要稳定的电源供应,以保证电控单元和执行器的正常工作。
供电系统由电瓶、发电机和各种线束组成,能够提供足够的电能供给发动机电控系统使用。
总结:发动机电控系统的功能和组成十分复杂,它通过精确的控制和调节,使发动机能够高效、稳定地运行。
汽车发动机电控系统的工作原理
汽车发动机电控系统的工作原理一、引言汽车发动机电控系统是现代汽车的重要组成部分,它通过控制发动机的燃油喷射、点火时间等参数,实现对发动机的精准控制。
本文将从系统组成、工作原理、常见故障等方面进行详细介绍。
二、系统组成汽车发动机电控系统主要由以下几个部分组成:1. 传感器:包括氧气传感器、水温传感器、空气流量传感器等,用于采集发动机运行时的各种参数。
2. 控制单元:也称为ECU(Engine Control Unit),是整个系统的核心部件,负责接收传感器采集到的数据,并根据预设的程序进行计算和判断,最终输出相应的控制信号。
3. 执行器:包括喷油嘴、点火线圈等,用于执行ECU输出的控制信号。
4. 电源:提供整个系统所需的电能。
三、工作原理汽车发动机电控系统主要实现以下功能:1. 燃油喷射量控制燃油喷射量是影响发动机燃烧效率和排放水平的重要参数。
当ECU接收到传感器采集到的数据后,根据预设的程序计算出最佳的燃油喷射量,并通过喷油嘴输出相应的控制信号,从而实现对燃油喷射量的精准控制。
2. 点火时间控制点火时间是指点火线圈在发动机正时点前后产生高压电弧的时间点。
它直接影响着发动机的功率和燃油经济性。
当ECU接收到传感器采集到的数据后,根据预设的程序计算出最佳的点火时间,并通过点火线圈输出相应的控制信号,从而实现对点火时间的精准控制。
3. 排放控制汽车排放是环保问题中不可忽视的一部分。
发动机电控系统通过精准地控制燃油喷射量和点火时间等参数,使发动机在工作过程中产生更少、更干净的废气。
四、常见故障及解决方法1. 传感器故障:由于传感器长期工作在恶劣环境下,容易受到污染或损坏。
当传感器故障时,ECU将无法正确地采集和处理数据,导致发动机工作不稳定、动力下降等问题。
解决方法是更换故障传感器。
2. 控制单元故障:由于控制单元长期工作在高温、高压的环境下,容易受到电路老化或损坏。
当控制单元故障时,ECU将无法正常工作,导致发动机无法启动或失去控制等问题。
发动机电控系统概述
发动机电控系统概述和传统的机械控制的发动机相比,电控发动机通过一个中央电子控制单元(ECM)来控制和协调发动机的工作,ECM就象人的大脑一样,通过各种传感器和开关实时监测发动机的各种运行参数和操作者的控制指令,通过计算后发出命令给相应的控制元件,如喷油器等,实现对发动机的优化控制。
控制系统通过精确控制喷油时间和喷油量,以达到降低排放和提高燃油经济性的目的。
如下示意图所示,ECM处在整个发动机控制系统的核心位置。
各种输入设备,包括传感器、开关和油门踏板向ECM提供各种信息,ECM通过这些信息来判断发动机当前的运行工况和操作者的控制指令。
输出设备为执行元件,它们执行ECM通过计算得出的各种控制指令。
在所有的执行元件中,最重要的执行元件是实现喷油量控制和喷油时间控制的元件。
一、电子控制单元(ECM)电子控制单元(ECM)是整个控制系统的核心。
ECM内部有存储器,存储控制系统运行的程序。
这些程序在ECM没有物理损伤的前提下可以通过服务软件擦除重写。
ECM是精密的电子元件,在对车辆系统进行维修时要注意保护。
♦在查拔ECM上的连接插头前,请断开系统电源。
不允许带电插拔ECM上的连接插头。
♦在对ECM插头内的针脚进行测量时,一定要使用合适的转接导线,不可以用万用表的表笔直接测量。
在需要对底盘和发动机进行焊接作业时,一定要将ECM从发动机上拆下来,否则将损伤ECM,导致ECM失效。
输入设备输入设备向ECM输入各种参数,ECM通过这些参数来判断发动机当前的运行工况、司机的操作指令和其它的一些信号。
只有基于输入设备输入的正确参数,ECM才能做出正确的判断,控制发动机的运行。
按照输入设备功能的不同,可简单地将其分为三类,传感器、开关和油门踏板。
输入设备由ECM提供工作电源,大部分输入设备的工作电压都为5伏。
发动机主要通过安装在发动机和车辆上的各种传感器来实时监测当前的运行参数,不同的机型在传感器类型和数量上会有所不同,对柴油电控发动机,这些传感器通常包括:机油压力和温度传感器,进气温度和压力传感器,冷却液温传感器,柴油压力和温度传感器,发动机转速传感器,发动机位置传感器,大气压力传感器等等。
发动机电控系统简介
这种喷射方式将各缸喷油器的控制电路连接在一起,通过一条共同的控制电路与ECU连接。在发动机的每个工作循环中(四冲程内燃机曲轴转两转),各缸喷油器同时喷油一次或两次,这种方式的缺点是各缸喷油时刻距进气行程开始的时间间隔差别大,喷人的燃油在进气道内停留的时间不同,导致各缸混合气品质不一,影响了各缸工作的均匀性。
(三)燃油喷射类型
1.K-Jetronie燃油喷射系统(机械式)
(1)K型喷射系统工作原理
K型喷射是一种无外驱动的机械式汽油喷射系统,直接测量空气流量,其燃油连续地与发动机吸入的空气量成比例地计量,需要使用精确计量吸入空气量的控制装置。在新推出的汽车上已停止使用。
空气供给过程:发动机工作时,空气经空气滤清器过滤,沿进气管道,推开挡板至节气门体,节气门体设有节气门,控制进人进气歧管的空气量,最后与燃油混合进人气缸燃烧。
在汽车电子控制系统中,空燃比反馈控制、发动机爆燃控制、排气再循环(EGR)控制、防抱死制动控制等都采用了闭环控制方式。
③自适应控制
自适应控制系统就是随着环境条件或结构参数产生不可预计的变化时,系统本身能够自行调整或修改系统的参数值,使系统在任何环境条件下都保持有满意的性能的控制系统。换句话说,自适应控制系统是一种“自身具有适应能力”的控制系统。在汽车电子控制系统中,自适应控制得到了广泛应用,点火时刻、喷油时间以及空燃比等的控制都采用了自适应控制方式。
顺序喷射:
这种喷射方式的各缸喷油器分别由各自的控制电路与ECU连接,ECU分别控制各喷油器在各自的气缸接近进气行程开始的时刻喷油,由于每增加一个喷油器,在ECU内部就要相应增加一套喷油器控制线路。因此,顺序喷射方式的控制电路最为复杂,但各缸混合气品质最均匀。目前,这种喷射方式的应用越来越广泛。
发动机电控系统的组成与工作原理图文
发动机电控系统的组成与 工作原理
发动机电控系统是现代汽车的核心之一,它由多个组件组成并以精确的方式 协同工作。本文将介绍发动机电控系统的各个组成部分和工作原理。
发动机电控系统概述
发动机电控系统负责监测和控制发动机的运行,包括燃油供给、点火、气门 控制、排放控制等
喷油器
将燃油雾化并喷入气缸,确保 燃油的均匀混合和完全燃烧。
点火线圈
节气门
产生高电压,点燃燃油混合物, 使发动机正常燃烧。
控制进气量,调整发动机的转 速和动力输出。
电子节气门的工作原理
电子节气门通过电子信号控制节气门的开合程度,实现精确的进气量控制,提高燃烧效率和驾驶响应性。
点火系统的工作原理
点火系统产生高压电流,通过点火线圈将电能转换为火花,点燃燃油混合物, 触发爆燃过程。
ECU是发动机电控系统的大脑,根据传感器的反馈信号,控制执行器的工作来实现对发动机的精 确控制。
传感器的种类和作用
温度传感器
监测冷却液和进气气温,调 整燃料混合比和点火正时。
氧传感器
检测废气的氧含量,优化燃 烧过程,控制减排。
气流传感器
测量进气量,提供燃油喷射 和气门控制的基础数据。
执行器的种类和作用
喷油系统的工作原理
喷油系统通过控制喷油器工作时机和喷油量,将精确的燃油雾化喷入气缸, 实现燃油的完全燃烧。
排放控制系统的作用与工作原 理
排放控制系统通过使用催化剂和传感器监测废气组成,减少有害气体排放, 保护环境。
电路连接方式
发动机电控系统的各个组件之间通过电路连接,确保信号的传递和数据的交换。
电控发动机系统的组成
电控发动机系统的组成
电控发动机系统的组成包括以下几个部分:
1. 电控单元(ECU):负责控制整个发动机系统的运行,包括燃油喷射、点火时机、进气量调整等。
2. 传感器:用于监测发动机运行状态和环境条件,例如空气质量传感器、发动机转速传感器、水温传感器等。
3. 执行器:根据电控单元的指令进行动作,如喷油器、点火器等。
4. 电子节气门:用于控制进气量,通过电控单元调整节气门的开启程度来控制发动机的输出功率。
5. 燃油喷射系统:通过喷油器将燃油喷射到气缸中,电控单元根据需要控制喷油器的工作周期和喷油量。
6. 点火系统:通过点火器在适当时机点燃空燃混合气体,使发动机正常燃烧。
7. 故障诊断系统:电控发动机系统还包括故障诊断系统,能够检测出故障并提供相应的故障代码,以便维修人员进行故障排查。
这些组成部分共同协作,控制发动机工作,达到提高燃油效率、减少尾气排放、提升动力性能等目的。
汽车发动机电控系统检修 第2版 项目一 发动机电控系统概述
发动机电控燃油喷射系统按汽油喷射位置、汽油喷射方式和进气量检测方式可进行
不同的分类。
1.按汽油喷射位置分类(1源自缸内喷射(2)缸外喷射相关知识
2.按汽油喷射方式分类 (1)连续喷射
(2)间歇喷射
相关知识
3.按进气量检测方式分类 (1)D型汽油控制喷射系统
(2)L型汽油控制喷射系统
相关知识
三、发动机控制系统电源电路 丰田卡罗拉1ZR-FE发动机控制系统电源电路图,如图所示。
汽车 发动机电控
项目一 发动机电控系统概述
任务 发动机电控系统认知
目录
CONTENTS
01
任务目标
02
任务描述
03
相关知识
04
学习任务单
05
实训任务
06
实训任务单
01 学习目标
知识目标 1)掌握发动机电子控制系统的基本组成与功用; 2)了解发动机电子控制系统的基本类型。 技能目标 1)能在实车上找到发动机电控系统各传感器、ECU和执行器; 2)会熟练使用汽车故障诊断仪读取发动机故障码与数据流。 素养目标 1)能够在工作过程中与小组其他成员合作、交流,养成团队合作意识,锻 炼沟通能力。 2)养成7S的工作习惯。 3)养成服从管理、吃苦耐劳与规范作业的良好工作习惯。
相关知识
5.自诊断系统 自诊断系统可以在发动机工作时检测各个电子器件的工作情况,当出现故障时,仪表盘 相应的故障指示灯会亮起,并且在ECU内存储故障代码。驾驶员发现故障灯亮时,可到维修 点进行检查,此时可以利用解码仪将故障代码读取出来,方便更快、更准确地找到故障。
相关知识
二、电控发动机汽油喷射系统的分类
相关知识
(2)空气供给系统 空气供给系统的作用是提供清洁的空气,并负责测量、控 制汽油燃烧所需的空气量。
辅助控制系统
占空比型电磁阀怠速控制机构
➢ 占空比控制型电磁 阀工作时,由ECU确 定控制脉冲信号的 占空比,磁化线圈 中平均电流的大小 取决于占空比。占 空比越大,磁化线 圈中平均电流越大, 磁场强度越大,阀 门升程越大,旁通 道开度越大。
占空比控制型电磁阀结构
1—弹簧;2—磁化线圈;3—轴; 4—阀;5—壳体;6—波纹管; 7—传感器;8—进气总管;9—节 气门
➢ 1.步进电机式怠速控制机构; ➢ 2.旋转电磁阀式怠速控制机构 ➢ 3.占空比型电磁阀怠速控制机构; ➢ 4.真空电磁阀怠速控制机构
步进电机式怠速控制机构
步进电机与怠速控制阀 做成一体,装在进气总 管内。
电机可顺时针或逆时针 旋转,使阀沿轴向移动, 改变阀与阀座之间的间 隙,调节流过节气门旁 通通道的空气量。
(a)节气门直动式
(b)旁通空气方式
怠速控制执行机构的空气控制方式
1—节气门; 2—节气门操纵臂;3—执行元件
节气门直动控制式
节气门直动控制式是直接通过对节气门最小开度的控制来 控制怠速。
由ECU控制直流电动机的正反转和转动量。直流电动机驱 动减速齿轮并通过螺旋传动将转动量转变成直线移动,从 而控制节气门开度的大小,达到控制怠速进气量和怠速转 速的目的。
二、动力阀控制系统
➢ 工作原理
➢
某些发动机进气管上除安装节气门调节进气量外,还
安装动力阀控制系统,它能根据发动机的不同负荷改变进
气量,从而改变发动机的动力性能。真空控制的动力阀装
在进气管上,控制进气管空气通道的大小。当发动机小负
荷运转时,ECU控制真空电磁阀关闭,动力阀也关闭,进
气通道变小,发动机输出较小功率;当发动机负荷增大,
一、三元催化转化器、氧传感器与闭环控制
举例两种电控发动机采用闭环控制的控制系统
举例两种电控发动机采用闭环控制的控制系统
一种电控发动机采用闭环控制的控制系统是汽车发动机。
闭环控制系统通过传感器检测发动机的工作状态,例如转速、温度和氧气含量等,并将这些信息反馈给控制器。
控制器根据这些反馈信号调整燃油喷射量和点火时机,以保持发动机的稳定运行和最佳性能。
这种闭环控制系统能够实时监测和调整发动机的工作状态,以适应不同的工况和驾驶需求,提高燃烧效率和节能减排。
另一种电控发动机采用闭环控制的控制系统是飞机发动机。
飞机发动机的闭环控制系统也是通过传感器监测发动机的各项参数,并将这些数据反馈给控制器。
控制器根据这些反馈信号调整燃油喷射量、涡轮叶片角度和空气进气量等,以确保发动机在各种飞行条件下的稳定运行和推力输出。
这种闭环控制系统能够对发动机进行精确的控制,提高飞机的安全性和性能。
这两种电控发动机采用闭环控制的控制系统在工业领域中得到广泛应用,它们能够实时监测和调整发动机的工作状态,提高发动机的效率和性能,减少能源消耗和环境污染。
发动机电控系统工作原理
发动机电控系统工作原理
发动机电控系统是一种用于控制发动机运行的关键系统。
其工作原理可简单概括为:感知环境信息-处理信息-控制执行。
在感知环境信息阶段,发动机电控系统会通过各种传感器收集到发动机运行所需的各类参数,如转速、温度、油压等。
这些传感器将这些参数转化为电信号,并传送给控制模块。
在处理信息阶段,控制模块会对接收到的电信号进行分析和处理,将其转化为控制策略和指令。
控制策略通常由事先设定的算法和逻辑来决定,可以根据不同条件动态调整。
这些指令将被发送给执行机构,如燃油喷射器、点火系统等。
在控制执行阶段,执行机构根据接收到的指令,执行相应的动作。
例如,根据需要决定喷油量大小和时间,或者调整点火时机。
这些动作将直接影响到发动机的工作状态,从而实现对发动机运行的精确控制。
通过这种感知-处理-控制的工作原理,发动机电控系统能够实
时监测和调整发动机的工作状态,提高发动机的燃烧效率,减少排放,提高动力性能。
它在汽车工业中起着至关重要的作用,是现代汽车技术中不可或缺的一部分。