2.9长方体和正方体练习题及答案.doc
长方体和正方体的表面积(练习题)
长方体和正方体的表面积(练习及解析)【答案】6个面的总面积2.在长方体中,前面与()的面积相等;左侧面与()的面积相等;上面与()的面积相等。
正方体中,()个面的面积相等。
【解析】长方体中分别有三组相对的面,即前面和后面,左侧面和右侧面,上面和下面,相对的面是完全相同的,所以它们的面积也相等;正方体中的6个面都是相等的正方形;据此填空即可。
【答案】后面;右侧面;下面;63.一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有()条,面积是20平方分米的面有()个。
【解析】长方体有12条棱,长有4条,宽有4条,高有4条,宽和高都是4分米时,那么长度是4分米的棱有8条;这时有4个面是相等的,都是长乘宽,即5×4;据此填空即可。
【答案】8;44.至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
【解析】底面和上面是相等的面,所以上面周长也是18厘米,剩下的4条高的和是3×4=12(厘米),所以这个长方体的棱长总和是18×2+12=48(厘米),即至少需要的铁丝的长度;据此填空即可。
【答案】485.一个正方体的棱长总和是48厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。
【解析】正方体有6个面,12条棱,每个面都是完全相同的正方形,所以用棱长总和除以12,得出一条棱的长,即一个面的边长;根据表面积=棱长×棱长×6,代入数据求出即可。
【答案】4;966.—个正方体的表面积是96平方厘米,它的一个面的面积是()平方厘米,棱长是()厘米。
【解析】用表面积除以6,即得出一个面的面积,再据此求出棱长。
【答案】16;47.用铁丝焊接成一个长14厘米,宽8厘米,高6厘米的长方体的框架,至少需要铁丝()厘米。
【解析】本题是求棱长总和的,长方体的棱长总和是4个长、4个宽、4个高的和,即(12+8+6)×4=104,据此填空即可。
期末 长方体和正方体的认识《解决问题》专项练习(人教版,含答案)
本课是参加《2021年全国公幵课邀请赛》的获奖作品,本次大赛共设奖项130 名,其中一等奖和二等奖比例约占30%。
本次大赛汇集了全国31个省市向治区的204名优秀教师参与,分为线上授课和线下教学两部分进行。
比赛于2021年5月正式举行,经过激烈角逐,涌现出大量的优质课和优秀教案.经过作者同意,特将获奖作品进行分享.以期能够为广大教#工作者奉献一份力鼠。
通过本次大赛,使老师们的&课与授课水平都能有相应的提升,以促进教育教学水平的提高,力教育枣业贡献出教育人的一份力量!五年级数学下册期末•长方体和正方体的认识《解决问题》专项练习学校: 姓名:考9:1.“新冠疫情”网课期叫,王老师用一根96厘米长的铅丝为同学们做了一个长方体框架的教R。
如果这个长方体的长是io厘米.宽ft s厘米.$接头处忽略不计时,高应该足多少厘米?2.妈妈给丽丽买了个长方体形状的蚊帐(见下阁),蚊帐的四周由钢管固定(地面的四边没有钢管)。
固定这样一个蚊帐,至少需要多长的钢管?3.用铁丝闱成长、宽、高分别是6分米、4分米、3分米的三个长方体模型,至少需要多少分米的铁蛘?4.心灵手巧的小美要用一根长10m的绳子给礼盒做装饰(方法如阁),结头处绳长30cm,这根绳子最多呵搁扎几个这样的礼盒?5.做一个底面周长足18cm,高足4cm的长方体铁丝框絮。
至少耑要多少厘米的铁丝?6.在展开阁上找到原长方体的卜'面,用▲标注.并计算K而的而积。
7.一个木制长方体的灯笼框架长60厘米,宽35厘米.高35 厘米,做这个灯笼框架至少耑要多少米的水条?8.只列综合算式不计算。
一根长64cm的铁丝,折成一个长8cm、高3cm的长方体框架,宽是多少厘米?9.科技小组用60厘米的铁纹做一个长方体模型,这个长方体的长垃6厘米,宽足5厘米,高是多少厘米?10.用彩带捆扎F面的礼品盒,耑要多少厘米彩带?(彩带结长15t?n)11.鲁巷广场要用钢管做一个长方体形状的遮阳伞支絮(如下阁),这个遮阳伞的长是4.5m.宽是3m,高是2.4m.做这个遮阳伞至少耑要多少米钢管?12.李师傅用木条做一个长8cm.宽4cm,高5cm的长方体框架.至少耑要()长的木条.A. 17cmB. 34cmC. 68cm13.平荣商店要做一个长2.5m,宽50cm,高80cm的玻璃柜台,现要在柜台各边都安上角铁,这个柜台需要多少米角铁?14.李师傅用铁纹焊一个长10厘米、宽4厘米、高6厘米的长方体框®,至少需要铁蚌多少厘米?15.有一根铁丝,正好可以做成一个长10cm、宽8cm、高6cm的长方体框架.如果用这根铁丝做一个正方体框架,那么这个正方体框®的棱长是多少厘米?参考答案1.解析:96+4- (10+8)= 24-18=6 (厘米):答:髙应该是6厘米。
《长方体和正方体》单元测试题及参考答案(精编)
《长方体和正方体》单元测试题(含答案)一、填空题1.一个长方体有()个面,()个顶点,()条棱。
棱的长度可以分为()组,()的面是完全相同的,()的棱长度相等。
2.一个长方体4个侧面大小相等,上下两个面是()形,如果这个长方体的长和高分别是3cm和5cm,则这个长方体的棱长和是()厘米,表面积是()平方厘米,体积是()立方厘米。
3.填写合适的单位名称。
一个梨的体积约50()一个指甲盖的面积约1()一台冰柜的容积约0.9()一桶花生油约5()4.一根长方体的钢材,截面的面积为30平方分米,长12米,它的体积是()平方分米;如果它的另一个截面面积是36平方分米,则它的长是()米。
5.一个长方体的底面积是60平方厘米,高是8分米,它的体积是()立方分米。
6.一个正方体的棱长是3厘米,它的棱长和是()厘米,表面积是()平方分米,体积是()立方分米。
7.一个长方体的长为5cm,宽为4cm,高为2cm,它的棱长和是()分米;表面积是()平方分米;体积是()立方分米。
8.有两个棱长是3cm的正方体,拼成一个长方体后,体积是()立米厘米,体积();表面积是()平方厘米,表面积比原来减少了()平方厘米。
9.有一个鱼缸,长4分米,宽3分米,水深2分米,把一个小块假山石头浸入水中后,小面上升到2.8分米,这块假山石的体积是()立方分米。
10.用白铁皮制作一根长方体烟囱,长是3米,宽是2分米,高是2分米,制作一根这样的排水管需要()平方米的铁皮。
11.在括号里填上适当的数800cm3 = _____ dm3= _____ L 0.8L= _____ ml = _____ cm312.把4升盐水装入容积是200毫升的盐水袋里,需要装()袋。
13.在一个长15分米,宽12分米,高14分米的长方体水箱中,有10分米深的水,如果在水中沉入一个棱长为30厘米的正方体铁块,水箱中水面上升了()厘米。
14.一个正方体的底面积是9平方分米,它的表面积是()平方米,它的体积是()立方分米。
小学教学:长方体与正方体专项练习(五年级下册数学)
认识长方体和正方体1.一个长、宽、高分别为40cm、30cm、20cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?2.小红为妈妈准备了一件生日礼物,下图是这件礼物的包装盒,长、宽、高分别是15cm、15cm、8cm。
现在用彩带把这个包装盒捆上,接头处长18cm。
一共需要多少厘米彩带?3.母亲节快到了,小红打算送妈妈一件礼物。
礼品盒长40cm,宽20cm,高15cm,如下图。
小红用彩带来包装礼品盒(结头部分总长30cm),一共要用彩带多少厘米?4.如图,把一个长是20cm、宽是15cm、高是18cm的礼品盒用彩带包扎起来,至少需要彩带多少厘米?(打结处每处长8cm)5.一种盒装纸巾的长、宽、高如图1所示。
用胶带将3盒这样的纸巾捆扎起来(如图2),至少需要多少厘米的胶带?(接头处忽略不计)。
6.某快递公司员工先把一个正方体形状的物体用纸箱包装好,再用胶带按如图所示的方法把它粘上3圈,每圈接头处多用4厘米胶带。
一共需要多少厘米的胶带?7.为迎接“五一”国际劳,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。
已知工人俱乐长90米,宽55米,高22米,工人叔叔至少需要多长的彩灯线?长方体和正方体的表面积(缺面问题)1.一个长方体的饼干盒,长10厘米,宽6厘米,高12厘米,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?2.一张长为30dm,宽为20dm的长方形铁皮,从四个角上各剪去边长为5dm的正方形,并焊成一个无盖的铁盒。
在铁盒外面的底面和侧面涂上油漆,涂油漆的面积是多少平方分米?3.一个新建的游泳池长50m,长是宽的2倍,深2.5m。
现在要在游泳池的四周和底面贴上瓷砖,一共需要贴多少平方米的瓷砖?4.学校要粉刷新教室。
已知教室的长是8m,宽是6m,高是3.5m,已知门窗的面积是21.5㎡。
如果要粉刷教室的墙壁和天花板,那么要粉刷的面积是多少平方米?5.做一个长120cm、宽和高都是10cm的通风管,至少需要多少平方米的铁皮?6.制作一个横截面为周长是1.5m的正方形、长3m的长方形通风管,至少需要多少平方米的铁皮?7.制作一根长方体铁皮烟囱,烟囱长1.5m,横截面是边长为0.2m的张方形。
五年级数学下册长方体和正方体的体积部分专项练习(含答案)
五年级数学下册长方体和正方体的体积部分专项练习(含答案)本专项练习主要是针对第三单元长方体和正方体的体积部分,考察的是长方体和正方体的体积知识内容。
练习从易到难进行学习解析,是为本章的重点内容。
类型一:求长方体和正方体的体积以及反求。
【方法知识】1.长方体的体积=长×宽×高 V=abh长= 体积÷宽÷高a=V÷b÷h宽= 体积÷长÷高b=V÷a÷h高= 体积÷长÷宽h=V÷a÷b2. 正方体的体积= 棱长×棱长×棱长V=a×a×a = a³(即a·a·a)3.长方体或正方体底部的面积叫做底面积。
(横截面积相当于底面积,长相当于高)。
4.长方体的体积=长×宽×高=底面积×高5.正方体的体积=棱长×棱长×棱长=底面×棱长6.长(正)方体的体积用字母表示:V=Sh【练习题】1、某纸盒厂生产一种正方体纸板箱,棱长50厘米,它的体积是多少立方分米?2.一个长3分米,宽4分米,高6分米的长方体木块,这个木块的体积是多少立方分米?3.一个正方体容器的棱长是20厘米,体积是多少立方分米?4.向阳小学有一间长12米,宽6米,高3.6米的教室。
这间教室的空间有多大?5.要挖一个容积是6立方米的长方体地窖来储藏东西,若已经挖好的地窖的长是2米,宽是1.5米,那么深要挖几米?6.体积196立方米,高4米的小型长方体仓库。
这个仓库有多少平方米?7.一个体积为63升的长方体油箱,底部为正方形,边长为30厘米。
油箱的高度是多少厘米?类型二、求组合立体图形的体积。
【方法知识】求组合立体图形的体积,常用加减法求解。
就是把各部分立体图形的体积相加,或者从整体图形体积中减去空白(不用求解)部分的体积。
长方体和正方体练习题答案
长方体和正方体的认识·练习题一.填空1、长方体有(6)个面,每个面都是( 长方)形,也可能有两个相对的面是( 正方)形,(相对的面)的面积相等。
有(12 )条棱,(相对)的棱的长度相等。
2、正方体有(6 )个面,每个面都是(正方)形,(所有的面)的面积都相等,有(12 )条棱,它们的长度(完全相等)3、因为正方体是长、宽、高都(相等)的长方体,所以正方体是(特殊)的长方体。
4、一个正方体的棱长为a,棱长之和是(12a ),当a =6厘米时,这个正方体的棱长总和是(72)厘米。
5、一个长方体长、宽、高分别是a、b、h,那么这个长方体的棱长总和是(4(a+b+h) )。
6、至少用(8)个小正方体才能拼成一个大正方体。
7、一个长方体的棱长之和是96cm,长是9cm,宽是8cm,高是(7)cm。
二、判断:1、长方体都是由6个长方形围成的。
(错)2、有6个面,12条棱,8个顶点的物体形状都是长方体。
(错)3、相对的四条棱长度都相等的物体一定是正方体。
(错)4、正方体的六个面都是正方形,长方体的六个面都是长方形。
(错)5、长方体和正方体的相同点是都有12条棱,6个面。
(错)三.看图,并填空单位:厘米Array 1、(1)这个长方体长( 4 )厘米,宽( 3 )厘米,高(5 )厘米。
(2)由一个顶点引出的三条棱的长度和是(12)厘米。
(3)棱长总和是(48)厘米。
2、(1)这个正方体的棱长是( 5 )厘米。
(2)棱长之和是(60 )厘米。
(3)每个面的面积是(25)三、应用题1、一个正方体的棱长是5厘米,这个正方体的棱长总和是多少厘米?5×12=60(厘米)2、用72厘米长的铁丝焊接成一个正方体的框架,这个正方体棱长是多少厘米?72÷12=6(厘米)3、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝多少厘米?(12+10+5)×4=108(厘米)4、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?52÷4=13(厘米) 13-6-4=3(厘米)5、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。
(完整版)长方体和正方体表面积练习题含答案
长方体和正方体表面积练习题含答案班级:姓名:学号:成绩: 一、填空: 1、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。
2、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是,占地面积是,表面积是,体积是。
3、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是立方厘米。
4、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水升。
5、一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重千克。
6、正方体的棱长扩大3倍,棱长和扩大倍,表面积扩大倍,体积扩大倍。
927 7、用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。
8、一个长方体的长、宽、高分别 是a米、b米、h米。
如果高增加2米,体积比原来增加立方米。
2ab 二、判断: 1、正方体是由6个完全相同的正方形组成的图形。
2、棱长6厘米的正方体,它的表面积和体积相等。
3、a表示 a×。
4、一个长方体,最多有两个面面积相等。
× 3 5、体积相等的两个正方体,它们的表面积一定相等。
× 三、操作题: 右图是长方体展开图,测量所需数据,并求长方体体积。
四、解决问题: 1、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?10×5×4=200 200×7.8=1560 答:这个铁块重1560kg。
2、一节长方体形状的铁皮通风管长2米,横截面是边长为10厘米的正方体,做这节通风管至少需要多少平方厘米铁皮? ×2=88× 答:需要88cm2 3、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。
制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升? 表面积:8×7+8×6×2+6×7×2=236× 容积:8×7×6=336 答:共需玻璃236dm2,能装水336升。
长方体与正方体应用题练习[1]
一、表面积三、应用题1、一个房间长5米,宽3米,高2.8米,现需油漆四壁和天花板,扣除门窗的面积4.5平方米,求油漆的总面积有多大?2、要做一种管口周长40厘米的通气管子10根,管子长2米,至少需要铁皮多少平方米?3、一个正方体的表面积是54平方分米,这个正方体所有棱长之和是多少?4、有一个长方体木箱,长0.7米,宽0.5米,高0.3米。
怎样放,这个木箱占地面积最小?最小是多少平方米?5、学校要砌一道长20米,厚0.25米,高3米的砖墙,如果每立方米用砖510块。
一共需要多少块砖?6、一个正方体它的棱长是4厘米,它的表面积是多少平方厘米?7、做一长方体的游泳池,长60米,宽30米,深2分米,游泳池内贴上瓷砖,至少要瓷砖多少平方米?9、一个正方体表面积是180平方厘米,它的底面积是多少平方厘米?10、一段方钢长4米,横截面是边长5分米的正方形,这段方钢的表面积是多少二、综合二、应用题:1.用一根168厘米的铁丝,焊接成一个长方体教具,长20厘米,宽12厘米,它的高是多少厘米?2.一张办公桌有3个抽屉,每个抽屉长50厘米,宽30厘米,高10厘米,做5张桌的抽屉至少需要木板多少平方米?3.一个长方体食品盒,长10厘米,宽6厘米,高12厘米,如果围着它贴一圈商标纸,这圈商标纸至少有多少平方厘米?4.一根长方体木材,和长2.5米,宽0.4米,厚0.25米,每立方米木料重384千克,这根木料重多少千克?5.实验小学修一条长60米,宽60米的长方形操场.先铺10厘米厚的三合土,再铺4厘米厚的煤渣.需要三合土、煤渣各多少立方米?6.把两块棱长2.5分米的正方体木块粘接成一个长方体,这个长方体的体积和表面积各是多少?7.一个长方体和一个正方体的体积相等,已知正方体的棱长是8分米,长方体的高是4分米,求长方体的底面积。
8.一个操场长80米,宽60米,在这个操场上铺5厘米厚的土。
如果每个学生每天挑土0.4立方米,400个学生几天可以铺完?9.把两块棱长2.5分米的正方体木块粘接成一个长方体迪个长方体的体积和表面积各是多少?10.制作一个长8分米、宽5分米、高6分米的长方体木盒,至少需要多少木板?11.某校五年级(1)班师生自己动手粉刷教室,教室的长9米,宽6米,高4米,门窗面积占18平方米,要粉刷四周墙壁和顶棚,如果每平方米用白灰0.25千克,粉刷完这一教室共用白灰多少千克?12.一个正方体木块,表面积是50平方米,如果把它截成8个体积相等的正方体小木块,每个小木块的表面积是多少?13.有一个底面积是正方形的长方体,高是20厘米,侧面展开正好是一个正方形。
苏教版《长方体和正方体的表面积》练习题及答案正式资料doc
苏教版《长方体和正方体的表面积》练习题及答案正式资料doc 正式版文档资料可直接使用,可编辑,欢迎下载长方体和正方体的表面积不夯实基础,难建成高楼。
1. 填一填。
(1)一个长方体,它的长是2米,宽和高都是0.6米。
它的表面积是( )平方米。
(2)一个正方体的棱长是0.4米,这个正方体的表面积是( )平方米。
(3)一个正方体的棱长和是36分米,这个正方体的表面积是( )平方分米。
(4)一个长方体的长是8厘米,宽是4厘米,高是2厘米。
这个长方体六个面中最大的一个面的面积是( )平方厘米,最小的一个面的面积是( )平方厘米。
这个长方体的表面积是( )平方厘米。
2. 计算下面形体的表面积。
(单位:厘米)(1)(2)(3)3. 一个正方体的棱长的总和是36cm,它的表面积是多少平方厘米?重点难点,一网打尽。
4. 写出下表中物体的形状是正方体还是长方体,再求表面积和棱长总和。
形长宽高表面积棱长5. 一个长方体木箱,长1.2米、宽0.8米、高0.6米,做这个木箱至少要用多少平方米的木板?如果这个木箱无盖呢?6. 把一个棱长是5分米的正方体木箱的表面涂上油漆,一共需油漆多少克?(每平方分米用漆5克。
)7. 要制作12节长方体铁皮烟囱,每节长2米、宽4分米、高3分米,要用多少平方米的铁皮?举一反三,应用创新,方能一显身手!8. 一块”舒肤佳”牌香皂长8厘米、宽5厘米、高4厘米,商场进行促销活动,把3块同样的香皂装在一起销售。
请你设计一下,怎样才能最节省包装纸?并且算一算至少需要多少平方厘米包装纸。
第3课时1. (1)5.52 (2)0.96 (3)54 (4)32 8 1122. (1)1344平方厘米(2)73.5平方厘米(3)528平方厘米3. 54平方厘米4. 略5. (1.2×0.8+1.2×0.6+0.8×0.6)×2=4.32(平方米)无盖:4.32-1.2×0.8=3.36(平方米)6. 52×6×5=750(克)7. 4分米=0.4米3分米=0.3米(0.4×2+0.3×2)×2×12=33.6(平方米)8. (8×5+8×4+5×4)×2×3-8×5×4=392(cm2)计算下列各图的棱长总和、表面积、体积。
长方体和正方体体积练习题(含答案)
方法一:15×12×4=720立方厘米 15×12×4.5=810立方厘米 810-720=90立方厘米
方法二:4.5-4=0.5厘米 15×12×0.5=90立方厘米
2.一块长32厘米,宽25厘米的铁皮,从四角 各切掉一个边长为3厘米的正方形,然后做成 盒子,这个盒子用了多少铁皮?它的容积是 多少立方厘米?
铁皮面积: 32×25=800平方厘米 3×3×4=36平方厘米 800-36=764平方厘米
容积: (32-2×3)×(25-2×3)×3=1482立方厘米
3.把84L的水倒入7dm,宽4dm,高5dm的鱼 缸内,水面距离缸边有多少分米?
方法一:7×5×4=140立方分米 84升=84立方分米 140-84=56立方厘米 56÷(7×4)=2分米
方法二:84÷(7×4)=3分米 5-3=2分米
4.数学老师用一根长56cm的铁丝,做成一个 长6cm,宽5cm的长方体框架教具,这个教具 的体积是多少立方厘米?
56÷4=14厘米 14-6-5=3厘米 6×5×3=90立方厘米
四: 表面积: 6×6×6=216平方厘米 体积: 6×6×6=216立方厘米 3×3×3=27立方厘米 216-27=189立方厘米
五: 96÷4=24平方厘米 24÷3=8厘米 8×8×8=512立方厘米
六年级数学长方体和正方体试题答案及解析
六年级数学长方体和正方体试题答案及解析1.右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.2.(西城区)一个长方体水槽,从里面量长2.5分米,宽1.8分米,高1.5分米,这个水槽的容积是多少立方分米?【答案】这个水槽的容积是6.75立方分米【解析】分析:已知长方体的长、宽、高,根据长方体的体积=长×宽×高,即可求得体积.解答:解:2.5×1.8×1.5,=4.5×1.5,=6.75(立方分米);答:这个水槽的容积是6.75立方分米.点评:此题考查了长方体的体积计算,可根据已知直接运用公式计算.3.(2012•桐庐县)如图的立体图形是用边长为1厘米的小正方体积木叠成的.这个立体图形的表面积是平方厘米,体积是立方厘米.【答案】72,30【解析】(1)这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题;(2)根据题干,这个几何体的体积就是这些小正方体的体积之和,棱长1厘米的正方体的体积是1立方厘米,由此只要数出有几个小正方体就能求得这个几何体的体积.解答:解:(1)图中几何体露出的面有:10×4+16×2=72(个),所以这个几何体的表面积是:1×1×72=72(平方厘米);(2)这个几何体共有4层组成,所以共有小正方体的个数为:1+4+9+16=30(个),所以这个几何体的体积为:1×1×1×30=30(立方厘米);答:这个图形的表面积是72平方厘米,体积是30立方厘米.故答案为:72,30.点评:此题考查了观察几何体的方法的灵活应用;抓住这个几何体的体积等于这些小正方体的体积之和;几何体的表面积是露出的小正方体的面的面积之和是解决此类问题的关键.4.一块长方形铁皮,长20厘米,宽16厘米,在它的四个角分别减去边长4厘米的正方形,然后焊成一个无盖的铁盒子,它的容积是多少?焊这个盒子至少用多少铁皮?【答案】铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.【解析】计算铁盒的容积,需要求出盒子的长、宽,长方形铁皮的长、宽都要减去两个4厘米即是盒子的长、宽,高是4厘米.根据长方体的容积公式解答即可;求做这样一个盒子至少需要多少铁皮,用长方形铁皮的面积减去四个边长4厘米的正方形的面积.解答:解;(20﹣4﹣4)×(16﹣4﹣4)×4=12×8×4=384(立方厘米);20×16﹣4×4×4=320﹣64=256(平方厘米);答:铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.点评:此题这样考查长方体的表面积和体积的计算,在计算长方体的表面积的时候,一定要分清求几个面的面积,根据公式解答即可.5.用铁丝做棱长8厘米的正方体模型一个,至少用铁丝厘米.【答案】96【解析】根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12.把数据代入棱长总和公式解答即可.解答:解:8×12=96(厘米)答:至少需要铁丝96厘米.故答案为:96.点评:此题主要考查正方体的特征及棱长总和的计算方法.6.一个长方体铁皮桶,底面是一个周长为1209厘米的正方形,高30厘米,这个桶最多可装水多少升?(保留整升数)【答案】这个桶最多可装水2741升【解析】先计算出油桶的底面积,再依据长方体的体积公式即可求出油的体积即可.解答:解:(1)1209÷4=302.25(厘米)302.25×302.25×30=2740651.875(立方厘米)≈2741(升)答:这个桶最多可装水2741升.点评:此题主要考查的是长方体表面积和长方体体积公式的灵活应用.7.1时25分=时;3千克80克=克;2立方米10立方分米=立方米;2平方千米=平方米.【答案】1,3080,2.01,2000000.【解析】分析:把1时25分化成时数,用25除以进率60,然后再加上1;把3千克80克化成克数,用3乘进率1000,然后再加上80;把2立方米10立方分米化成立方米数,用10除以进率1000,然后再加上2;把2平方千米化成平方米数,用2乘进率1000000;即可得解.解答:解:1时25分=1时;3千克80克=3080克;2立方米10立方分米=2.01立方米;2平方千米=2000000平方米;故答案为:1,3080,2.01,2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.8.一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A.36平方厘米B.72平方厘米C.108平方厘米D.216平方厘米【答案】D【解析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.解答:解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D9.两个棱长5厘米的正方体拼成一个长方体,这个长方体的棱长总和是120厘米..(判断对错)【答案】错误.【解析】根据题意,这个长方体的长变为10厘米,但是宽和高没变还是5厘米,由此即可判断.解:(10+5+5)×4=80厘米,所以原题说法错误.10.把你的拳头伸进装满水的容器中,溢出来的水约()A.1.3立方米B.13立方分米C.130立方厘米D.1300毫升【答案】C【解析】一只拳头伸进装满水的脸盆中,溢出来的水的体积就是拳头的体积,根据生活经验可以知道,人的拳头的体积可能是130立方厘米;由此解答即可.解答:解:把你的拳头伸进装满水的容器中,溢出来的水约130立方厘米;故选:C.点评:此题考查数的估算,根据生活经验和所学知识求解.11.把32厘米的钢筋折成一个最大的正方形,它的面积是平方厘米,如果折成一个最大正方体,它的体积是立方厘米.【答案】64,.【解析】把32厘米的钢筋折成一个最大的正方形,它的边长是32÷4=8厘米,根据正方形的面积=边长×边长可求出它的面积,如果折成一个最大的正方体,它的棱长是32÷12=厘米,根据正方体的体积=棱长×棱长×棱长可求出它的体积,据此解答.解答:解:32÷4=8(厘米)8×8=64(平方厘米)32÷12=(厘米)××=(立方厘米)答:它的面积是64平方厘米,如果折成一个最大正方体,它的体积是立方厘米.故答案为:64,.点评:本题的重点是求出围成的正方形的边长和正方体的棱长,再根据正方形的面积公式和正方体的体积公式进行解答.12.一个长方体长是5厘米,宽是4厘米,高是3厘米.它的棱长总和是厘米,表面积是平方厘米,体积是立方厘米.【答案】48;94;60.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,相对的面的面积相等,长方体的棱长总和=(a+b+h)×4;表面积公式是s=(ab+ah+bh)×2;体积公式是v=abh;分别代入数据计算即可.解答:解:棱长之和:(5+4+3)×4=12×4,=48(厘米);表面积:(5×4+5×3+4×3)×2=(20+15+12)×2,=47×2,=94(平方厘米);体积:5×4×3=60(立方厘米);答:它的棱长总和是48厘米,表面积是94平方厘米,体积是60立方厘米.故答案为:48;94;60.点评:此题考查长了方体的特征以及棱长总和、表面积、体积的计算,直接根据它们的公式计算即可.13.一个长方体正好可以切成3个一样的正方体,切开后每个正方体的表面积是12平方厘米,那么原来这个长方体的表面积是()平方厘米.A.36B.30C.28D.24【答案】C【解析】解:12×3﹣(12÷6)×4,=36﹣8,=28(平方厘米);答:原来这个长方体的表面积是28平方厘米;故选:C.14.一个棱长是4分米的正方体,棱长总和是()分米.A.16B.24C.32D.48【答案】D【解析】一个正方体有12条棱,棱长总和为12条棱的长度和.解:4×12=48(分米).故选:D.【点评】此题考查计算正方体的棱长总和的方法,即用棱长乘12即可.15.一块正方体的石头,棱长是5分米,每立方分米的石头大约重2.7千克,这块石头重有多少千克?【答案】337.5千克【解析】根据正方体的体积计算公式求出它的体积,再求它的质量即可.解:5×5×5=125(立方分米);2.7×125=337.5(千克);答:这块石头重有337.5千克.【点评】此题主要考查正方体的体积计算方法,能够利用正方体的体积计算方法解决有关的实际问题.16.有一块棱长是8厘米的正方体的铁皮,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?【答案】25.6厘米【解析】先利用正方体的体积V=a3,求出这块铁块的体积,因为这块铁块的体积是不变的,于是可以利用长方体的体积V=Sh求出溶铸成的长方体的长.解:8×8×8÷20=512÷20=25.6(厘米)答:这个长方体的长是25.6厘米.【点评】此题主要考查正方体和长方体的体积的计算方法在实际中的应用,关键是明白:这块铁块的体积是不变的.17.从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如图),它的表面积()A.和原来同样大B.比原来小C.比原来大D.无法判断【答案】A【解析】从这一个体积是30立方厘米的长方体木块中,挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个面.所以长方体的表面积没发生变化.解:因为挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个,所以长方体的表面积没发生变化.故选:A.【点评】本题考查了关于长方体的表面积的问题,考查了学生观察,分析,解决问题的能力.18.如图是长方体展开图,测量需要的数据,并计算出长方体体积.长方体的长是厘米,宽是厘米,高是厘米.【答案】2.5、1.8、0.9.【解析】首先测量出这个长方体的长、宽、高,再根据长方体的体积公式:v=abh,把数据代入公式解答.解:如图:2.5×1.8×0.9=4.05(立方厘米),答:这个长方体的体积是4.05立方厘米.故答案为:2.5、1.8、0.9.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的体积公式的灵活运用.19.把一个大正方体切割成27个同样大小的小正方体后,3面涂色的有个.1面涂色的有________ 个.【答案】8,6.【解析】根据只有一面涂色的小正方体在每个正方体的面上,只有2面涂色的小正方体在长方体的棱长上(不包括8个顶点处的小正方体)3面三面涂色的小正方体都在顶点处,即可解答问题.解:3×3×3=27,一个大正方体切割成27个同样大小的小正方体,则每条棱上有3个小正方体,大正方体8个顶点上各有1个3面涂色的小正方体,因此三面涂色的小正方体一共有8个;每个面的正中间的一个只有一面涂色,故只有一面涂色的正方体有6个;故答案为:8,6.【点评】抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.20.至少8个小正方体才能拼成一个大一些的正方体..【答案】√【解析】要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,由此即可求得小正方体的个数.解:要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,所以使用的小正方体个数最少是:2×2×2=8(个).故答案为:√.【点评】此题考查了小正方体拼组大正方体的特点的灵活应用.21.有一个长方体,长是a米,宽是b米,高是h米,若把它的高增加5米,则这个长方体的体积增加()A.abh+5B.ab(h+5)C.5ab D.以上都不是【答案】C【解析】此题可直接考虑,长方体的高增加5米,而长和宽不变增加的部分仍是一个长方体,由长方体的体积计算公式直接得到结果.解:高增加5米,而长和宽不变,增加的部分是一个长是a米,宽是b米,高是5米的长方体,所以它的体积V=5ab;故选C.【点评】此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高.22. 85000毫升= 升= 立方米.【答案】85,0.085.【解析】低级单位毫升化高级单位升除以进率1000;化高级单位立方米除以进率1000000.解:85000毫升=85升=0.085立方米.故答案为:85,0.085.【点评】立方米、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.23.一个油桶可装200L汽油,它的()是200L.A.体积B.容积C.表面积D.重量【答案】B【解析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答.解:一个油桶可装200L汽油,它的容积是200L.故选:B.【点评】此题考查的目的是理解掌握容积的意义及应用.24.用一根铁丝焊接成一个长6厘米,宽5厘米,高4厘米的长方体框架,至少需要铁丝厘米,如果将这根铁丝改围成一个正方体框架,这个正方体的体积是立方厘米.【答案】60,125.【解析】根据长方体的棱长总和=(长+宽+高)×4,把数据代入公式即可求出这根铁丝的长度,再根据正方体的特征,正方体的12条棱的长度都相等,因此,用这根铁丝的长度除以12求出正方体的棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答.解:(6+5+4)×4=15×4=60(厘米),60÷12=5(厘米),5×5×5=125(立方厘米),答:至少需要铁丝60厘米,这根正方体的体积是125立方厘米.故答案为:60,125.【点评】此题主要考查长方体、正方体的棱长总和公式、以及正方体的体积公式的灵活运用,关键是熟记公式.25.如图,正方体木块的表面积是96平方厘米。
(完整版)“长方体和正方体”练习题及答案
六年级第一学期“长方体和正方体”练习题姓名成绩一、填空题。
(每空1分,共24分)1、在括号里填上合适的单位名称。
⑴一小瓶红墨水是60()⑵一台电冰箱的体积约是240()⑶一种油箱的容积是0.6()⑷一只火柴盒的体积约是9.6()⑸一种水箱可容水约24()2、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,还有()个面的面积相等,长方体的表面积是()。
3、一个长方体的体积是162立方厘米,它的底面积是32.4平方厘米,底面长8.1厘米,这个长方体的高是( )厘米,宽是( )厘米。
4、一个长方体的体积是240立方厘米,长是8厘米,宽是6厘米,高是()厘米。
5、 6.4立方米=( )立方分米 4500毫升=( )升80立方厘米=()立方分米 3.8升 = ( )毫升7.05立方分米=( )升 50平方厘米=()平方分米6、右图是由棱长1厘米的小正方体拼成的,它的体积是()立方厘米,至少再加上()个小正方体,就能成为一个较大的正方体。
7、一个长方体,长、宽、高分别为a米、b米、c米,如果高增加4米,新的长方体比原来长方体增加了()立方米。
8、一个长方体的表面积是90平方分米,把它平均分开正好成两个相等的正方体,每个正方体的表面积是()平方分米。
9、用3个棱长4厘米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方厘米。
10、一个长方体相邻三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积为()。
11、一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,得到其中一个长方体的表面积比原来大长方体的表面积减少120平方厘米。
原来长方体的体积是()立方厘米。
二、判断题。
(每题2分,共12分)1、正方体棱长扩大到原来的2倍,体积扩大到原来的8倍。
……………()2、a3=3a。
……………………………………………………………………()3、一个长方体茶叶罐,体积和容积相等。
长方体和正方体练习题
长方体和正方体第1课时长方体1、填空不困难,全对不简单。
(1)长方体有()个顶点,有()条棱,有()个面。
(2)在生活中,你见到的物体有哪些是长方体,请写出三个()。
(3)长方体相对的面(),相对的棱()。
(4)长方体的棱可以分()组,每组有()条。
(5)由一个顶点引出的3条棱,分别叫做长方体的()、()和()。
2、我是小法官,对错我会判。
(1)长方体是特殊的正方体。
()(2)有6个面、12条棱、8个顶点的物体是长方体。
()(3)长方体中不相对的棱,长度都不相等。
()(4)长方体的长、宽、高一定都不相等。
()(5)与长方体的任意一条棱平行的棱都有4条。
()3、脑筋转转转,答案全发现。
(1)下图中能表示长方体和正方体关系的是()。
(2)一个长方体(不包括正方体),最多有()个面的正方形。
A.1B.2C.3D.44、把下图补充成完整的长方体。
5、我是列式计算小专家。
(1)用一根长72m的铁丝,焊接一个长10m,宽6m的长方体,这个长方体的高为多少米?(2)用彩带捆扎下面的礼品盒,需要多少厘米?(彩带结长15m)第2课时正方体1、填空不困难,全对不简单。
(1)正方体是由()个完全相同的正方形围成的()。
(2)正方体还叫(),它有()条棱,并且它们的长度都是(),有()个顶点。
生活中哪些物体是正方体,请举两例:()。
2、我是小法官,对错我会判。
(1)正方体是六个面都相等的正方形,而长方体是六个面都相等的长方形。
()(2)有四个面都是相等的正方形的长方体一定是正方体。
()(3)从正方体的一个顶点引出的三条棱,它们的长度一定相等。
()(4)4个正方体可以拼成一个大正方体。
()3、脑筋转转转,答案全发现。
(1)下列图形中,()是正方体。
(2)下列()图形可以折成一个正方体。
(3)一个正方体的棱长总和是60cm,它的棱长是()。
A.4cmB.5cmC.8cmD.10cm4、动动小脑瓜,一起画一画。
(1)用12个棱长为1cm的小正方体摆成形状不同的长方体,可以摆多少种?(2)把下图补充成一个完整的正方体。
(完整版)长方体和正方体的表面积知识点及练习题
长方体和正方体的表面积知识点1、长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积 = 棱长×棱长×62、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
长方体和正方体表面积知识巩固一、填空题。
1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。
2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。
4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。
5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。
6、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。
7、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。
五年级下册数学试题 第三章《长方体和正方体》(含答案)(人教版)
第三章《长方体和正方体》一.选择题1.(2020秋•新沂市期中)4瓶250毫升的饮料正好是()升.A.1 B.100 C.10002.(2020秋•洪洞县期中)如果两个不同容器的容积相等,它们的体积()A.相等B.不相等C.无法判断3.(2020春•和平区期末)小明用同一块橡皮泥先捏成一个正方体,又捏成一个球,体积()A.变大B.变小C.不变4.(2019•永州模拟)一个圆柱形粮仓,要求能放进多少粮食,是求这个粮仓的()A.体积B.容积C.表面积D.底面积5.(2019春•兴县期末)长方体的6个面展开后()A.都是长方形B.至少有2个面是长方形C.至少有4个面是长方形6.(2019•长沙)一个长方体的底是面积为3平方米的正方形,它的侧面展开图正好是一个正方形,这个长方体的侧面积是()平方米.A.18 B.48 C.54二.填空题7.(2019•株洲模拟)公顷=平方米2.04升=毫升3.25小时=小时分2吨50千克=吨8.(2019春•高密市期末)用一根长36厘米的铁丝做一个正方体模型,这个正方体模型的表面积是平方厘米.9.(2018春•乌鲁木齐期末)750毫升=升7.65立方米=立方分米.10.(2018秋•盐城月考)计量比较少的液体,通常用作单位,可以用字母表示.11.(2018•延平区)如图,一个长方体是由三个同样大小的正方体拼成的,如果去掉一个正方体,表面积就比原来减少30cm2.原来长方体的表面积是cm2.三.判断题13.(2020春•扶风县期末)物体所占空间越大,表示它的体积越大..(判断对错)14.(2020春•芦溪县期末)一个长方体棱的总长为60厘米,相交于一个顶点的三条棱的长度和是15厘米..(判断对错)15.(2019春•昌乐县期末)物体的容积就是这个物体的体积..(判断对错)16.(2019春•禅城区期末)相邻两个面是正方形的长方体一定是正方体..(判断对错)17.(2016春•托里县校级期中)正方体的棱长扩大2倍,则正方体的表面积就扩大4倍.(判断对错)18.(2014春•楚雄市期中)一个火柴盒的容积大约是8立方米..(判断对错)四.计算题19.(2014春•海口校级月考)一个长方体从正面看如图(1)所示,从上面看如图(2)所示.求该长方体的表面积.五.应用题20.两根同样长的铁丝,一根正好围成一个长9cm、宽4cm、高2cm的长方体框架,另一根正好围成一个正方体框架,这个正方体的棱长是多少厘米?(接头忽略不计)21.一个长方体的饼干盒,长18cm,宽12cm,高20cm,现在要围着它贴一圈商标纸(上下两个面不贴),如果商标纸的接头处是3cm,那么这张商标纸的面积是多少平方厘米?六.解答题22.(2007•江阴市)有一个立方体,每个面上分别写着数字1、2、3、4、5、6,有三个人从不同角度观察的结果如图所示,那么这个立方体1的对面是,3的对面是,4的对面23.王老师请工人给他做一个棱长为60cm的玻璃鱼缸,至少需要多大面积的玻璃?24.一个木箱的形状是正方体,棱长为0.8m,制作这个木箱至少需要木板多少平方米?(木箱的上面没有盖)25.(2019春•长清区期末)科技小组用60厘米的铁丝做个长方体模型,这个长方体的长是6厘米,宽是5厘米,高是多少厘米?26.(2019春•长清区期末)亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(没有底面).至少需要用布多少平方米?27.(2017春•裕安区期末)一个长方体无盖的玻璃鱼缸,长2米,宽0.5米,高1米,做这样的一个鱼缸,需玻璃多少平方米?28.把12个棱长都是5厘米的小正方体纸盒用包装纸包装成长方体,至少需要多少平方厘米的包装纸?(包装时重叠部分多用120平方厘米的包装纸.)29.(2019•上街区)用橡皮泥做一个圆柱体学具,做出的圆柱底面直径4厘米,高6厘米.如果再做一个长方体纸盒,使橡皮泥圆柱正好装进去,至少需要多少平方厘米硬纸?30.(2015•深圳)如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?参考答案与试题解析一.选择题1.【分析】首先求4个250是多少用乘法,得到1000毫升,然后把1000毫升化成升数,用1000除以进率1000;即可得解.【解答】解:250×4=1000(毫升)答:4瓶250毫升的饮料正好是1升.故选:A.【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.2.【分析】容积是指容器所能容纳物体体积的大小,体积是指这个物体所占空间的大小,容积的计算方法和体积的计算方法相同,但是两个不同意义的概念,所以无法判断.【解答】解:容积和体积不完全相同,所以如果两个不同容器的容积相等,它们的体积的大小无法判断.故选:C.【点评】正确掌握容积和体积的概念是解决此题的关键.3.【分析】同一块橡皮泥捏成不同的形状,只是形状和表面积的变化,所占空间的大小不变,即体积不变.【解答】解:小明用同一块橡皮泥先捏成一个正方体,又捏成一个球,体积不变;故选:C.【点评】解答本题的关键是,正方体或球的体积就是橡皮泥的体积,不论形状是否改变,橡皮泥的体积不会发生改变.4.【分析】此题考查了体积、容积、表面积和底面积的概念问题,要求粮仓能放进多少粮食,就是球的粮仓的容积.【解答】解:一个圆柱形粮仓,要求能放进多少粮食,是求这个粮仓的容积;故选:B。
新苏教版小学六年级上册第一单元《长方体和正方体》过关练习试题及答案(共2套)
新苏教版六年级上册第一单元《长方体和正方体》测试卷(一)姓名: 班级: 得分:一、选择题(10分)1.把一块长方体的木块,平均锯成两块后,木块的表面积和原来比较,( )。
A.减少了B.增加了C.没有变化2.一个长方体,若将长增加3cm,则体积增加60c3m;若将宽增加 3cm,则体积增加120c3m;若将高增加3cm,则体积增加150c3m。
原长方体的表面积是( )cm²。
A.110 B.220 C.330 D.4403.一个长方体的长、宽、高都扩大到原来的3倍,表面积扩大到原来的( )倍。
A.3 B.6 C.9 D.274.把折起来,可以折成一个正方体,和1号相对的面是( )号。
A.4 B.5 C.65.一个长方体底面是面积为9平方分米的正方形,它的侧面展开图正好是一个正方形,这个长方体的表面积为()平方分米。
A.90 B.144 C.162 D.216二、填空题(29分)6.把一根长8米的长方体木料平行于侧面截成4段后,表面积比原来增加了0.36平方米,原来这根木料的体积是(____)立方分米。
7.用3个棱长为2厘米的小正方体拼成一个大长方体,这个大长方体的表面积是(____)平方厘米,体积是(____)立方厘米。
8.把一个棱长是a厘米的正方体切成两个相等的小长方体,两个小长方体的表面积的和比原来正方体的表面积增加________平方厘米.9.小明将一个石块完全浸没在装水的底面积为54平方厘米的玻璃容器中,容器的水由原来的4厘米上升到6厘米,这个石块的体积是(___________)立方厘米。
10.一个长方体冰箱长6分米,宽5分米,高1.8米,这个冰箱的棱长总和是(____),它的占地面积是(______),包装这个冰箱至少要用(___)的硬纸板,它所占的空间是(___)。
11.在括号里填上适当的单位名称。
一台空调的体积约是80(______)篮球场占地面积约是450(______)一块糖的体积约是9(______)一个热水瓶的容积约是3(______)12.在括号里填上适当的数。
小学奥数:长方体与正方体(二).专项练习及答案解析
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形示例体积公式相关要素长方体V abh = V Sh =三要素:a 、b 、h 二要素:S 、h正方体3V a =V Sh =一要素:a 二要素:S 、h不规则形体的体积常用方法: ①化虚为实法 ②切片转化法例题精讲长方体与正方体(二)③先补后去法④实际操作法⑤画图建模法【例 1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例 2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。
【答案】6【例 3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例 4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
长方体正方体 练习题含答案
长方体正方体练习题含答案1.需要计算的是长方体的周长,公式是(长+宽+高)×2×2,计算结果为320厘米。
2.需要计算的是长方体的周长,公式是(长+宽)×2+高×4,计算结果为370米。
3.需要在长方体的每个面上都安装角铁,计算公式是(长+宽+高)×4,计算结果为13.6米。
4.需要计算的是长方体的表面积,公式是(长×高+宽×高)×2,计算结果为384平方厘米。
5.(1)需要计算正方体的表面积,公式是边长的平方×6,计算结果为平方厘米。
(2)需要计算正方体的周长,公式是边长×4,计算结果为184厘米,换算成米为1.84米,因此一卷长4.5米的胶带纸不够用。
6.需要计算正方体的表面积,公式是边长的平方×6,计算结果为45平方分米。
7.需要计算长方体的表面积,公式是(长×宽+长×高+宽×高)×2,计算结果为12.96平方分米。
8.需要计算长方体的表面积,减去门窗的面积,公式是(长×宽+长×高+宽×高)×2-门窗面积,计算结果为120.6平方米,乘以每平方米的涂料费用4元,计算结果为482.4元。
长方形木料的长为5m,横截面的面积为0.08平方米。
计算木料的体积,可以使用公式“体积=底面积×高”,即0.08×5=0.4立方米。
因此,这根木料的体积是0.4立方米。
有500根方木,每根方木横截面的面积是2.6平方分米,长为3m。
求这些木料的总体积。
首先将横截面的面积转换为平方米,即2.6平方分米=0.024平方米。
然后使用公式“体积=底面积×高×数量”,即0.024×3×500=36方。
因此,这些木料的总体积是36方。
要砌一道长15m、厚24cm、高3m的砖墙,每立方米需要用520块砖。
《长方体和正方体的展开图》练习题及答案
第2课时长方体和正方体的展开图
开心预习新课,轻松搞定基础。
1. 分别找一个长方体纸盒子和一个正方体纸盒子,并将它们展开来,观察长方体和正方体
的展开图各有什么特点。
重难疑点,一网打尽。
2. 把下面的图形沿虚线折叠,哪些能折成一个封闭的长方体。
(在括号里画“√”。
)
(1) (2)
(3) (4)
3. 下面图形中,沿虚线折叠后能围成正方体的是( )。
源于教材、宽于教材、拓展探究显身手。
4. 下面哪个正方体是由示意图的纸板折成的?
5. 下图是( )方体的展开图,长是( )cm,宽是( )cm,高是( )cm,前面的面
积是( )cm2,左面的面积是( )cm2,下面的面积是( )cm2。
第2课时
1. 略
2. 只有(1)中的图形能折成一个长方体
3. D
4. (2)
5. 长21 14 5 105 70 294。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9课时综合练习
不夯实基础,难建成高楼。
1.填一填。
(1)一个长方体的长是5厘米、宽是4厘米、高是3厘米,它的底面积是( ),表面积是( ),体积是( )。
(2)一个长方体蓄水池,占地15平方米,池深1.6米,池内最多能蓄水( )立方米。
(3)一个长方体铁皮水桶的高是6分米,底面是边长为3分米的正方形,这个铁皮水桶的容积是( )升。
(4)一个长方体的体积是30立方厘米,长是6厘米,宽是5厘米,高是( )厘米。
(5)一个正方体的底面周长是16厘米,它的表面积是( )平方厘米,体积是( )立方厘米。
2. 一个正方体钢坯棱长6分米,把它锻造成横截面是边长为3厘米的正方形的长方体钢材,钢材长多少米?
3. 一个长方体油桶,底面积是18平方分米,它可装43.2千克的油,如果每升油重0.8千克,那么这个油桶的高是多少分米?
4. 与同桌合作,用18个同样大小、棱长都为1cm的小正方体摆成不同的长方体,并完成下表。
重点难点,一网打尽。
5. 家具厂订购500根方木,每根方木横截面的面积是24平方分米,长是3米。
这些方木一共是多少立方米?
6. 用下面五块玻璃(单位:分米,如下图)可以拼接成一个无盖的长方体玻璃容器(接头处忽略不计)。
现将600升液体倒入这个容器中,液面的高度是多少分米?
7. 一个长方体的容器,底面积是16平方分米,装的水高6分米,现放入一个体积是24立方分米的铁块,这时水面高多少分米?(水未溢出。
)
8. 一个长方体,如果高减少3厘米,那么就成为一个正方体。
这时表面积比原来减少了96平方厘米。
原来长方体的体积是多少立方厘米?
举一反三,应用创新,方能一显身手!
9. 一个长方体的表面积是162平方分米,有两个相对的面是边长为3分米的正方形,求这个长方体的体积。
第9课时
1. (1)20平方厘米94平方厘米60立方厘米
(2)24 (3)54 (4)1 (5)96 64
2. 6分米=60厘米60×60×60÷(3×3)=24000(厘米)
24000厘米=240米
3. 43.2÷0.8÷18=3(分米)
4. 略
5. 24平方分米=0.24平方米0.24×3×500=360(立方米)
6. 600÷(20×5)=6(分米)
7. 24÷16+6=7.5(分米)
8. 96÷4÷3=8(厘米) 8×8×(8+3)=704(立方厘米)
提示:减少的表面积96平方厘米就是高3厘米的长方体的面积和。
9. (162-3×3×2)÷4=36(平方分米)
36×3=108(立方分米)。