01 质点运动学(1)作业解答
01第一章质点运动学作业答案.doc

[C ] 1、[基础训练1]如图所示,湖中有一小船, 轮拉湖中的船向岸边运动.设该人以匀速率%收绳, 是(A)匀加速运动.(C)变加速运动.有人用绳绕过岸上一定高度处的定滑 绳不伸长、湖水静止,则小船的运动(B)匀减速运动.(D)变减速运动.(E) 匀速直线运动.设船离岸边x 米,dx I dl dt x dtVx 2 + /i 2dldlx dt dt第二色质点运动学一 .选择题:[B ] 2、[基础训练2〕一质点沿x 轴作直线运动,其*1曲线如图所示,如仁0时,质 点位于坐标原点,则/=4.5 s 时,质点在x 轴上的位置为(A) 5m. (B) 2m. (C)0. (D) -2 m. (E) -5 m. 4.5s【提示】x= J vdt,质点在工轴上的位置即为这段时间 0 内V-t 曲线下的面积的代数和:x = (1 + 2.5)x24-2-(24-1)x14-2 = 2(772)[B ] 3、(自测提高3)质点沿半径为R 的圆周作匀速率运动,每7秒转一圈.在27 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2nR/T, I TI R/T.(C) 0,0. (B) 0,2nR/T (D) 2nRIT , 0. 【提示】平均速度大小:i7 |Ar| 八 —_ A S 2丸 R ,=——=0 平均速率:v ==(注意定义式及符号的规范)[C ]4、[自测提高6]某物体的运动规律为du/dl = -ku 气,式中的人为大于零的常量.当 f = 0时,初速为功),则速度P 与时间,的函数关系是 1 , 2 (A) V — —kt + V (}, 21 7 2(B) v = ---- kt + V (},2【提示】如图建坐标系,可见,加速度与速度同向,且加速度随时间变化。
【提示】dv/dt = -kv2t,分离变量并积分,J47小1 kt2 1 =一ktdt,得一= ----- 1 --- 0 v 2 %1 kt2 1(C)丁项+私[B ]5、[自测提高7]在相对地面静止的坐标系内,A、B二船都以2 m/s速率匀速行驶, A船沿尤轴正向,8船沿y轴正向.今在A船上设置与静止坐标系方向相同的坐标系(X、方向单位矢用亍、/表示),那么在A船上的坐标系中,8船的速度(以m/s为单位)为(A)2f +2 J . (B)-2f +2 J . (C) ~2i ~2j .(D)2z*-2j •【提示】礼对A =%对地“地私=京对地一总对地=2J-2F=-2F+2;(m/s).(速度变换式是矢量式,应加上矢量符号)二.填空题1、[基础训练8]质点沿半径为R的圆周运动,运动学方程为。
《大学物理习题集》(上)习题解答

)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
第01章(质点运动学)习题答案

思 考 题1-1 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够 使两者一致?答:矢径即位置矢量,是从坐标原点O 指向质点所在处P 的有向线段。
位移 r vD 和矢径r v不同,矢径确定某一时刻质点的位置,位移则描述某段时间内始未质点位置的变化。
矢径是相对坐标原点的,位移矢量是相对初始位置的。
对于相对静止的不同坐标系来说,位矢依 赖于坐标系的选择,而位移则与所选取的坐标系无关。
若取初始位置为坐标原点才能够使两 者一致。
1-2 在下列各图中质点 M 作曲线运动,指出哪些运动是不可能的?答:(A) 质点只要作曲线运动,肯定有法向加速度,不可能加速度为零。
(C) 在质点作曲线运动时,加速度的方向总是指向轨迹曲线凹的一侧。
(D) 质点只要作曲线运动,肯定有法向加速度,不可能只有切向加速度。
1-3 下列说法哪一条是正确的?(A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成 ( ) 2 / 2 1 v v v += ,其中 v 1、v 2 分 别为初、末速率.(D) 运动物体速率不变时,速度可以变化.答:加速度恒定不变时,意味着速度的大小和方向的变化是恒定的。
不是物体运动方向 不变。
平均速率不等于平均速度的大小。
若速率的变化是线性的(加速度恒定)平均速率表 达式才可以写成 ( ) 2 / 2 1 v v v + = , 否则不可以。
只有运动物体速率不变时, 速度可以变化. 才 是正确的。
1-4 如图所示,质点作曲线运动,质点的加速度 a 是恒矢量(a 1=a 2=a 3=a ).试问质点是否能作匀变速率运动? 答:质点作匀变速率运动要求切向加速度是恒量,如图 所示, 质点作曲线运动, 质点的加速度 a 是恒矢量(a 1=a 2=a 3=a) 则切向分量不一样,质点不能作匀变速率运动。
1-5 以下五种运动形式中,加速度 a 保持不变的运动是哪一a 3M 1M 2M 3a 3a 3思考题 1-4图aMMMvva =0 (A)(B)(C)(D)a vM av思考题 1-2图种或哪几种?(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.答:加速度a 保持不变(意味加速度 a 的大小和方向都保持不变)的运动是抛体运动。
大学物理练习题_C1-1质点运动学(含答案解析)

本习题版权归西南交大理学院物理系所有《大学物理AI 》作业No.01运动的描述班级________学号________姓名_________成绩_______一、选择题1.一质点沿x 轴作直线运动,其v ~t 曲线如图所示。
若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为[](A)0(B) 5 m(C) 2 m (D)-2 m (E)-5 m解:因质点沿x 轴作直线运动,速度v =x 2t 2v (m ⋅s -1)21O-112.5234 4.5t (s )d x,d t∆x =⎰d x =⎰v d tx 1t 1所以在v ~t 图中,曲线所包围的面积在数值上等于对应时间间隔内质点位移的大小。
横轴以上面积为正,表示位移为正;横轴以下面积为负,表示位移为负。
由上分析可得t=4.5 s 时,位移∆x =x =1(1+2.5)⨯2-1(1+2)⨯1=2(m )22选C2.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率v 0收绳,绳不伸长、ϖv湖水静止,则小船的运动是0[](A)匀加速运动(B)匀减速运动(C)变加速运动(D)变减速运动(E)匀速直线运动解:以水面和湖岸交点为坐标原点建立坐标系如图所示,且设定滑轮到湖面高度为h ,则xh 2+x 2d l x d x =-=v 0题意匀速率收绳有22d td t h +x 小船在任一位置绳长为l =d x h 2+x 2=-v 0故小船在任一位置速率为d t x 22d 2x 2h +2x =-v 0小船在任一位置加速度为a =,因加速度随小船位置变化,且d t 2x 3与速度方向相同,故小船作变加速运动。
选Cϖ3.一运动质点在某瞬时位于矢径r (x ,y )的端点处,其速度大小为[]d r (A)d t ϖd r (C)d tϖd r (B)d t(D)⎛d x ⎫⎛d y ⎫ ⎪+ ⎪d t d t ⎝⎭⎝⎭22ϖϖϖd x ϖd y ϖϖϖd r解:由速度定义v =及其直角坐标系表示v =v x i +v y j =i +j 可得速度大d t d t d t ϖ⎛d x ⎫⎛d y ⎫小为v =⎪+ ⎪d t d t ⎝⎭⎝⎭22精品文档选D4.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有[](A)v =v ,ϖϖϖϖϖ(B)v ≠v ,v =vv =v ϖϖϖϖ(C)v =v ,v ≠v (D)v ≠v ,v ≠vϖd s ϖd rϖϖ解:根据定义,瞬时速度为v =,瞬时速率为v =,由于d r =d s ,所以v =v 。
大学物理规范作业解答(全)

2.一子弹水平地射穿两个前后并排放在光滑水平桌面上 的木块。木块质量分别为m1和m2,测得子弹穿过两木块 的时间分别为Δ t1和Δ t2,已知子弹在木块中受的阻力 为恒力F。求子弹穿过后两木块各以多大的速度运动。 解:两个木块受到子弹给它们的力均为F 穿过木块1 Ft1 ( m1 m2 )v1 0
骑车人速度为u(车对地),人看到雨的速度为v’ (雨对车) 、雨对地的速度v如右图: v u v ' 加速后骑车人速度为u1,人看到 u1 u 雨的速度为v’1 。可得: 60 30 v' v ° v = u1 + v1 ' v '1 u 由图中的关系得: v = = 36km / h cos 60° 方向与竖直方向成30度角偏向西方。
2.一小环可在半径为R的大圆环上无摩擦地滑动,而 大圆环能以其竖直直径为轴转动,如图所示。当圆 环以恒定角速度ω 转动,小环偏离圆环转轴而且相 对圆环静止时,小环所在处圆环半径偏离竖直方向 的角度θ B ( 为 ) (A) θ =π /2 (B)θ =arccos(g/Rω 2) (C)θ =arccos(Rω 2 / g)(D)须由小珠质量决定 解:环受力N的方向指向圆心,mg向下, 法向加速度在水平面内 N sin θ = ma n = ml ω2 N N cos θ = mg 由于 l=Rsinθ
v 抛出后竖直方向的速度为: y v sin gt
x
落地前经过的时间为 t 2v sin g 水平方向做匀速直线运动,抛出的距离为 2v 2 sin cos x v cost v 2 sin 2 / g g x v2 / g 易见:θ=45° 时抛得最远,距离为
I mv mv0 1 1 3 m v0 i m( v 0 i v0 j ) 2 2 2 3 mv0 j 2
第一章质点运动学习题答案

第一章质点运动学习题答案1-1 质点做直线运动,运动方程为其中以s为单位,以m为单位,求:(1)=4s时,质点的位置、速度和加速度;(2)质点通过原点时的速度;(3)质点速度为零时的位置;(4) 做出-t图、-t图、-t图.解:(1) 根据直线运动情况下的定义,可得质点的位置、速度和加速度分别为(1)(2)(3)当=4s时,代入数字得:mm/sm/s(2)当质点通过原点时,=0,代入运动方程得:=0解得:,代入(2)式得:m/s=-12m/s(3) 将代入(2)式,得解得:s代入(1)式得:12m-6m=6m1.2一质点在平面上运动,运动方程为=3+5,=2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度.解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量.1-4 一质点沿一直线运动,其加速度为,式中的单位为m,的单位为m/s,试求该质点的速度与位置坐标之间的关系.设时,=4m/s解:依题意积分得1-5质点沿直线运动,加速度,如果当=3时,,,求质点的运动方程. (其中以m/s为单位,以s为单位,以m为单位,以m/s为单位)解:加速度表示式对积分,得将=3s,=9m,m/s代入以上二式,得积分常数m/s,=0.75m,则1-6 当物体以非常高的速度穿过空气时,由空气阻力产生的反向加速度大小与物体速度的平方成反比,即,其中为常量. 若物体不受其他力作用沿方向运动,通过原点时的速度为,试证明在此后的任意位置处其速度为.解:根据加速度定义得:,因,代入上式,分离变量,整理后得:,应用初始条件,两边积分得得即有:1-7试写出以矢量形式表示的质点做匀速圆周运动的运动学方程,并证明做匀速圆周运动质点的速度矢量和加速度矢量的标积等于零,即解:以直角坐标表示的质点运动学方程为以矢量形式表示的指点运动学方程为速度和加速度分别为所以1-8一质点在平面内运动,其运动方程为,其中均为大于零的常量.(1)试求质点在任意时刻的速度;(2)证明质点运动的轨道为椭圆;(3)证明质点的加速度恒指向椭圆的中心.解:(1)质点在任意时刻的速度(2)由消去,可得轨道方程可见是椭圆方程,表明质点作椭圆运动(3)加速度因为>0,所以的方向恒与反向,即恒指向椭圆中心.1-9路灯离地面高度为,一个身高为的人,在灯下水平路面上以匀速度步行. 如图所示,求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小.解:建立如图所示的坐标,时刻头顶影子的坐标为,设头顶影子的移动速度为,则由图中可看出有,则有所以有1-10 1.10质点沿半径为的圆周按=的规律运动,式中为质点离圆周上某点的弧长,,都是常量,求:(1)时刻质点的加速度;(2)为何值时,加速度在数值上等于.解:(1)则加速度与半径的夹角为(2)由题意应有即∴当时,1-11质点做半径为20cm的圆周运动,其切向加速度恒为5cm/s,若该质点由静止开始运动,需要多少时间:(1)它的法向加速度等于切向加速度;(2)法向加速度等于切向加速度的二倍.解:质点圆周运动半径=20cm,切向加速度=5cm/s,时刻速度为,法向加速度为,因此有(1)当时,s(2)当时,s1-12 (1)地球的半径为6.37m,求地球赤道表面上一点相对于地球中心的向心加速度. (2)地球绕太阳运行的轨道半径为1.5m,求地球相对于太阳的向心加速度. (3)天文测量表明,太阳系以近似圆形的轨道绕银河系中心运动,半径为2.8m,速率为2.5m/s,求太阳系相对于银河系的向心加速度.解:(1)地球赤道表面一点相对于地球中心的向心角速度为m/s(2)地球相对太阳的向心加速度为m/s(3)太阳系相对银河系的向心加速度m/s1-13 以初速度=20抛出一小球,抛出方向与水平面成60°的夹角,求:(1)球轨道最高点的曲率半径;(2)落地处的曲率半径.解:设小球所作抛物线轨道如题1-13图所示.题1-13图(1)在最高点,又∵∴(2)在落地点,,而∴1-14一架飞机在水平地面的上方,以174m/s的速率垂直俯冲,假定飞机以圆形路径脱离俯冲,而飞机可以承受的最大加速度为78.4m/s,为了避免飞机撞到地面,求飞机开始脱离俯冲的最低高度. 假定整个运动中速率恒定.解:设飞机以半径为圆形路径俯冲,其加速度为当为飞机所能承受的最大加速度时,即为最小,所以m1-15一飞轮以速度rev/min转动,受制动而均匀减速,经s 静止,求(1) 角加速度和从制动开始到静止飞轮转过的转数;(2) 求制动开始后,s时飞轮的角速度;(3) 设飞轮半径=1m,求s时,飞轮边缘上一点的速度和加速度.解:(1)飞轮的初角速度,当s时,;代入得从开始到静止,飞轮转过的角度及其转数为:radrev(2)s 时,飞轮的角速度为rad/s(3)s 时,飞轮边缘上一点的速度为m/s相应的切线和法线加速度为m/sm/s1-16一质点沿半径为1m的圆周运动,运动方程为,式中以弧度计,以秒计,求:(1)=2s时,质点的切向和法向加速度;(2)当加速度的方向和半径成角时,其角位移是多少?解:(1)时,(2)当加速度方向与半径成角时,有即亦即则解得于是角位移为1-17一圆盘半径为3m,它的角速度在=0时为3.33rad/s,以后均匀地减小,到=4s时角速度变为零. 试计算圆盘边缘上一点在=2s时的切向加速度和法向加速度的大小.解:角速度均匀减小,因此,角加速度为rad/s圆盘做匀角加速度,故有当s时,rad/s法向和切向加速度分别为m/s=-7.8 m/s1-18某雷达站对一个飞行中的炮弹进行观测,发现炮弹达最高点时,正好位于雷达站的上方,且速率为,高度为,求在炮弹此后的飞行过程中,在(以s为单位)时刻雷达的观测方向与铅垂直方向之间的夹角及其变化率(雷达的转动角速度)解:以雷达位置为坐标原点,取坐标系如图所示,根据题意,炮弹的运动方程为可解得:(1)则将(1)式两边对求导数,得则有1-19 汽车在大雨中行驶,车速为80km/h,车中乘客看见侧面的玻璃上雨滴和铅垂线成角,当车停下来时,他发现雨滴是垂直下落的,求雨滴下落的速度.解:取车为运动参考系,雨滴相对于车的速度为,雨滴对地速度为,车对地的速度为,相对运动速度合成定理为见如图所示的速度合成图,则有m/s1-20一升降机以加速度1.22m/s上升,当上升速度为2.44 m/s时,有一螺帽自升降机的天花板松落,天花板与升降机底面相距 2.74m,计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:以升降机外固定柱子为参考系,竖直向上为坐标轴正向,螺帽松落时升降机底面位置为原点. 螺帽从=2.74m处松落,以初速度=2.44m/s做竖直上抛运动,升降机底面则从原点以同样的初速度做向上的加速运动,加速度=1.22m/s,它们的运动方程分别为螺帽:底面:螺帽落到底面上时,,由以上两式得=0.705s(2)螺帽相对于升降机外固定柱子的下降距离为m1-21某人骑自行车以速率向西行使,北风以速率吹来(对地面),问骑车者遇到风速及风向如何?解:地为静系E,人为动系M。
(完整版)大学物理01质点运动学习题解答

第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。
解:答案是D 。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。
简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。
3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。
v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。
4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。
大学物理第一章质点运动学习题解(详细、完整)

第一章 质点运动学1–1 描写质点运动状态的物理量是。
解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。
1–2 任意时刻a t =0的运动是运动;任意时刻a n =0的运动是运动;任意时刻a =0的运动是运动;任意时刻a t =0,a n =常量的运动是运动。
解:匀速率;直线;匀速直线;匀速圆周。
1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为()m/s 102=g 。
解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。
解:将s t 1=代入t x 2=,229t y -=得2=x m ,7=y ms t 1=故时质点的位置矢量为j i r 72+=(m )由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v (m/s )质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。
1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。
解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=7.81m/s ;1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学一、选择题[ D ]1、[基础训练3] 一运动质点在某瞬时位于矢径()y x r ,的端点处,其速度大小为(A) t r d d (B) trd d (C) t r d d (D)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 【答】22, dx dy dx dy v i j v dt dt dt dt ⎛⎫⎛⎫=+∴=+ ⎪ ⎪⎝⎭⎝⎭[ C ]2、[基础训练6] 一飞机相对空气的速度大小为 200 km/h ,风速为56 km/h ,方向从西向东。
地面雷达站测得飞机速度大小为 192 km/h ,则飞机飞行方向是 (A) 南偏西16.3°;(B) 北偏东16.3°; (C) 向正南或向正北; (D) 西偏北16.3°; (E) 东偏南16.3°.【答】根据三个速率的数值关系,以及伽利略速度变换式=+v v v →→→机地机空气空气地,可以画出三个速度之间的矢量关系,如图所示。
=200km/h, 56/, =192km/h km h v v v →→→=机空气空气地机地,根据余弦定理,222200=56192256192cos θ+-⨯⨯,解得:cos =0θ,所以=2πθ±.[ C ]3、[自测提高1]如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 【答】如图建坐标系,设船离岸边x 米,222l h x =+,22dl dxlxdt dt=, 22dx l dl x h dl dt x dtx dt +==,0dlv dt=-,220x dx h xv v dt x+==-v →机地v →空气地v →机空气v →空气地v →机空气v →机地θθvxoxlhxMh 1h 2 o x x m2203x x x dv dv v h dx a dt dx dt x==⋅=-,可见,加速度与速度同向,且加速度随时间变化,因此,质点做变加速运动。
[ B ]4、[自测提高2]一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r22+=(其中a 、b 为常量),则该质点作(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动.【答】 由j bt i at r22+=知,2x at =,2y bt =,消去t ,得轨迹方程为:by x a=,为直线方程;速度为22drv ati btj dt==+,速度随时间t 变化。
所以质点作变速直线运动。
[ C ]5、[自测提高5] 一物体从某一确定高度以0v的速度水平抛出,已知它落地时的速度为t v,那么它运动的时间是(A) g t 0v v -. (B) g t 20v v - . (C)()gt 2/1202v v -. (D)()gt22/1202v v- .【答】0x v v =,y v gt =,所以落地时的速率满足2222220t x y v v v v g t =+=+,解得:t=()gt2/1202v v -[ C ] 6、[自测提高6] 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量。
当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 【答】t k t 2d /d v v -=,分离变量并积分,020v tv dv ktdt v =-⎰⎰,得02121v v +=kt .二、填空题7、[基础训练9] 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示。
他的头顶在地上的影子M 点沿地面移动的速度为M v =112h vi h h -。
【答】坐标系如图,设人的坐标为x ,头的影子坐标为x M ,人向x 轴正向运动。
由相似三角形的比例关系,得:x 111121212M M M h x dx h h dxv v h h dt h h dt h h ===⋅=---8、[基础训练10] 一物体作如图所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°,则物体在A 点的切向加速度a t = -0.5g ,轨道的曲率半径223 3v g⨯.(重力加速度为g )【答】如图,将重力加速度分解为切向加速度分量和法向加速度分量,得22sin 300.5, cos 30 cos 30t n v v a g g a g g ρρ=-=-==∴=9、[基础训练13] 在xy 平面内有一运动质点,其运动学方程为jt i t r5sin 105cos 10+=(SI ),则t 时刻其速度=v50sin 550cos 5 (m/s)t i t j -+;其切向加速度的大小a t = 0 ;该质点运动的轨迹是 圆 .【答】(1)50sin 550cos5 (m/s)drv t i t j dt==-+; (2)速率2250(sin5)(cos5)50 /v t t m s =-+=,切向加速度0t dva dt== (3)10cos5x t =,t y 5sin 10=,联立消去t ,得22100x y +=,所以轨迹为一个圆。
10、[自测提高9]一质点从静止出发,沿半径R=3m 的圆周运动。
切向加速度a t =23m s 保持不变,当总加速度与半径成45角时,所经过的时间t= 1s ,在上述时间内质点经过的路程为 1.5m 。
【答】总加速度与半径成45角,分解,得:3/n t a a m s ==;2n v a R =→333/n v Ra m s ==⨯=; t v a t =→1t v t s a ==;211.52t s a t m ==11、[自测提高13] 一质点在Oxy 平面内运动.运动学方程为=x 2 t 和=y 19-2 t 2 (SI),则在第2秒内质点的平均速度大小v =6.32 m/s ,2秒末的瞬时速度大小=2v 8.25m/s. 【答】(1)t 1 = 1s 时,m y m x 17,211==;t 2 = 2s ,m y m x 11,422==212121212 /; 6 /x y x x y y v m s v m s t t t t --====---;平均速度大小22 6.32 (/)x y v v v m s =+=。
gn ata 0v30°A(2)2秒末:2222 /; 48 /x y t s t s t sdx dyv m s v t m s dt dt =======-=-;速度大小为2228.25 (/)x y v v v m s =+=12、[自测提高14 ]小船从岸边A 点出发渡河,如果它保持与河岸垂直向前划,则经过时间t 1到达对岸下游C 点;如果小船以同样速率划行,但垂直河岸横渡到正对岸B 点,则需与A 、B 两点联成的直线成α角逆流划行,经过时间t 2到达B 点.若B 、C 两点间距为S ,则(1) 此河宽度l =22221 t St t -;(2) α =()112 cos / t t -或222112sin t t t -⎡⎤⎢⎥⎢⎥⎣⎦-。
【答】设小船速度为v ,水流速度为u ,如图。
(1)保持与河岸垂直向前划时,1 l vt =……①; 1S ut =……②;(2)成α角逆流划行时,()2cos l v t α=……③; sin u v α=……④.联立①和③得:()()11212cos /, cos /t t t t αα-=∴=;联立②和④,可求出()()112212sin 1cos 1S t S t uv t t αα===-⎛⎫- ⎪⎝⎭,再代入①得:22221t S l t t=-.三、计算题13、[基础训练17] 一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标。
假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式。
解:yt y y t a d d d d d d d d v v v v ===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C ky y ky 222121 , d d v v v 已知 =y y 0 ,=v v 0 ,则 20202121ky C --=v)(220202y y k -+=v vBSC l(1)垂直前划 (2) 成α角逆流划vv uuαA A14、[基础训练18 ] 一物体以初速度0v 、仰角α 由地面抛出,并落回到与抛出处同一水平面上。
求地面上方该抛体运动轨道的最大曲率半径与最小曲率半径。
解:如图,以θ 表示物体在运动轨道上任意点P 处其速度与水平方向的夹角,则有αθcos cos 0v v =, θα22202cos cos v v =又因θcos g a n =,且2n v a ρ=,故该点θαρ3222cos cos g a n v v== 因为αθ≤,故θα=时,曲率最大: ()αρcos /20max g v = , 0θ=时,曲率最小:g /cos 22min αρv =15、[基础训练19] 质点沿半径为R 的圆周运动,加速度与速度的夹角ϕ保持不变,求该质点的速度随时间而变化的规律,已知初速为0v 。
解:tan ,n t a a ϕ= 将t dv a dt=,2n v a R =代入,得2tan dv v dt R ϕ=, 分离变量并积分:002000tan 11, tan tan tan vtv v R dv dt tv v R v v R R v t ϕϕϕϕ=-+=∴=-⎰⎰16、[自测提高15 ] 质点P 在水平面内沿一半径为R =2 m 的圆轨道转动。
转动的角速度 ω 与时间t 的函数关系为2kt =ω (k 为常量)。
已知s t 2=时,质点P 的速度值为32 m/s 。
试求1=t s 时,质点P 的速度与加速度的大小。
解:根据已知条件s t 2=时,v=32 m/s ,确定常量k :()222/rad 4//sRtt k ===v ω所以 24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=n t a a a m/s 2四、附加题17、[ 自测提高16 ] 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T ;若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v 。