2015—2016学年高中数学人教A版必修二第一章 空间几何体课后作业

合集下载

高中数学人教课标实验A版必修2第一章《空间几何体的结构》同步练习(附答案)

高中数学人教课标实验A版必修2第一章《空间几何体的结构》同步练习(附答案)

《空间几何体的结构》同步练习一、考点分析三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视.在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中.这部分知识主要考查学生的空间想象能力与计算求解能力.二、典型例题知识点一:柱、锥、台、球的结构特征例1.下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱.②两个底面平行且相似,其余各面都是梯形的多面体是棱台.③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.④直角三角形绕其一条边旋转得到的旋转体是圆锥.⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台.⑥用一个平面去截圆锥,底面和截面之间的部分是圆台.⑦通过圆锥侧面上一点,有无数条母线.⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体.A.①②③④⑤⑥⑧B.①③④⑦⑧C.①②⑤⑧D.⑤思路分析:遇到概念判断问题,一定要在理解透彻相关概念的基础上,仔细分析,如果判断它是正确的,必须能紧扣定义,而不是模棱两可地去作判断;如果判断它是错误的,只需找到一个反例即可.解答过程:如图所示,由图(1)可知①是错误的;由图(2)可知②③是错误的;由图(3)可知④是错误的;由图(4)可知⑥是错误的.因为通过圆锥侧面上一点和圆锥的顶点只能连一条射线,所以“通过圆锥侧面上一点,有无数条母线.”是错误的,即⑦是不正确的.以半圆的直径所在直线为旋转轴,半圆旋转一周形成的应该是球面,半圆面旋转一周形成的才是球体.所以⑧是错误的.所以只有⑤是正确的.故应选D.解题后的思考:在作判断的时候没有严格的根据定义进行多角度分析,而是只抓住定义中的某一点就作出判断,容易导致错误.知识点二:组合体例2.如图,下列组合体是由哪几种简单几何体组成的?解答过程:(1)由一个三棱锥和一个四棱锥组成,为左右结构(2)由两个三棱锥组成,为上下结构(3)由圆锥和圆台组成,为上下结构知识点三:柱、锥的侧面展开图例3.小明在一个正方体盒子的每个面都写有一个字母,分别是:A、B、C、D、E、F,其平面展开图如图所示,那么在该正方体盒子中,和“A”相对的面所写的字母是哪一个?思路分析:在每个格子中标明你所想象的面的位置,如将A 格标明“上”,将B格标明“前”等等.解答过程:为字母“E”解题后的思考:本题突出考查了学生将正方体各面展开图复原为正方体的空间想象能力.例4.如图所示,为一个封闭的立方体,在它的六个面上标出A ,B ,C ,D ,E ,F 这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已标明,则字母A ,B ,C 对面的字母分别是( )A .D ,E ,FB .F ,D ,EC .E ,F ,D D .E ,D ,F思路分析:本题处理方法比较灵活,要将几个图结合起来一起分析.解答过程:由(1)(2)两个图知,A 与B ,C ,D 相邻,结合第(3)个图知,B ,C 与F 共顶点,所以A 的对面为F ,同理B ,C 的对面分别为D ,E ,故选择B .解题后的思考:本题考查推理能力以及空间想象能力.也可先结合图(1)(3)进行判断.例5.用长和宽分别是π3和π的矩形硬纸卷成圆柱的侧面,求圆柱的底面半径?思路分析:要注意哪条边是圆柱的母线,哪条边是圆柱底面的圆周.解答过程:设圆柱底面圆的半径为r ,由题意可知矩形长为底面圆的周长时,r ππ23=,解得23=r .矩形宽为底面圆的周长时,r ππ2=,解得21=r .故圆柱的底面半径为23或21.解题后的思考:本题学生经常会丢解,即主观认为只有图中所示的情况,即以π3作为底面周长,而忽视了它也可作为母线这种情况.知识点四 旋转体中的有关计算例6. 一个圆台的母线长cm 12,两底面面积分别为24cm π和225cm π,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.思路分析:通过作截得此圆台的圆锥的轴截面,构造直角三角形与相似三角形求解.解答过程:(1)作OA H A ⊥1242=∴=r r ππ 5252=∴=R R ππ3=∴AH153312221=-=∴H A(2)11O VA ∆ 与O VA ∆相似 AO O A VA VA 111=∴20=∴VA解题后的思考:通过构造旋转体的轴截面,将立体问题转化为平面问题.例7.已知球的两个平行截面的面积分别为π5和π8,且距离为3,求这个球的半径.思路分析:两截面的相互位置可能出现两种情况,一种是在球心O 的同侧,另一种是在球心O 的异侧.解答过程:(1)当两截面在球心O 的同侧时,如图所示,设这两个截面的半径分别为21,r r ,球心O 到截面的距离分别为21,d d ,球的半径为R .8,5,8,522212221==∴=⋅=⋅r r r r ππππ .又222221212d r d r R +=+= ,321222221=-=-∴r r d d ,即3))((2121=+-d d d d .又321=-d d ,⎩⎨⎧=+=-∴,1,32121d d d d 解得⎩⎨⎧-==.1,221d d又∴>,02d 这种情况不成立.(2)当两截面在球心O 的异侧时,321=+d d , 由上述解法可知3))((2121=+-d d d d ,⎩⎨⎧=-=+∴,1,32121d d d d 解得⎩⎨⎧==.1,221d d 3452121=+=+=∴d r R .综上所述,这个球的半径为3.解题后的思考:同学们要注意不要只对同侧的情况进行讨论,而忽略对另一种位置关系的讨论.知识点五:画几何体的三视图例8.画出如图所示的三棱柱的三视图.思路分析:在正视图中,中间的竖线看不到,应画成虚线;侧视图是从左侧看三棱柱投射到竖直的正对着的平面上的正投影,所以不是三棱柱的一个侧面,而应该是过底面正三角形的一条高线的矩形.解答过程:解题后的思考:画三视图的时候要做到“长对正、宽相等、高平齐”,还要注意实线与虚线的区别.知识点六:三视图中的推测问题例9.根据下列三视图,说出各立体图形的形状.思路分析:三视图是从三个不同的方向看同一物体得到的三个视图.正视图反映物体的主要形状特征,主要体现物体的长和高,不反映物体的宽.而俯视图和正视图共同反映物体的长相等.侧视图和俯视图共同反映物体的宽相等.据此就不难得出该几何体的形状.解答过程:(1)圆台;(2)正四棱锥;(3)螺帽.解题后的思考:三视图的画法里要注意“长对正”,“高平齐”,“宽相等”,另外,还要熟悉基本空间几何体的三视图.知识点七:直观图的还原与计算问题例10.已知△A′B′C′是水平放置的边长为a 的正三角形ABC 的斜二测水平直观图,那么△A′B′C′的面积为_________.思路分析:先根据题意,画出直观图,然后根据△A′B′C′直观图的边长及夹角求解.解答过程:如图甲、乙所示的实际图与直观图.a OC C O a AB B A 4321,==''==''.在图乙中作C′D′⊥A′B′于D′,则a C O D C 8622=''=''.所以2166862121a a a D C B A S C B A =⨯⨯=''⋅''='''∆.故填2166a . 解题后的思考:该题求直观图的面积,因此应在直观图中求解,需先求出直观图的底和高,然后用三角形面积公式求解.本题旨在考查同学们对直观图画法的掌握情况.例11.如图所示,正方形O′A′B′C′的边长为cm 1,它是水平放置的一个平面图形的直观图,则原图形的周长是____________.思路分析:先根据题意,由直观图画出原图形解答过程:逆用斜二测画法的规则画出原图如下图所示,由BC//OA 且BC=OA ,易知OABC 为平行四边形.在上图中,易求O′B′=2,所以OB =22.又OA =1,所以在Rt △BOA 中,31)22(22=+=AB .故原图形的周长是)cm (8)13(2=+⨯,应填cm 8.解题后的思考:该题考查的是直观图与原图形之间的关系,及逆用斜二测画法的规则.。

2014-2015学年高中数学(人教版必修二)课时训练第一章 1.2 1.2.1 空间几何体的三视图

2014-2015学年高中数学(人教版必修二)课时训练第一章 1.2 1.2.1 空间几何体的三视图


跟 踪 训 练
解析:①四边形 BFD′E 的四个顶点在底面 ABCD 内的投 影分别是点 B、C、D、A,故投影是正方形,正确;②设正方体 的棱长为 2,则 AE=1,取 D′D 的中点 G,则四边形 BFD′E 在面 A′D′DA 内的投影是四边形 AGD′E, 由 AE∥D′G, 且 AE=D′G, ∴四边形 AGD′E 是平行四边形, 但 AE=1, D′E = 5,故四边形 AGD′E 不是菱形.对于③,由②知是两个边 长分别相等的平行四边形,从而③正确. 答案:①③
答案:对.
练习 3: 水平放置的圆台的俯视图是一个与下底面大小相同的圆, 对吗?
答案:错. 是两个同心圆.

思 考 应 用
1.观察图中的投影过程,回答问题. (1)它们的投影过程有什么不同? (2)图②、③是平行投影,它们有什么不同? (3)中心投影和平行投影有什么不同?
栏 目 链 接
栏 目 链 接

题型二
画空间几何体的三视图
例2 画出如图所示几何体的三视图.
)

(5)两条相交直线的平行投影可能平行;(
)
(6)如果一个三角形的投影仍是三角形,那么它的中位线
的平行投影,一定是这个三角形的平行投影的中位线.(
解析:利用平行投影的概念和性质进行判断. 答案:(1)× (2)× (3)√ (4)× (5)× (6)√
)
栏 目 链 接
点评:平面图形经过平行投影后一般要改变形状,平 行直线的平行投影是平行或重合的直线.两条相交直线的平 行投影不可能平行.
栏 目 链 接

栏 目 链 接

题型一
投影的概念
例1 判断对错(对的在括号内打“√”,错的打“×”):

高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析

高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析
13.长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()
A. B. C.50πD.200π
14.在菱形 中, ,将 沿 折起到 的位置,若二面角 的大小为 ,则三棱锥 的外接球的体积为()
A. B. C. D.
15.已知球的直径 , 是该球球面上的两点, , ,则棱锥 的体积为()
高中数学人教A版必修2第一章空间几何体高考复习习题(选择题201-300)含答案解析
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
A. +1B. +3
11.在三棱锥 中,底面 是边长为2的正三角形,顶点 在底面 上的射影为 的中心,若 为 的中点,且直线 与底面 所成角的正切值为 ,则三棱锥 外接球的表面积为()
A. B. C. D.
12.已知三棱锥 的每个顶点都在球 的表面上, 底面 ,且二面角 的正切值为4,则球 的表面积为
A. B. C. D.
A. B. C. D.
5.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方体棱台(上、下底面均为矩形额棱台)的专用术语,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之,亦倍小表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为 ,高为3,且上底面的周长为6,则该棱台的体积的最大值是()

人教A高中数学必修二课时分层训练:第一章 空间几何体 2 含解析

人教A高中数学必修二课时分层训练:第一章 空间几何体  2 含解析

第一章1.3空间几何体的表面积与体积1.3.2球的体积和表面积课时分层训练‖层级一‖……………………|学业水平达标|1.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为()A.8π3 B.32π3C.8π D.82π3解析:选C设球的半径为R,则截面圆的半径为R2-1,∴截面圆的面积为S=π(R2-1)2=(R2-1)π=π,∴R2=2,∴球的表面积S=4πR2=8π.2.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为()A.16π B.20πC.24π D.32π解析:选A设正四棱锥的高为h,底面边长为a,由V=13a2h=a2=6,得a= 6.由题意,知球心在正四棱锥的高上,设球的半径为r,则(3-r)2+(3)2=r2,解得r=2,则S球=4πr2=16π.故选A.3.某几何体的三视图如图所示,它的体积为()A.72π B.48πC.30π D.24π解析:选C 由三视图可知几何体由一个半球和倒立的圆锥组成的组合体.V =13π×32×4+12×43π×33=30π.4.等体积的球和正方体的表面积S 球与S 正方体的大小关系是( )A .S 正方体>S 球B .S 正方体<S 球C .S 正方体=S 球D .无法确定解析:选A 设正方体的棱长为a ,球的半径为R ,由题意,得V =43πR 3=a 3,∴a =3V ,R =33V 4π,∴S 正方体=6a 2=63V 2=3216V 2,S 球=4πR 2=336πV 2 < 3216V 2.5.球的表面积S 1与它的内接正方体的表面积S 2的比值是( )A.π3B.π4C.π2 D .π解析:选C 设球的内接正方体的棱长为a ,球的半径为R ,则3a 2=4R 2,所以a 2=43R 2,球的表面积S 1=4πR 2,正方体的表面积S 2=6a 2=6×43R 2=8R 2,所以S 1S 2=π2. 6.已知正方体的棱长为2,则与正方体的各棱都相切的球的表面积是________.解析:过正方体的对角面作截面如图.故球的半径r =2,∴其表面积S =4π×(2)2=8π.答案:8π7.球内切于正方体的六个面,正方体的棱长为a ,则球的表面积为________. 解析:正方体的内切球球心是正方体的中心,切点是六个面(正方形)的中心,经过四个切点及球心作截面,如图,所以有2r 1=a ,r 1=a 2,所以球的表面积S 1=4πr 21=πa 2.答案:πa 28.圆柱形容器的内壁底半径是10 cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm ,则这个铁球的表面积为________cm 2. 解析:设该铁球的半径为r ,则由题意得43πr 3=π×102×53,解得r 3=53,∴r=5,∴这个铁球的表面积S =4π×52=100π(cm 2).答案:100π9.若三个球的表面积之比为1∶4∶9,求这三个球的体积之比.解:设三个球的半径分别为R 1,R 2,R 3,∵三个球的表面积之比为1∶4∶9,∴4πR 21∶4πR 22∶4πR 23=1∶4∶9,即R 21∶R 22∶R 23=1∶4∶9,∴R 1∶R 2∶R 3=1∶2∶3,得R 31∶R 32∶R 33=1∶8∶27,∴V 1∶V 2∶V 3=43πR 31∶43πR 32∶43πR 33=R 31∶R 32∶R 33=1∶8∶27.10.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π,该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3.‖层级二‖………………|应试能力达标|1.(2019·吉林白城四中二模)如图是一个空间几何体的三视图,则该几何体的外接球的表面积是( )A.24π B.36πC.48π D.60π解析:选C由三视图可知:该几何体为直三棱柱,并且为棱长是4的正方体的一半.可得该几何体的外接球的半径r=23,其外接球的表面积S=4π×()232=48π,故选C.2.一平面截一球得到直径是6 cm的圆面,球心到这个圆面的距离是4 cm,则该球的体积是()A.100π3cm3 B.208π3cm3C.500π3cm3 D.41613π3cm3解析:选C根据球的截面的性质,得球的半径R=32+42=5(cm),所以V球=43πR3=500π3(cm3).3.一个几何体的三视图如图所示,则此几何体的表面积S=()A.32+π B.32+2πC.28+2π D.28+π解析:选A由三视图可知此几何体的上半部分为半个球,下半部分是一个长方体,故其表面积S=4π×12+4×2×3+2×2+2×2-π=32+π.4.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =()A.1 B.2C.4 D.8解析:选B如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.5.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:依题意得,该几何体是球的一个内接正方体,且该正方体的棱长为2.设该球的直径为2R,则2R=22+22+22=23,所以该几何体的表面积为4πR2=4π(3)2=12π.答案:12π6.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________. 解析:设球的半径为r ,则43πr 3=323π,得r =2,三棱柱的高为2r =4.又正三棱柱的底面三角形的内切圆半径与球的半径相等,所以底面正三角形的边长为43,所以正三棱柱的体积V =34×(43)2×4=48 3.答案:48 37.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________ cm.解析:设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r=6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意得6πr 3-8πr 2=4πr 3,解得r =4(cm).答案:48.轴截面是正三角形的圆锥内有一个内切球,若圆锥的底面半径为1 cm ,求球的体积.解:如图所示,作出轴截面,O 是球心,与边BC ,AC相切于点D ,E .连接AD ,OE ,∵△ABC 是正三角形,∴CD=12AC .∵Rt △AOE ∽Rt △ACD ,∴OE AO =CD AC .∵CD =1 cm ,∴AC =2 cm ,AD = 3 cm ,设OE =r ,则AO =(3-r ),∴r 3-r=12,∴r =33 cm ,V球=43π⎝⎛⎭⎪⎫333=4327π(cm3),即球的体积等于4327π cm3.。

人教版高中数学必修二检测:第一章空间几何体课后提升作业一111含解析.doc

人教版高中数学必修二检测:第一章空间几何体课后提升作业一111含解析.doc

此套题为Word版,请按住Ct门,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1・下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2•四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C・长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4•如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5. (2016 -郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()①⑥①②④⑥①鬲②④③⑤1⑥⑤③②⑵③①④(1) ®(3)⑤(4)A. (1) (2)B.⑵(3)C.⑶(4)D.⑴(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2) (3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2) (3)完全一样,而(1) (4)则不同.—【补偿训练】下列图形经过折叠可以围成一个棱柱的是()【解析】选D.A, B, C中底面多边形的边数与侧面数不相等.6•若棱台上、下底面的对应边之比为1 : 2,则上、下底面的面积之比是()A. 1 : 2B. 1 : 4C. 2 : 1D. 4 : 1【解析】选B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1 : 4.7.(2016 -温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有() A. 20 条 B. 15 条C.12 条D.10 条【解析】选D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015 -广东高考)若空间中n个不同的点两两距离都相等,则正整数n 的取值()C.至多等于4D.至多等于3【解析】选C.正四面体的四个顶点是两两距离相等的,即空间中n个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9. _______________________ 在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是•(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤ 每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形ADCB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD 为正方形,四边形ABCD】为矩形;③正确,如四面体A/BD;④正确,如四面体AiCiBD;⑤正确,如四面体BiABD;则正确的说法是①③④⑤.答案:①③④⑤10. (2016 -天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为_________ cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12 三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A z B z C z,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求…点自A点出发沿着三棱柱的侧面绕行一周后到达A'点的最短路线长.B【解析】将三棱柱侧面沿侧棱AA'剪开,展成平面图形如图,则AA〃即为所求的最短路线.在RtZkAA朮〃中,AA F3, A*〃二8, 所以AA〃二\洱2 + g2=v73.A fB fC f A f,//A B C A\【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A'点的最短路线长.B【解析】将两个相同的题目中的三棱柱的侧面都沿AA'剪开,然后展开并拼接成如图所示,则AA〃即为所求的最短路线•在RtZ\AA爪〃中,AA F6, AA〃二8, 所以AA〃=V62 + 82=vl00=10.A fB f C,A,B,C f A f,【能力挑战题】如图,在边长为2a的正方形ABCD中,E, F分别为AB, BC 的中点,沿图中虚线将3个三角形折起,使点A, B, C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?//////(2) 这个几何体共有几个面,每个面的三角形有何特点?(3) 每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中ADEF 为等腰三角形,APEF 为等腰直角三角形,ADPE 和ADPF 均为直角三角形. 二(2a) 2-a 2-a 2-a 2=a 2. 关闭Word文档返回原板块(3) SAPEF —a 2, S A DPF —S A DPE — X2aXa=a 2, S ADEF —S正方形 ABCD -S APEF -S A DPF -S A DPE。

2015-2016学年高中数学人教A版必修2课件:1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图[

2015-2016学年高中数学人教A版必修2课件:1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图[

(1)务必做到“长对正,高平齐,宽相等”.
(2)三视图的排列方法是正视图与侧视图在同一水平位置,且正
视图在左,侧视图在右,俯视图在正视图的正下方. (3)在三视图中,要注意实、虚线的画法. (4)画完三视图草图后,要再对照实物图来验证其正确性.
预习导学
课堂讲义
课堂讲义
第一章
空间几何体
跟踪演练2 将本题中的正四棱锥和圆台分别换成正三棱柱和 圆锥(如图),如何画出它们的三视图?(尺寸不作严格要求)
预习导学
课堂讲义
预习导学
第一章
空间几何体
高 一样,俯视图 (2)基本特征:一个几何体的侧视图和正视图____
长 一样,侧视图与俯视图_____ 宽 一样. 与正视图____
预习导学
课堂讲义
课堂讲义
第一章
空间几何体
要点一 例1
中心投影与平行投影
下列说法中:①平行投影的投影线互相平行,中心投影
的投影线相交于一点;②空间图形经过中心投影后,直线
预习导学
课堂讲义
预习导学
[预习导引]
1.投影 (1)投影的定义
第一章
空间几何体
不透明 物体后面的屏幕上可以留下 由于光的照射,在 __________ 影子 ,这种现象叫做投影.其中,我们 这个物体的 __________ 光线 留下物体影子 的屏幕叫做 把_________ 叫做投影线,把________________ 投影面.
解 图:
由三视图可知该几何体为四棱锥,对应空间几何体如右
预习导学
课堂讲义
预习导学
课堂讲义
课堂讲义
要点二 画空间几何体的三视图
第一章
空间几何体
例2 画出图中正四棱锥和圆台的三视图.(尺寸不作严格要求)

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

人教A版高中数学高一必修二习题 第一章 空间几何体(整合)

人教A版高中数学高一必修二习题 第一章 空间几何体(整合)

(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察图中的四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱解析:图(1)不是由棱锥截得的,图(2)的上、下两个面不平行,图(4)的前、后两个面平行,其他面都是平行四边形,且每相邻两个四边形的公共边平行,所以A,B,D都不正确.答案: C2.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台解析:从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.答案: D3.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为()A.16πB.32πC.36πD.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+(6)2+32=4,即球的半径为2,故这个球的表面积为4πr2=16π.答案: A4.已知水平放置的△ABC 按斜二测画法得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形解析: 由斜二测画法的规则可得BC =B ′C ′=2,AO =2A ′O ′=2×32=3, 又∵AO ⊥BC ,∴AB =AC =2,故△ABC 是等边三角形. 答案: A5.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V 1,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .V 1<V 2<V 4<V 3B .V 1<V 3<V 2<V 4C .V 2<V 1<V 3<V 4D .V 2<V 3<V 1<V 4解析: 由三视图可知,四个几何体自上而下分别为圆台,圆柱,四棱柱,四棱台.结合题中所给数据可得:V 1=13(4π+π+2π)=7π3,V 2=2π,V 3=23=8,V 4=13(16+4+8)=283.故V 2<V 1<V 3<V 4. 答案: C6.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( )A .1∶2∶3B .1∶3∶5C .1∶2∶4D .1∶3∶9解析: 如图,由题意知O 1A 1∶O 2A 2∶OA =1∶2∶3,以O 1A 1,O 2A 2,OA 为半径的圆锥的侧面积之比为1∶4∶9.故圆锥被截面分成的三部分侧面的面积之比为1∶(4-1)∶(9-4)=1∶3∶5. 答案: B7.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.32π3 B.8π3 C .82π D.82π3解析: 设截面圆的半径为r ,则πr 2=π,故r =1,由勾股定理求得球的半径为1+1=2,所以球的体积为43π(2)3=82π3,故选D.答案: D8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4D .5解析: V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案: B9.如图所示,三棱台ABC -A 1B 1C 1中,A 1B 1∶AB =1∶2,则三棱锥B -A 1B 1C 1与三棱锥A 1-ABC 的体积比为( )A .1∶2B .1∶3C .1∶ 2D .1∶4解析: 三棱锥B -A 1B 1C 1与三棱锥A 1-ABC 的高相等,故其体积之比等于△A 1B 1C 1与△ABC 的面积之比,而△A 1B 1C 1与△ABC 的面积之比等于A 1B 1与AB 比的平方,即1∶4.故三棱锥B -A 1B 1C 1与三棱锥A 1-ABC 的体积比为1∶4.答案: D10.一个正三棱柱的三视图如图所示,则此三棱柱的表面积和体积分别为( )A .24+83,8 3B .43,4 3C .12+23,4 3D .24+43,4 3解析: 由三视图可知此正三棱柱的底面三角形的高为23,三棱柱的高为2,所以其底面边长为4,于是S 表=24+83,V =12×32×42×2=8 3.答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为________. 解析: 设棱台的高为x ,则有⎝ ⎛⎭⎪⎫16-x 162=50512, 解之,得x =11. 答案: 1112.把球的表面积扩大到原来的2倍,那么体积扩大到原来的________倍. 解析: 设原来球的半径为r ,扩大后的半径为R ,则有4πR2=2×4πr2,则R=2r.则扩大后的体积V=43πR3=43π(2r)3=22·43πr3,即体积扩大到原来的22倍.答案:2 213.已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O-ABCD的体积为________.解析:如图所示,OO′垂直于矩形ABCD所在的平面,垂足为O′,连接O′B,OB,则在Rt△OO′B中,由OB=4,O′B=23,可得OO′=2,故V O-ABCD=13S矩形ABCD ·OO′=13×6×23×2=8 3.答案:8 314.如图所示,已知正三棱柱ABC-A1B1C1的底面边长为2,高为5,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为________.解析:如图所示,将三棱柱沿AA1剪开,可得一矩形,其长为6,宽为5,其最短路线为两相等线段之和,其长度等于2⎝⎛⎭⎫522+62=13.答案:13三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)画出下图中几何体的三视图.解析:图中几何体组合体,下部是三个正方体,上部是一个圆柱,按照正方体和圆柱的三视图的画法画出该组合体的三视图.该几何体的三视图如图所示.16.(本小题满分12分)如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.解析: 设圆台O ′O 的母线长为l ,由截得圆台上、下底面的面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r .过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm.故SA ′SA =O ′A ′OA, 即33+l =r4r. 解得l =9,故圆台O ′O 的母线长为9 cm.17.(本小题满分12分)轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为1 cm ,求球的体积.解析: 如图作出轴截面,∵△ABC 是正三角形,∴CD =12AC .∵CD =1 cm ,∴AC =2 cm ,AD = 3 cm. ∵Rt △AOE ∽Rt △ACD ,∴OE AO =CDAC.设OE =R ,则AO =3-R ,∴R 3-R =12, ∴R =33(cm). ∴V 球=43π⎝⎛⎭⎫333=4327π(cm 3).∴球的体积等于4327π cm 3.18.(本小题满分14分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析: (1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a 33.。

《成才之路》2015-2016学年高中数学(人教A版)必修二练习1.3.2球的体积和表面积

《成才之路》2015-2016学年高中数学(人教A版)必修二练习1.3.2球的体积和表面积

第一章 1.3 1.3.2基础巩固一、选择题1.如果三个球的半径之比是123,那么最大球的表面积是其余两个球的表面积之和的( )A .59倍B .95倍C .2倍D .3倍[答案] B[解析] 设小球半径为1,则大球的表面积S 大=36π,S 小+S 中=20π,36π20π=95.2.若两球的体积之和是12π,经过两球球心的截面圆周长之和为6π,则两球的半径之差为( )A .1B .2C .3D .4[答案] A[解析] 设两球的半径分别为R 、r (R >r ),则由题意得⎩⎪⎨⎪⎧4π3R 3+4π3r 3=12π,2πR +2πr =6π.解得⎩⎪⎨⎪⎧R =2,r =1.故R -r =1. 3.一个正方体表面积与一个球表面积相等,那么它们的体积比是( ) A .6π6 B .π2C .2π2D .3π2π[答案] A [解析] 由6a 2=4πR 2得a R=2π3,∴V 1V 2=a 343πR 3=34π⎝⎛⎭⎫2π33=6π6.4.已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是( )A .65B .5 4C .4 3D .32[答案] D[解析] 设球的半径为R ,则圆柱的高h =2R ,底面的半径也为R ,∴S 柱S 球=2πR 2+4πR 24πR 2=32. 5.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π[答案] D[解析] 本题是三视图还原为几何体的正投影问题.....,考查识图能力,空间想像能力.由题设可知,该几何体是圆柱的上面有一个球,圆柱的底面半径为1,高为3,球的半径为1,∴该几何体的表面积为2π×1×3+2π×12+4π×12=12π.6.64个直径都为a4的球,记它们的体积之和为V 甲,表面积之和为S 甲;一个直径为a的球,记其体积为V 乙,表面积为S 乙,则( )A .V 甲>V 乙且S 甲>S 乙B .V 甲<V 乙且S 甲<S 乙C .V 甲=V 乙且S 甲>S 乙D .V 甲=V 乙且S 甲=S 乙 [答案] C[解析] 计算得V 甲=16πa 3,S 甲=4πa 2,V 乙=16πa 3,S 乙=πa 2,∴V 甲=V 乙,且S 甲>S 乙.二、填空题7.(2013·陕西)某几何体的三视图如图所示,则其表面积为________.[答案] 3π[分析] 由三视图可知该几何体为半个球,利用球的表面积公式求解即可. [解析] 由三视图,易知原几何体是个半球,其半径为1,S =π×12+12×4×π×12=3π.8.已知棱长为2的正方体的体积与球O 的体积相等,则球O 的半径为________. [答案] 36π[解析] 设球O 的半径为r ,则43πr 3=23,解得r =36π.三、解答题9.体积相等的正方体、球、等边圆柱(轴截面为正方形)的全面积分别是S 1、S 2、S 3,试比较它们的大小.[解析] 设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r ,∴R =334πa ,r =312πa ,∴S 2=4π⎝ ⎛⎭⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝ ⎛⎭⎪⎫312πa 2=6π·314π2a 2=354πa 2, ∴S 2<S 3.又6a 2>332πa 2=354πa 2,即S 1>S 3. ∴S 1、S 2、S 3的大小关系是S 2<S 3<S 1.10.如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成.已知半球的直径是6 cm ,圆柱筒高为2 cm.(1)这种“浮球”的体积是多少cm 3(结果精确到0.1)?(2)要在2500个这样的“浮球”表面涂一层胶,如果每平方米需要涂胶100克,那么共需胶多少克?[解析] (1)因为半球的直径是6 cm ,可得半径R =3 cm , 所以两个半球的体积之和为 V 球=43πR 3=43π·27=36π(cm 3).又圆柱筒的体积为V 圆柱=πR 2·h =π×9×2=18π(cm 3). 所以这种“浮球”的体积是:V =V 球+V 圆柱=36π+18π=54π≈169.6(cm 3). (2)根据题意,上下两个半球的表面积是 S 球表=4πR 2=4×π×9=36π(cm 2), 又“浮球”的圆柱筒的侧面积为: S 圆柱侧=2πRh =2×π×3×2=12π(cm 2), 所以1个“浮球”的表面积为 S =36π+12π104=48104π(m 2).因此,2500个这样的“浮球”表面积的和为2500S =2500×48104π=12π(m 2).因为每平方米需要涂胶100克,所以共需要胶的质量为:100×12π=1200π(克).能力提升一、选择题1.(2015·广东深圳一模)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )[答案] B[解析] 选项D 为主视图或者侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B .2.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是( )A .4B .3C .2D .5[答案] B[解析] BD =5,AC =22,CD =OD -OC =R 2-BD 2-R 2-AC 2=R 2-5-R 2-8=1.解得R =3. 3.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为323π,那么这个正三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3[答案] D[解析] 由题意可知正三棱柱的高等于球的直径,从棱柱中间截得球的大圆内切于正三角形,正三角形与棱柱底的三角形全等,设三角形边长为a ,球半径为r ,由V 球=43×πr 3=32π3解r =2.S △=12a 2sin60°=12a ·r ×3,得a =23r =43,所以V 柱=S △·2r =48 3. 4.(2015·河北衡水中学下学期二调考试)已知某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A .2π3+12B .4π3+16C .2π6+16D .2π3+12[答案] C[解析] 由已知的三视图可知原几何体的上方是三棱锥,下方是半球,∴V =13×(12×1×1)×1+[43π(22)3]×12=16+2π6,故选C .二、填空题5.(2015·甘肃武威铁路中学专题训练)一个半径为2的球体经过切割后,剩余部分几何体的三视图如图所示,则该几何体的表面积为________.[答案] 16π[解析] 该几何体是从一个球体中挖去14个球体后剩余的部分,所以该几何体的表面积为34×(4π×22)+2×π×222=16π. 6.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为________.[答案] 31 2[解析] V 柱=πR 2×2R =2πR 3, V 锥=13πR 2×2R =2π3R 3,V 球=43πR 3.V 柱V 锥V 球=31 2. 三、解答题7.某街心花园有许多钢球(钢的密度为7.9 g /cm 3),每个钢球重145 kg ,并且外径等于50 cm ,试根据以上数据,判断钢球是空心的还是实心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm,2.243≈11.24098).[解析] 由于外径为50 cm 的钢球的质量为7.9×43π×(502)3≈516792(g),街心花园中钢球的质量为145 000 g ,而145 000<516 792, 所以钢球是空心的.设球的内径为2x cm ,那么球的质量为7.9×[43π×(502)3-43πx 3]=145 000.解得x 3≈11 240.98, ∴x ≈22.4,2x ≈45(cm).即钢球是空心的,其内径约为45 cm.8.已知正四面体的棱长为a ,求它外接球的体积及内切球的半径.[解析] 如图,设SO 1是正四面体S -ABC 的高,则外接球的球心O 在SO 1上.设外接球半径为R .∵正四面体的棱长为a ,O 1为正△ABC 中心, ∴AO 1=23×32a =33a ,SO 1=SA 2-AO 21=a 2-13a 2=63a ,在Rt △OO 1A 中,R 2=AO 21+OO 21=AO 21+(SO 1-R )2,即R 2=(33a )2+(63a -R )2, 解得R =64a , ∴所求外接球体积V 球=43πR 3=68πa 3.∴OO 1即为内切球的半径,OO 1=63a -64a =612a , ∴内切球的半径为612a .。

高中数学人教课标实验A版必修2第一章《空间几何体》同步练习(附答案)

高中数学人教课标实验A版必修2第一章《空间几何体》同步练习(附答案)

r 2 2r 4 3
3
2(r 2 1) 2 1 48
∴ r 2 1 , r 1 时, V max
2
4
2
12
例 8 球、正方体、等边圆柱(轴截面为正方形,即 l 2r )等边圆锥(轴截
面为正 , l 2r )体积相等,则表面积的大小关系. 解:
设体积为 V,正方体棱长为 a ,圆柱底面半径为 r1 ,圆锥底面半径为 r2 ,球 半径为 r3
V3
3
4
∴ S3 S1 S2 S4
例 9 有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相 切,第三个球过这个正方体的各个顶点.
(1)求这个三个球的表面积之比 (2)求这个三个球的体积之比 解:
(1)
① 2r
a, r
a 2 , S1
a2
② 2r
2a, r
2 a , S2
2 a2
2
③ 2r
解: 主要研究长方体的表面展开图
(1)沿 B1C1, C1D1 , D1A1 展开, AC1
32 32 3 2
(2)沿 BB1,B1C1,C1C 展开, AC1 1 52
26
(3)沿 BC ,C1C , C1B1展开, AC1 22 42 2 5 ∴ AC1 最小为 2
例 11 正四棱台两底面面积分别为 25cm2 ,49cm 2 ,侧棱长为 3 2cm,求这个 棱台的体积,表面积以及截得这个棱台的原棱锥的高.

解: Va 1 b 2 a 3
Vb 1 a 2b 3
Vc
1 (
ab
)2
3
a2 b2
a2 b2
3
a 2b2 a2 b2
Vb Va

2016-2017学年高一数学人教A版必修二习题第一章空间几何体 1.2.3及答案

2016-2017学年高一数学人教A版必修二习题第一章空间几何体 1.2.3及答案

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.如图所示为某一平面图形的直观图,则此平面图形可能是下图中的()解析:由直观图知,原四边形一组对边平行且不相等,为梯形,且梯形两腰不能与底垂直.答案: A2.水平放置的△ABC,有一边在水平线上,它的斜二测直观图是正三角形A′B′C′,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:如下图所示,斜二测直观图还原为平面图形,故△ABC是钝角三角形.答案: C3.如图所示的正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 cmB.8 cmC.(2+32)cmD.(2+23)cm解析:直观图中,O′B′=2,原图形中OC=AB=(22)2+12=3,OA=BC=1,∴原图形的周长是2×(3+1)=8. 答案: B4.如图所示,△A ′B ′C ′是水平放置的△ABC 的直观图,则在△ABC 的三边及中线AD 中,最长的线段是( )A.ABB.ADC.BCD.AC解析: 由直观图易知A ′D ′∥y ′轴,根据斜二测画法规则,在原图形中应有AD ⊥BC ,又AD 为BC 边上的中线,所以△ABC 为等腰三角形.AD 为BC 边上的高,则有AB ,AC 相等且最长,AD 最短.答案: C二、填空题(每小题5分,共15分)5.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析: 由于在直观图中,∠A ′C ′B ′=45°,则在原图形中,∠ACB =90°,AC =3,BC =4,AB =5,则AB 边的中线为2.5.答案: 2.56.如图所示为一个水平放置的正方形ABCO 在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为________.解析: 点B ′到x ′轴的距离等于点A ′到x ′轴的距离d , 而O ′A ′=12OA =1,∠C ′O ′A ′=45°,所以d =22O ′A ′=22. 答案:227.如图所示,一个水平放置的平面图形的斜二测直观图是一个底角为45°、腰和上底长均为1的等腰梯形,则这个平面图形的面积是________.解析:∵A′D′∥B′C′,∴AD∥BC.∵∠A′B′C′=45°,∴∠ABC=90°.∴AB⊥BC.∴四边形ABCD是直角梯形,如图所示.其中,AD=A′D′=1,BC=B′C′=1+2,AB=2,即S梯形ABCD=2+ 2.答案:2+ 2三、解答题(每小题10分,共20分)8.如图是水平放置的由正方形ABCE和正三角形CDE所构成的平面图形,请画出它的直观图.解析:画法:(1)以AB边所在直线为x轴,AB的中垂线为y轴,两轴相交于点O(如图(1)),画相应的x′轴和y′轴,两轴相交于点O′,使∠x′O′y′=45°(如图(2));(2)在图(2)中,以O′为中点,在x′轴上截取A′B′=AB;分别过A′,B′作y′轴的平行线,截取A′E′=12AE,B′C′=12BC;在y′轴上截取O′D′=12OD.(3)连接E′D′,D′C′,C′E′,并擦去辅助线x′轴和y′轴,便得到平面图形ABCDE水平放置的直观图A′B′C′D′E′(如图(3)).9.如图所示,四边形ABCD是一个梯形,CD∥AB,CD=AO=1,三角形AOD为等腰直角三角形,O 为AB的中点,试求梯形ABCD水平放置的直观图的面积.解析: 在梯形ABCD 中,AB =2,高OD =1,易知梯形ABCD水平放置的直观图仍为梯形,且上底CD 和下底AB 的长度都不变,如图所示,在直观图中,O ′D ′=12OD =12,梯形的高D ′E ′=24,于是梯形A ′B ′C ′D ′的面积为12×(1+2)×24=328.。

人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练

人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练

人教版高中数学必修二第1章空间几何体1.2.2空间几何体的三视图学案【要点梳理夯实基础】知识点1投影的概念阅读教材P11~P12第二行内容,完成下列问题.1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影[思考辨析学练结合]判断(正确的打“√”,错误的打“×”)(1)矩形的平行投影一定是矩形.()(2)平行四边形的平行投影可能是正方形.()(3)两条相交直线的平行投影可能平行.()(4)如果一个三角形的投影仍是三角形,那么它的中位线的平行投影,一定是这个三角形的平行投影的中位线.()【解析】利用平行投影的概念和性质进行判断.【答案】(1)×(2)√(3)×(4)√知识点2三视图阅读教材P12第三行~P14内容,完成下列问题.1.三视图的有关概念空间几何体的三视图是用正投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.正视图:光线从几何体的前面向后面正投影得到的投影图。

侧视图:光线从几何体的左面向右面正投影得到的投影图。

俯视图:光线从几何体的上面向下面正投影得到的投影图。

规律:一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样。

2.三视图的画法(1)画三视图时,重叠的线只画一条,挡住的线要画成虚线;(2)三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图;(3)观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,特别是它们的交线位置.3.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.[思考辨析学练结合]1.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台[解析][先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.][答案] D2. 判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)球的任何截面都是圆.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()[答案](1)×(2)×(3)×3.下列命题中正确的是()A.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.正方形的直观图是正方形[解析]B[用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;平行四边形的直观图是平行四边形;有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱;正方形的直观图是平行四边形,故选B.][答案]B【合作探究析疑解难】考点1 中心投影与平行投影[典例1]如图,点E,F分别是正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把可能的序号都填上)[点拨]利用点B,F,D1,E在正方体各面上的正投影的位置来判断.[解答]其中(2)可以是四边形BFD1E在正方体的面ABCD或在面A1B1C1D1上的投影.(3)可以是四边形BFD1E在正方体的面BCC1B1上的投影.[答案](2)(3)[解法总结]画投影图的关键及常用方法1.关键:画一个图形在一个投影面上的投影的关键是确定该图形的关键点(如顶点,端点等)及这些关键点的投影,再依次连接就可得到图形在投影面上的投影.2.常用方法:投影问题与垂直关系紧密联系,投影图形的形状与投影线和投射图形有关系,在解决有些投影问题时,常借助于正方体模型寻求解题方法.1.在正方体ABCD-A′B′C′D′中,E、F分别是A′A、C′C的中点,则下列判断正确的是________.图1-2-3①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.[解析]①四边形BFD′E的四个顶点在底面ABCD内的投影分别是点B、C、D、A,故投影是正方形,正确;②设正方体的边长为2,则AE=1,取D′D的中点G,则四边形BFD′E在面A′D′DA内的投影是四边形AGD′E,由AE∥D′G,且AE=D′G,∴四边形AGD′E是平行四边形.但AE=1,D′E =5,故四边形AGD′E不是菱形;对于③,由②知是两个边长分别相等的平行四边形,从而③正确.[答案]①③考点2 画空间几何体的三视图[典例2]画出下列几何体的三视图.(1)(2)(3)[点拨]确定正前方→画正视图→画侧视图→画俯视图[解答]三视图如图(1)(2)(3)所示.画三视图的注意事项1.务必做到长对正,宽相等,高平齐.2.三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.3.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.2.画出如图所示几何体的三视图.解:图①为正六棱柱,正视图和侧视图都是矩形,正视图中有两条竖线,侧视图中有一条竖线,俯视图是正六边形.图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状.三视图如图所示.考点3 由三视图还原空间几何体探究1如图是一个立体图形的三视图,请观察三视图,由三视图,你能知道该几何体是什么吗?并试着画出图形.[提示]由三视图可知,该几何体为正四棱锥,如图所示.探究2若某空间几何体的正视图和侧视图均为正三角形,请探究该几何体的形状.[提示]若该几何体的正视图和侧视图均为正三角形,则该几何体为轴截面为等边三角形的圆锥,如图所示.[典例3]根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.[点拨]由正视图、侧视图确定几何体为锥体,再结合俯视图确定其是四棱锥,由俯视图可知其底面形状,再结合正视图、侧视图所给信息画直观图.[解答]由俯视图知,该几何体的底面是一直角梯形;再由正视图和侧视图知,该几何体是一四棱锥,且有一侧棱与底面垂直,所以该几何体如图所示.[解法总结]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.3.如图是一个物体的三视图,则此三视图所描述的物体是下列哪个几何体?()[解析]由俯视图可知该几何体为旋转体,由正视图、侧视图、俯视图可知该几何体是由圆锥、圆柱组合而成.[答案] D【学习检测巩固提高】1.一条直线在平面上的正投影是()A.直线B.点C.线段D.直线或点[解析]当直线与平面垂直时,其正投影为点,其他位置时其正投影均为直线,故选D.[答案] D2.已知某物体的三视图如图所示,那么这个物体的形状是()A.长方体B.圆柱C.立方体D.圆锥[解析]俯视图是圆,所以为旋转体,可排除A、C,又正、侧视图为矩形,所以不是圆锥,排除D.故选B.[答案] B3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析][由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.][答案] A4.如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④[解析][P点在上下底面投影落在AC或A1C1上,所以△P AC在上底面或下底面的投影为①,在前面、后面以及左面,右面的投影为④,故选B.][答案] B5.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析][由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.][答案] B6.水平放置的下列几何体,正视图是长方形的是______(填序号).①②③④[解析]①③④的正视图为长方形,②的正视图为等腰三角形.[答案]①③④7.一物体及其正视图如图所示:①②③④则它的侧视图与俯视图分别是图形中的________.[解析]侧视图是矩形中间有条实线,应选③;俯视图为矩形中间有两条实线,且为上下方向,应选②.[答案]③②8.如图所示的三视图表示的几何体是什么?画出物体的形状.[解]该三视图表示的是一个四棱台,如图.[解题反思]已知三视图,判断几何体的技巧①一般情况下,根据主视图、俯视图确定是柱体、锥体还是组合体.②根据俯视图确定是否为旋转体,确定柱体、锥体类型、确定几何体摆放位置.③综合三视图特别是在俯视图的基础上想象判断几何体.④一定要熟记常见几何体的三视图!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章空间几何体第1课时多面体的结构特征一、基础过关1.下列说法中正确的是() A.棱柱的侧面可以是三角形B.由6个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱长都相等D.棱柱的各条棱长都相等2.棱台不具备的特点是() A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体 D.不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是()A.1∶2 B.1∶4 C.2∶1 D.4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8.如图所示的是一个三棱台ABC—A1B1C1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?第二课时旋转体与简单组合体的结构特征一、基础过关1.下列说法正确的是() A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线2.下列说法正确的是() A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的3.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.(1)(2) B.(1)(3) C.(1)(4) D.(1)(5)4.观察如图所示的四个几何体,其中判断正确的是()A.a是棱台B.b是圆台C.c是棱锥D.d不是棱柱5.将等边三角形绕它的一条中线旋转180°,形成的几何体是________.6.请描述下列几何体的结构特征,并说出它的名称.(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;(2)如右图,一个圆环面绕着过圆心的直线l旋转180°.7. 如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.二、能力提升8.下列说法正确的个数是()①长方形绕一条直线旋转一周所形成的几何体是圆柱;②过圆锥侧面上一点有无数条母线;③圆锥的母线互相平行.A.0 B.1 C.2 D.39.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()10.已知球O是棱长为1的正方体ABCD—A1B1C1D1的内切球,则平面ACD1截球O所得的截面面积为________.11.以直角三角形的一条边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体有哪些?12.如图所示,圆台母线AB长为20 cm,上、下底面半径分别为5 cm和10 cm,从母线AB的中点M拉一条绳子绕圆台侧面转到B点,求这条绳长的最小值.§1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图一、基础过关1.下列命题正确的是() A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点2.如图所示的一个几何体,哪一个是该几何体的俯视图()3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图()5.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.6.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是______和________.7.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).8.画出如图所示的四棱锥和三棱柱的三视图.9.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()10.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱11.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是________.12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.三、探究与拓展13.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?1.2.3 空间几何体的直观图一、基础过关 1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行. 其中正确的有( )A .①②B .①④C .③④D .①③④ 2.在用斜二测画法画水平放置的△ABC 时,若∠A 的两边分别平行于x 轴、y 轴,则在直观图中∠A ′等于( )A .45°B .135°C .90°D .45°或135°3.下面每个选项的2个边长为1的正△ABC 的直观图不是全等三角形的一组是()4.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的()5.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形. 以上结论中,正确的是______________.(填序号)6.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为____________.7.如图是一梯形OABC 的直观图,其直观图面积为S .求梯形OABC 的面积.8.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.二、能力提升9.如图,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图的周长是( )A .8 cmB .6 cmC .2(1+3) cmD .2(1+2) cm10.如图所示的是水平放置的△ABC 在直角坐标系的直观图,其中D ′是A ′C ′的中点,且∠A ′C ′B ′≠30°,则原图形中与线段BD 的长相等的线段有________条.11.如图所示,为一个水平放置的正方形ABCO ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为________.12.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm ,CD =2 cm ,∠DAB =30°,AD =3 cm ,试画出它的直观图.三、探究与拓展13.在水平放置的平面α内有一个边长为1的正方形A ′B ′C ′D ′,如图,其中的对角线A ′C ′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.§1.3 空间几何体的表面积与体积第一课时 柱体、锥体、台体的表面积一、基础过关1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( ) A .8 B .8π C .4π D .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比为 ( )A .1+2π2πB .1+4π4πC .1+2ππ D .1+4π2π3.若一个圆台的正视图如图所示,则其侧面积等于( )A .6B .6πC .35π D .65π 4.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+2C .7+ 3D .325.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________. 6.一简单组合体的三视图及尺寸如下图所示(单位:cm),则该组合体的表面积为________cm 2.7.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.8.长方体ABCD —A 1B 1C 1D 1中,宽、长、高分别为3、4、5,现有一个小虫从A 出发沿长方体表面爬行到C 1来获取食物,求其路程的最小值.二、能力提升9.已知由半圆的四分之三截成的扇形的面积为B ,由这个扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8B .3∶8C .8∶3D .13∶8 10.一个几何体的三视图如图,该几何体的表面积为( )A .372B .360C .292D .28011.一个几何体的三视图如图所示,则该几何体的表面积为________.12.有一根长为3π cm ,底面半径为1 cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.三、探究与拓展13.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).第二课时 柱体、锥体、台体、球的体积与球的表面积一、基础过关1.一个三棱锥的高和底面边长都缩小为原来的12时,它的体积是原来的( )A .12B .14C .18D .242.两个球的半径之比为1∶3,那么两个球的表面积之比为( )A .1∶9B .1∶27C .1∶3D .1∶1 3.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( ) A .a ∶b B .b ∶a C .a 2∶b 2 D .b 2∶a 2 4.若球的体积与表面积相等,则球的半径是( ) A .1B .2C .3D .45.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________ cm. 6.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为______ cm 3.7.(1)表面积相等的正方体和球中,体积较大的几何体是______; (2)体积相等的正方体和球中,表面积较小的几何体是______.8.在球面上有四个点P 、A 、B 、C ,如果P A 、PB 、PC 两两垂直且P A =PB =PC =a ,求这个球的体积.二、能力提升9.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确10.圆柱的底面半径为1,母线长为2,则它的体积和表面积分别为( )A .2π,6πB .3π,5πC .4π,6πD .2π,4π11.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m 3.12.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.三、探究与拓展13.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.章末检测一、选择题1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是() A.棱柱B.棱台C.棱柱与棱锥组合体D.无法确定1题图2题图2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能...为:①长方形;②正方形;③圆.其中正确的是()A.①②B.②③C.①③D.①②3.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是()4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC4题图5题图5.具有如图所示直观图的平面图形ABCD是()A.等腰梯形B.直角梯形C.任意四边形D.平行四边形6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是()A.1 B.2 C.3 D.47.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π9.如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.1210.将正三棱柱截去三个角(如图1所示,A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为选项图中的()11.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A.120°B.150°C.180°D.240°12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26B.36C.23D.22二、填空题13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱14.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________ cm3.15.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.16.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的14,则油桶直立时,油的高度与桶的高度的比值是________. 三、解答题17.某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π); (2)求该几何体的体积(结果保留π).18.如图是一个空间几何体的三视图,其中正视图和侧视图都是边长为2的正三角形,俯视图如图.(1)在给定的直角坐标系中作出这个几何体的直观图(不写作法); (2)求这个几何体的体积.19.如图所示,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD绕AD 旋转一周所成几何体的表面积及体积.20.如图所示,有一块扇形铁皮OAB ,∠AOB =60°,OA =72 cm ,要剪下来一个扇形环ABCD ,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面). 试求:(1)AD 的长;(2)容器的容积.第一章 空间几何体参考答案 第一节1.C 2.C 3.A 4.B 5.12 6.①②7.解 截面BCFE 右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB ′—CFC ′,其中△BEB ′和△CFC ′是底面.EF ,B ′C ′,BC 是侧棱,截面BCFE 左侧部分也是棱柱.它是四棱柱ABEA ′—DCFD ′. 其中四边形ABEA ′和四边形DCFD ′是底面.A ′D ′,EF ,BC ,AD 为侧棱.8.解 过A 1、B 、C 三点作一个平面,再过A 1、B 、C 1作一个平面,就把三棱台ABC —A 1B 1C 1分成三部分,形成的三个三棱锥分别是A 1—ABC ,B —A 1B 1C 1,A 1—BCC 1. 9.D 10.①③④⑤11.解 (1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解 本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形; ②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行; ④截面可以是五边形; ⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形. 截面图形举例第二节1.C 2.D 3.D 4.C 5.圆锥6.解 (1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱. (2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球. 7.解 如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.8.A 9.B 10.π611.解 假设直角三角形ABC 中,∠C =90°.以AC 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(1)所示.当以BC 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(2)所示. 当以AB 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(3)所示.12.解 作出圆台的侧面展开图,如图所示,由其轴截面中Rt △OP A 与Rt △OQB 相似,得OA OA +AB =510,可Q 的周长相等,求得OA =20 cm.设∠BOB ′=α,由于扇形弧BB ′的长与底面圆而底面圆Q 的周长为2π×10 cm.扇形OBB ′的半径为OA +AB =20+20=40 cm ,扇形OBB ′所在圆的周长为2π×40=80π cm.所以扇形弧BB ′的长度20π为所在圆周长的14.所以OB ⊥OB ′.所以在Rt △B ′OM 中,B ′M 2=402+302, 所以B ′M =50 cm ,即所求绳长的最小值为50 cm.第三节1.D 2.C 3.D 4.C5.(1)D (2)A (3)E (4)C (5)B 6.2 47.解 图(a)是由两个长方体组合而成的,正视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.8.解 三视图如图所示:9.A 10.D 11.612.解 该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解 由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.第四节1.B 2.D 3.C 4.C 5.①② 6.2.57.解 设O ′C ′=h ,则原梯形是一个直角梯形且高为2h .过C ′作C ′D ′⊥O ′A ′于D ′,则C ′D ′=22h . 由题意知12C ′D ′(C ′B ′+O ′A ′)=S .即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (C ′B ′+O ′A ′)=h (C ′B ′+O ′A ′)=4S2=22S .所以梯形OABC 的面积为22S .8.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连接V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ; (3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.9.A 10.2 11.2212.解 画法:步骤:(1)如图a 所示,在梯形ABCD 中, 以边AB 所在的直线为x 轴,点A 为原点, 建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在图b 中, 在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED =12×32=0.75 cm ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连接A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B′C ′D ′就是所求作的直观图.13.解 四边形ABCD 的真实图形如图所示,∵A ′C ′在水平位置,A ′B ′C ′D ′为正方形, ∴∠D ′A ′C ′=∠A ′C ′B ′ =45°,∴在原四边形ABCD 中, DA ⊥AC ,AC ⊥BC , ∵DA =2D ′A ′=2, AC =A ′C ′=2, ∴S 四边形ABCD =AC ·AD =2 2.第五节1.B 2.A 3.C 4.A 5.60° 6.12 800 7.28.解 把长方体含AC 1的面作展开图,有三种情形如图所示:利用勾股定理可得AC 1的长分别为90、74、80.由此可见图②是最短路线,其路程的最小值为74. 9.A 10.B 11.3812.解 把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图所示),由题意知BC =3π cm ,AB =4π cm,点A 与点C 分别是铁丝的起、止位置,故线段AC 的长度即为铁丝的最短长度. AC =AB 2+BC 2=5π cm , 故铁丝的最短长度为5π cm.13.解 易知由下向上三个正方体的棱长依次为2,2,1.考虑该几何体在水平面的投影,可知其水平面的面积之和为下底面积最大正方体的底面面积的二倍. ∴S 表=2S 下+S 侧=2×22+4×[22+(2)2+12]=36. ∴该几何体的表面积为36.第六节1.C 2.A 3.B 4.C 5.3 6.6 7.(1)球 (2)球8.解 ∵P A 、PB 、PC 两两垂直,P A =PB =PC =a .∴以P A 、PB 、PC 为相邻三条棱可以构造正方体. 又∵P 、A 、B 、C 四点是球面上四点,∴球是正方体的外接球,正方体的对角线是球的直径.∴2R =3a ,R =32a ,∴V =43πR 3=43π(32a )3=32πa 3.9.A 10.A 11.9π+1812.解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3, 而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r . 即容器中水的深度为315r .13.解 设正方体的棱长为a .如图所示.(1)中正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面, 所以有2r 1=a ,r 1=a2,所以S 1=4πr 21=πa 2.(2)中球与正方体的各棱的切点在每条棱的中点, 过球心作正方体的对角面得截面,2r 2=2a ,r 2=22a ,所以S 2=4πr 22=2πa 2.(3)中正方体的各个顶点在球面上, 过球心作正方体的对角面得截面,所以有2r 3=3a ,r 3=32a ,所以S 3=4πr 23=3πa 2.综上可得S 1∶S 2∶S 3=1∶2∶3.章末检测答案1.A 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.A 10.A 11.C 12.A 13.①②③⑤ 14.1 15.24π 16.14-12π17.解 由三视图可知:该几何体的下半部分是棱长为2 m 的正方体,上半部分是半径为1 m 的半球.(1)几何体的表面积为S =12×4π×12+6×22-π×12=24+π(m 2).(2)几何体的体积为V =23+12×43×π×13=8+2π3(m 3).18.解 (1)直观图如图.(2)这个几何体是一个四棱锥. 它的底面边长为2,高为3,所以体积V =13×22×3=433.19.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×2 2 =(42+60)π.V =V 圆台-V 圆锥=13π(r 21+r 1r 2+r 22)h -13πr 21h ′ =13π(25+10+4)×4-13π×4×2=1483π. 20.解 (1)设圆台上、下底面半径分别为r 、R ,AD =x ,则OD =72-x ,由题意得⎩⎪⎨⎪⎧2πR =60·π180×7272-x =3R,∴⎩⎪⎨⎪⎧R =12x =36.即AD 应取36 cm.(2)∵2πr =π3·OD =π3·36,∴r =6 cm ,圆台的高h =x 2-(R -r )2=362-(12-6)2=635. ∴V =13πh (R 2+Rr +r 2)=13π·635·(122+12×6+62)=50435π(cm 3).。

相关文档
最新文档