二次函数经典练习题
二次函数练习题
二次函数练习题一、选择题1. 下列哪个函数是二次函数?A. y = x + 1B. y = 2x^2 3x + 1C. y = x^3 3xD. y = sqrt(x)2. 二次函数y = ax^2 + bx + c(a≠0)的图象是()。
A. 抛物线B. 直线C. 双曲线D. 圆3. 二次函数y = 2x^2 + 4x + 5的顶点坐标是()。
A. (1, 3)B. (2, 9)C. (1, 7)D. (0, 5)4. 当a > 0时,二次函数y = ax^2 + bx + c的图象开口()。
A. 向上B. 向下C. 向左D. 向右二、填空题1. 二次函数y = x^2 4x + 4可以写成y = (x ____)^2的形式。
2. 已知二次函数y = x^2 + 2x + 3的顶点坐标为(1, 4),则该函数的对称轴是直线____。
3. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, 2),则a的取值范围是____。
三、解答题1. 已知二次函数y = x^2 6x + 9,求其顶点坐标。
2. 求二次函数y = 2x^2 + 4x + 5在x = 2时的函数值。
3. 已知二次函数y = ax^2 + bx + c的图象经过点(1, 3)和(1, 7),且顶点坐标为(0, 5),求该二次函数的解析式。
4. 设二次函数y = x^2 + mx + 1的图象与x轴相交于A、B两点,求线段AB的长度。
5. 已知二次函数y = x^2 4x + 3的图象与x轴相交于C、D两点,求线段CD的中点坐标。
四、应用题1. 一抛物线开口向上,其顶点为原点O(0,0),且经过点P(2,8)。
求该抛物线的解析式。
2. 一运动员在水平地面上进行跳远训练,其跳跃的高度h(单位:米)与跳跃的水平距离x(单位:米)之间的关系可以近似表示为二次函数h = 0.02x^2 + 0.6x。
求运动员跳跃时水平距离为4米时的高度。
二次函数练习题8套
一、填空1、二次函数y=-x 2+6x+3的图象顶点为_________对称轴为_________。
2、二次函数y=(x-1)(x+2)的顶点为_________,对称轴为________。
3、二次函数y=2(x+3)(x-1)的x 轴的交点的个数有_______个,交点坐标为_____________。
4、y=x 2-3x-4与x 轴的交点坐标是__________,与y 轴交点坐标是____________5、由y=2x 2和y=2x 2+4x-5的顶点坐标和二次项系数可以得出y=2x 2+4x-5的图象可由y=2x 2的图象向__________平移________个单位,再向_______平移______个单位得到。
二、解答:6、求y=2x 2+x-1与x 轴、y 轴交点的坐标。
7、求y=31x 2212--x 的顶点坐标。
8、已知二次函数图象顶点坐标(-3,21)且图象过点(2,211),求二次函数解析式及图象与y 轴的交点坐标。
9、已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。
10、分析若二次函数y=ax 2+bx+c 经过(1,0)且图象关于直线x=21,对称,那么图象还必定经过哪一点?1、二次函数y=-3x2-2x+1,∵a=_________ ∴图象开口向________2、二次函数y=2x2-1 ∵a=_________∴函数有最_________值。
3、二次函数y=x2+x+1 ∵b2-4ac=____________∴函数图象与x轴____________交点。
4、二次函数y=x2-2x-3的图象是开口向_________的抛物线,抛物线的对称轴是直线______,抛物线的顶点坐标是______________。
5、已知y=ax2+bx+c的图象如下,则:a+b+c_______0,a-b+c__________0。
2a+b________07、描点画函数y=3x2-4x+1图象并根据图象回答问题画图①当x________时,y>0当__________时,y<0当__________时,y=01②若x1=5,x2=7,x3=3对应的函数值是y1,y2,y3,用“<”连接y1,y2,y3 8、求y=x2-5x+6与x轴交点的坐标9、求抛物线y=x2+x+2与直线x=1的交点坐标。
二次函数基础练习题大全(含答案)
1、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.2、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.3、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 . 4、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点5、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =),则 s 与 t 的函数图像大致是( )A B C D6、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D .7、已知函数24mm ymx 的图像是开口向下的抛物线,求m 的值.8、二次函数12-=m mx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值最大值是多少当x 为何值时,y 随x 的增大而减小s OstOst O st O10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.11、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________; 12、抛物线942++=x x y 的对称轴是 .13、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 . 14、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____. 15、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是16、抛物线1662--=x x y 与x 轴交点的坐标为_________; 17、函数x x y +-=22有最____值,最值为_______;18、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-1419、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3320、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 21、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标22、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上23、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润最大利润是多少元25、二次函数2224ymx x m m 的图象经过原点,则此抛物线的顶点坐标是26、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;27、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.(第26题) (第27题) () () 28、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 的值。
二次函数练习题及答案
A B C D O x y 二次函数练习题(1)1.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( )A.5B.4C.3D.22.二次函数c bx ax y ++=2的图象如图所示,下列结论:①0<c ;②0>b ;③024>++c b a ;④042>-ac b .其中正确的有 ( )(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个3.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________.4.把抛物线y=12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 5.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________. 6.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称 的抛物线的解析式是__________.7.已知二次函数y=2x 2-mx-4的图象与x 轴的两个交点的横坐标的倒数和为2,则m=_________.8.如图,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线y =-x 2+6x 上.设OA =m (0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 .9.已知抛物线22b x x y ++=经过点1()4a -,和1()a y -,,则1y 的值是 .10、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( ) 图1 yO 3 31(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<111、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
完整版)初中数学二次函数专题经典练习题(附答案)
完整版)初中数学二次函数专题经典练习题(附答案)1.抛物线$y=-3x^2+2x-1$与坐标轴的交点情况是(A)没有交点。
(C)有且只有两个交点。
(D)有且只有三个交点。
2.已知直线$y=x$与二次函数$y=ax^2-2x-1$的一个交点的横坐标为1,则$a$的值为(C)3.3.二次函数$y=x^2-4x+3$的图象交$x$轴于$A$、$B$两点,交$y$轴于点$C$,则$\triangle ABC$的面积为(B)4.4.函数$y=ax^2+bx+c$中,若$a>0$,$b<0$,$c<0$,则这个函数图象与$x$轴的交点情况是(D)一个在$x$轴的正半轴,另一个在$x$轴的负半轴。
5.已知$(2,5)$、$(4,5)$是抛物线$y=ax^2+bx+c$上的两点,则这个抛物线的对称轴方程是(B)$x=3$。
6.无法正确反映函数$y=ax+b$图象的选项已删除。
7.二次函数$y=2x^2-4x+5$的最小值是$4.5$。
8.某二次函数的图象与$x$轴交于点$(-1,0)$,$(4,0)$,且它的形状与$y=-x$形状相同。
则这个二次函数的解析式为$y=-\frac{1}{25}(x-1)(x-4)$。
9.若函数$y=-x+4$的函数值$y>0$,则自变量$x$的取值范围是$(-\infty,4)$。
10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150 销量(个) 80 100 110 100 80 60.为获得最大利润,销售商应将该品牌电饭锅定价为120元。
11.函数$y=ax^2-(a-3)x+1$的图象与$x$轴只有一个交点,那么$a$的值和交点坐标分别为$(a,0)$和$(\frac{a-3}{2},0)$。
12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽$AB=1.6m$,涵洞顶点$O$到水面的距离为$2.4m$,在图中的直角坐标系内,涵洞所在抛物线的解析式为$y=-\frac{5}{6}(x-2)^2+2.4$。
二次函数练习题(含答案)
二次函数练习题(含答案)形,如图所示。
将剩余部分折成一个无盖的长方体盒子,已知折痕处的线段长度均为2cm,求这个盒子的体积。
解析:首先确定长方体的长、宽、高分别对应正三角形的边长a、b、c,如图所示。
由于筝形的对角线长度为2cm,根据勾股定理可得$a^2+b^2=4$。
由于正三角形的内角为60度,因此可以利用三角函数求得$a=\sqrt{3}c$和$b=2\sin30^{\circ}c=c$。
将$a$、$b$、$c$代入长方体的体积公式$V=abc$,得到$V=2\sqrt{3}c^3$。
将$c=2$代入即可得到盒子的体积为$V=16\sqrt{3}$。
1.将文章中的公式和图表进行排版整理,删除明显有问题的段落。
2.对于每段话进行小幅度的改写,使其更加简洁明了。
1.某人要制作一个无盖的直三棱柱纸盒,现在需要确定该纸盒的侧面积最大值。
根据图中的信息,我们可以得出最大面积为()A.cm2B.cm2C.cm2D.cm2.2.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,),下列结论中正确的有几个?①abc<;②b2﹣4ac=0;③a>2;④4a﹣2b+c>。
答案为A.1B.2C.3D.4.3.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2.现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1.下列结论中正确的有哪些?①b>;②a﹣b+c<;③阴影部分的面积为4;④若c=﹣1,则b2=4.答案为……4.二次函数y=ax2+bx+c的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在图象上,四边形OBAC为菱形,且∠OBA=120°。
求菱形OBAC的面积。
5.某水产养殖户为了节省材料,利用水库的岸堤为一边,用总长为80m的围栏在水库中围成了如图所示的①②③三块矩形区域,且这三块矩形区域的面积相等。
设BC的长度为xm,矩形区域ABCD的面积为ym2.(1) 求y与x之间的函数关系式,并注明自变量x的取值范围;(2) 当y有最大值时,x为多少?最大值是多少?6.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a <0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC。
初中数学二次函数专题经典练习题(附答案)
二次函数总复习经典练习题1.抛物线y =-3x 2+2x -1的图象与坐标轴的交点情况是的图象与坐标轴的交点情况是( ) ( ) (A)(A)没有交点.没有交点.没有交点. (B) (B) (B)只有一个交点.只有一个交点.(C)(C)有且只有两个交点.有且只有两个交点.有且只有两个交点. (D) (D) (D)有且只有三个交点.有且只有三个交点.2.已知直线y =x 与二次函数y =ax 2-2x -1图象的一个交点的横坐标为1,则a 的值为的值为( ) ( ) (A)2(A)2.. (B)1 (B)1.. (C)3 (C)3.. (D)4 (D)4..3.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为的面积为( ) ( )(A)6(A)6.. (B)4 (B)4.. (C)3 (C)3.. (D)1 (D)1..4.函数y =ax 2+bx +c 中,若a >0,b <0,c <0,则这个函数图象与x 轴的交点情况是轴的交点情况是( ) ( )(A)(A)没有交点.没有交点.(B)(B)有两个交点,都在有两个交点,都在x 轴的正半轴.(C)(C)有两个交点,都在有两个交点,都在x 轴的负半轴.(D)(D)一个在一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知已知(2(2(2,,5)5)、、(4(4,,5)5)是抛物线是抛物线y =ax 2+bx +c 上的两点,则这个抛物线的对称轴方程是则这个抛物线的对称轴方程是( ) ( ) (A)x =a b-. (B)x =2=2.. (C)x =4=4.. (D)x =3=3..6.已知函数y=ax 2+bx +c 的图象如图1所示,那么能正确反映函数y=ax +b 图象的只可能是( )(D)(C)(B)(A)x yo y xo yxxy o 7.二次函数y =2x 2-4x +5的最小值是的最小值是__________________..8.某二次函数的图象与x 轴交于点轴交于点((-1,0)0),,(4(4,,0)0),且它的形状与,且它的形状与y =-x 2形状相同.则这个二次函数的解析式为这个二次函数的解析式为__________________..9.若函数y =-x 2+4的函数值y >0,则自变量x 的取值范围是的取值范围是__________________..1010.某品牌电饭锅成本价为.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元)100110120130140150图1 xyo -4-3-2-113销量(个) 80 100 110 100 80 60为获得最大利润,销售商应将该品牌电饭锅定价为为获得最大利润,销售商应将该品牌电饭锅定价为 元.元.元.1111.函数.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为____________..1212.某涵洞是一抛物线形.某涵洞是一抛物线形.某涵洞是一抛物线形,,它的截面如图3所示所示,,现测得水面宽 1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内在图中的直角坐标系内,,涵洞所在抛物线的解析式为涵洞所在抛物线的解析式为________. ________.1313..(本题8分)已知抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.的直线的解析式.1414..(本题8分)抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.轴的交点坐标.1515..(本题8分)如图4,已知抛物线y =ax 2+bx +c (a >0)0)的顶点是的顶点是C (0(0,,1)1),直线,直线l :y =-ax +3与这条抛物线交于P 、Q 两点,且点P 到x 轴的距离为2.(1)(1)求抛物线和直线求抛物线和直线l 的解析式;的解析式;(2)(2)(2)求点求点Q 的坐标.的坐标.1616..(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?1717..(本题10分)) )) 杭州休博会期间,杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月图3 yxO1图4 PQyxO到第x 个月的维修保养费用累计为y (万元万元)),且y =ax 2+bx ;若将创收扣除投资和维修保养费用称为游乐场的纯收益g (万元万元)),g 也是关于x 的二次函数.的二次函数.(1)(1)若维修保养费用第若维修保养费用第1个月为2万元,第2个月为4万元.求y 关于x 的解析式;的解析式; (2)(2)求纯收益求纯收益g 关于x 的解析式;的解析式;(3)(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资? 18(本题10分)如图所示,图4-4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m 30m,,支柱A 3B 3=50m =50m,,5根支柱A 1B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5之间的距离均为15m 15m,,B 1B 5∥A 1A 5,将抛物线放在图4-4-②所示的直角坐标系中.②所示的直角坐标系中.②所示的直角坐标系中. (1)(1)直接写出图直接写出图4-4-②中点②中点B 1、B 3、B 5的坐标;的坐标; (2)(2)求图求图4-4-②中抛物线的函数表达式;②中抛物线的函数表达式;②中抛物线的函数表达式; (3)(3)求图求图4-4-①中支柱①中支柱A 2B 2、A 4B 4的长度.的长度.1919、、 如图5,已知A (2(2,,2)2),,B (3(3,,0)0).动点.动点P (m ,0)0)在线段在线段OB 上移动,过点P 作直线l 与x 轴垂直.轴垂直.(1)(1)设△设△OAB 中位于直线l 左侧部分的面积为S ,写出S 与m 之间的函数关系式;之间的函数关系式; (2)(2)试问是否存在点试问是否存在点P ,使直线l 平分△OAB 的面积?若有,求出点P 的坐标;若无,请说明的坐标;若无,请说明 理由.理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:图5 PyxO AB 图4-②B 1B 3B 5yxO图4-① B 5B 4B 3B 2B 1A 5A 4A 3A 1A 230m答案:答案:一、一、11.B 2B 2..D 3D 3..C 4C 4..D 5D 5..D 6D 6..B二、二、77.3 83 8..y =-x 2+3x +4 94 9.-.-.-22<x <2 102 10..1301111..a =0=0,,(13-,0)0);;a =1=1,,(-1,0)0);;a =9=9,,(13,0) 120) 12..2154y x =- 1313.抛物线的顶点为.抛物线的顶点为.抛物线的顶点为(1(1(1,-,-,-3)3)3),点,点B 的坐标为的坐标为(0(0(0,-,-,-2)2)2).直线.直线AB 的解析式为y =-x -21414.依题意可知抛物线经过点.依题意可知抛物线经过点.依题意可知抛物线经过点(1(1(1,,0)0).于是.于是a +2a +a 2+2=02=0,解得,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为轴的另一交点坐标均为((-3,0)1515..(1)(1)依题意可知依题意可知b =0=0,,c =1=1,且当,且当y =2时,ax 2+1=2①,-ax +3=2②.由①、②解得a =1=1,,x =1=1.故抛物线与直线的解析式分别为:.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5) 1616..设降价x 元时,获得的利润为y 元.则依意可得y =(45=(45--x )(100)(100++4x )=)=--4x 2+80x +45004500,,即y =-4(x -10)2+49004900.故当.故当x =10时,y 最大最大=4900(=4900(=4900(元元)1717..(1)(1)将将(1(1,,2)2)和和(2(2,,6)6)代入代入y =ax 2+bx ,求得a =b =1=1.故.故y =x 2+x ;(2)g =33x -150150--y ,即g =-x 2+32x -150150;;(3)(3)因因y =-(x -16)2+106106,,所以设施开放后第16个月,纯收益最大.令g =0=0,得-,得-x 2+32x -150=0150=0.解得.解得x =16±106,x ≈16-≈16-10.3=5.7(10.3=5.7(10.3=5.7(舍去舍去26.3)26.3).当.当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资个月后,能收回投资 1818..(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+, 把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+.(3)4B ∵点的横坐标为1515,, 4B ∴的纵坐标4145(1530)(1530)302y =--+=.3350A B =∵,拱高为3030,,∴立柱44458520(m)22A B =+=.由对称性知:224485(m)2A B A B ==.四、四、1919..(1)(1)当当0≤m ≤2时,S =212m ;当2<m ≤3时,S =12×3×2-12(3(3--m )()(--2m +6)=6)=--m 2+6m -6.(2)(2)若有这样的若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB 的面积等于3,故当l 平分△OAB 面积时,S =32.21322m =∴.解得m =3.故存在这样的P 点,使l 平分△OAB 的面积.且点P 的坐标为的坐标为((3,0)0)..。
二次函数基础练习题
二次函数基础练习题一、选择题1. 二次函数的一般形式是:A. y = ax^2 + bx + cB. y = ax + bC. y = a(x - h)^2 + kD. y = a(x - b)(x - c)2. 对于二次函数y = ax^2 + bx + c,当a > 0时,其图像开口:A. 向上B. 向下C. 不确定D. 无开口3. 二次函数的顶点坐标可以通过公式求得,该公式是:A. (-b/2a, f(-b/2a))B. (-b/a, f(-b/a))C. (2b/a, f(2b/a))D. (a/b, f(a/b))4. 抛物线y = x^2 - 4x + 4的对称轴是:A. x = 2B. x = -2C. x = 4D. x = 05. 如果一个二次函数的图像与x轴有两个交点,那么这个二次函数的判别式:A. Δ > 0B. Δ = 0B. Δ < 0D. 不能确定二、填空题6. 二次函数y = ax^2 + bx + c的顶点坐标可以通过公式_________求得。
7. 当二次函数的图像与x轴相交时,其判别式Δ_________。
8. 给定二次函数y = 3x^2 + 6x - 5,其顶点的x坐标是_________。
9. 若二次函数y = ax^2 + bx + c的图像开口向上,且与y轴交于点(0, 2),则c的值为_________。
10. 对于二次函数y = -2x^2 + 4x + 3,其图像与x轴的交点坐标为_________。
三、解答题11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 0),求a和b的值。
12. 给定二次函数y = x^2 - 2x - 3,求其图像与x轴的交点坐标,并判断其图像的开口方向。
13. 已知二次函数y = 2x^2 + 4x + 1的图像与x轴相交于点A和B,求AB线段的长度。
14. 某二次函数的图像经过点(-2, 6)和(1, -3),且顶点在y轴上,求该二次函数的解析式。
二次函数基础练习题大全(含答案)-二次函数基础题
二次函数基础练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t(秒)的数据如下表:时间t (秒) 1 2 3 4 … 距离s (米) 281832…写出用t 表示s 的函数关系式: 2、 下列函数:① 23y x ;② 21y x x x ;③ 224y x x x ;④ 21y x x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x(m 为常数)是关于x 的二次函数4、当____m 时,函数2221mm y m m x 是关于x 的二次函数 5、当____m时,函数2564mm ymx +3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图像与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D .6、已知函数24mm ymx 的图像是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m m xm y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;s t OstOst O st O(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2yax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 . 4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由. 12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题) 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 的值。
二次函数经典练习题
二次函数经典练习题二次函数已知二次函数$f(x)=x+bx+c$,且$f(1)=a$,$f(3)=b$,求$f(-1)$的值。
变式1:若二次函数$f(x)=ax^2+bx+c$的图像的顶点坐标为$(2,-1)$,与$y$轴的交点坐标为$(0,11)$,则求出$a$、$b$、$c$的值。
变式2:若$f(x)=-x+(b+2)x+3$,$x\in[b,c]$的图像关于$x=1$对称,则$c=$?变式3:若二次函数$f(x)=ax^2+bx+c$的图像与$x$轴有两个不同的交点$A(x_1,0)$、$B(x_2,0)$,且$x_1^2+x_2^2=\frac{26}{2}$,则该二次函数的图像由$f(x)=-3(x-1)$的图像向上平移几个单位得到?将函数$f(x)=-3x^2-6x+1$配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像。
变式1:已知二次函数$f(x)=ax^2+bx+c$,如果$f(x_1)=f(x_2)$(其中$x_1\neq x_2$),则$f(\frac{x_1+x_2}{2})=$?变式2:函数$f(x)=x+px+q$对任意的$x$均有$f(1+x)=f(1-x)$,则$f(0)$、$f(-1)$、$f(1)$的大小关系是?变式3:已知函数$f(x)=ax^2+bx+c$的图像如右图所示,请至少写出三个与系数$a$、$b$、$c$有关的正确命题。
单调性已知函数$f(x)=x-2x^2$,$g(x)=x-2x$($x\in[2,4]$)。
1)求$f(x)$,$g(x)$的单调区间;(2)求$f(x)$,$g(x)$的最小值。
变式1:已知函数$f(x)=x+4ax+2$在区间$(-\infty,6)$内单调递减,则$a$的取值范围是?变式2:已知函数$f(x)=x-(a-1)x+5$在区间$(1,2)$上为增函数,则$f(2)$的取值范围是?变式3:已知函数$f(x)=-x+kx$在$[2,4]$上是单调函数,求实数$k$的取值范围。
二次函数基础练习题大全(含答案)
1、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.2、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.3、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 .4、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点5、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D6、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D . 7、已知函数24mm y mx --=的图像是开口向下的抛物线,求m 的值. 8、二次函数12-=mmx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?tt tt10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.11、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;12、抛物线942++=x x y 的对称轴是 .13、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .14、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.15、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是16、抛物线1662--=x x y 与x 轴交点的坐标为_________;17、函数x x y +-=22有最____值,最值为_______;18、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-1419、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3320、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 21、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标22、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上23、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?25、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是26、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;27、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.(第26题) (第27题) () ()28、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。
二次函数典型题练习
二次函数典型题练习(一)1、二次函数y=ax +bx+c有最小值-1,当且仅当x 2时,y随x的增大而减小,且图像过点(1、1),求此函数的解析式。
2、已知抛物线y=ax +bx+c过点A(-3、0),对称轴为x=-1,顶点C到x轴的距离为2 ,求此抛物线的解析式。
3、若抛物线过点(1、-3)和点(0、-8),且与x轴的两个交点的距离为2,求此抛物线的解析式。
4、抛物线y=x x+m与x轴交于(x 、0)(x 、0)两点。
(1)若x + x =3,求m;(2)若x x =3,求m。
5、(1)某涵洞截面是抛物线如右图所示。
现测得水面宽AB=2米,洞顶点O到水面距离为2.4米。
请在直角坐标系内求涵洞所示抛物线的解析式。
(2)如右图所示,若桥拱是抛物线,其函数解析式为y= ,当水面离桥顶的高度是2米时,问水面宽AB为多少。
(3) 如右图所示有一抛物线拱桥,当水位线在AB位置时,拱桥顶离水面2米,水面宽4米。
①当水面下降1米后,水面宽为多少?②当水面宽为1米时,问水面上升或下降了多少米?③问一艘宽1.4米,高1.6米的船是否能通过此桥?若不能过,此船最多能装多高?6、(1)如图,已知二次函数y=ax +bx+c的图像过点(-1、0)和(0、-1)两点,试确定a的取值范围。
(2)已知:直线y=x+b与双曲线y= 在第一象限内交于A点,交x轴于B点(B点在O点的左侧)。
AC x轴于C,且点C的坐标为(b、0)。
若S ABC=8.求直线与双曲线的另一个交点坐标。
7、如图:抛物线与直线y=k(x-4)都经过坐标轴的正半轴上的A、B两点,该抛物线的对称轴x=-1与x轴交于点C。
且ABC=90°。
求(1)直线的解析式。
(2)抛物线的解析式。
8、已知抛物线y=x -(a+2)x+9的顶点在坐标轴上,求a的值。
9、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销量就减少10千克,针对以上情况,(1)当销售单价定为每千克55元时,计算月销量与月销售利润。
二次函数练习题(含答案)
二次函数练习题 (一)1.抛物线y=x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 2.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点3.已知抛物线y=ax 2+bx+c(a≠0)在平面直角坐标系中的位置如图1所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a 、b 、c 都小于0(1) (2) 4.若抛物线y=ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.如图2所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点, 交y 轴于点C, 则△ABC 的面积为( )A.6B.4C.3D.16.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .31≤≤-xB .31<<-xC .31>-<x x 或D .31≥-≤x x 或7.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )A .B .C .D .8.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 9.二次函数y=ax 2+bx+c 的图象如图3所示,那么abc,b 2-4ac,2a+b,a+b+c 这四个代数式中,值为正数的有( )xy OxBACy OA.4个B.3个C.2个D.1个10.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( )11.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为y= _________, 其对称轴是______,顶点坐标为_______,抛物线开口________,当x_______时,y 随x 的增大而增大;当x____时,y 随x 的增大而减小;当x=______时,y 最值=________.12.已知抛物线y=ax 2+bx+c(a≠0)图象的顶点为P(-2,3),且过A(-3,0), 则抛物线的关系式为___________.13.若二次函数y=ax 2+bx+c 的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________. 14.在同一坐标系内,抛物线y=ax 2与直线y=2x+b 相交于A 、B 两点,若点A 的坐标是(2,4),则点B 的坐标是_________.15.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.16.若抛物线y=ax 2+bx+c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是_________.17.已知抛物线y =ax 2+bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.18.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2– 4x – 1的顶点坐标是_______,对称轴是__________.19.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______20.当m=_________时,函数y = (m 2-4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.21.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________22.抛物线c bx ax y ++=2如右图所示,则它关于y析式是__________.23、(2010年宁波市)如图,已知二次函数bx x y +-=221的图象经过A (2,0)、B (0,-6)两点。
二次函数基础练习题(含答案)
二次函数练习题〔一〕1、 一个小球由静止开场在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s 〔米〕与时间t 〔秒〕的数据如下表:写出用t 表示s 的函数关系式.2、 以下函数:① 23y x ;②()21y x x x =-+;③()224y x x x =+-;④ 21yx x ; ⑤()1y x x =-,其中是二次函数的是,其中a,b,c3、当m 时,函数()2235y m x x =-+-〔m 为常数〕是关于x 的二次函数4、当____m =时,函数2221m m y m m x 是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数6、假设点 A ( 2, m ) 在函数 12-=x y 的图像上,那么 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是〔 〕A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x 〔cm 〕的小正方形,用余下的局部做成一个无盖的盒子.(1)求盒子的外表积S 〔cm 2〕与小正方形边长x 〔cm 〕之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的外表积.9、矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2,① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,那么猪舍的总面积S 〔米2〕与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题〔二〕-----函数2ax y =的图象与性质1、填空:〔1〕抛物线221x y =的对称轴是 〔或 〕,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;〔2〕抛物线221x y -=的对称轴是 〔或 〕,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =以下说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的选项是 .3、抛物线 y =-x 2 不具有的性质是〔 〕A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2〔g =9.8〕,那么 s 与 t 的函数图像大致是〔 〕A B C D5、函数2ax y =与b ax y +-=的图象可能是〔 〕A .B .C .D . 6、函数24m m ymx 的图象是开口向下的抛物线,求m 的值.st O s t O s t O s t O7、二次函数12-=mmx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x =-交于点,2b ,求这条抛物线所对应的二次函数的关系式.二次函数练习题〔三〕-----函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都一样;②对称轴都一样;③形状一样;④都有最底点.其中判断正确的选项是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 〔填大或小〕值,是 .5、函数2)(22+-+=x m m mx y 的图象关于y 轴对称,那么m =________; 6、二次函数c ax y +=2()0≠a 中,假设当x 取x 1、x 2〔x 1≠x 2〕时,函数值相等,那么当x 取x 1+x 2时,函数值等于 .二次函数练习题〔四〕-----函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 . 2、试写出抛物线23x y =经过以下平移后得到的抛物线的解析式并写出对称轴和顶点坐标.〔1〕右移2个单位;〔2〕左移32个单位;〔3〕先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质〔至少2个〕.4、二次函数()2h x a y -=的图象如图:21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.〔1〕求出此函数关系式.〔2〕说明函数值y 随x 值的变化情况.7、抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.二次函数练习题〔五〕-----()k h x a y +-=2的图象与性质 1、请写出一个二次函数以〔2, 3〕为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12 (x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 抛物线的顶点坐标为2,1,且抛物线过点3,0,那么抛物线的关系式是6、 如下图,抛物线顶点坐标是P 〔1,3〕,那么函数y 随自变量x 的增大而减小的x 的取值范围是〔 〕A 、x>3B 、x<3C 、x>1D 、x<17、函数()9232+--=x y . (1) 确定以下抛物线的开口方向、对称轴和顶点坐标;(2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.(4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、函数()412-+=x y . (1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 假设图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 假设将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象答复:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.二次函数练习题〔六〕-----c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为〔0,3〕的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,那么 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,那么两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为___ ____; 8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,那么b 与c 分别等于〔 〕 A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为〔 〕 A 、22 B 、23 C 、32 D 、3310、通过配方,写出以下函数的开口方向、对称轴和顶点坐标:〔1〕12212+-=x x y ; 〔2〕2832-+-=x x y ; 〔3〕4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,假设有,求出该最大值;假设没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、一次函数的图象过抛物线223yx x 的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,假设将每台提高一个单位价格,那么会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题〔七〕-----c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,那么此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,那么b 的值为______.5、二次函数c bx ax y ++=2的图象如下图,那么a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,那么直线bc ax y +=的图象不经过第 象限.7、二次函数2y ax bx c 〔0≠a 〕的图象如下图,那么以下结论:1〕,a b 同号; 2〕当1x和3x 时,函数值一样;3〕40a b;4〕当2422b b acy a-±-=-时,x 的值只能为0;其中正确的选项是8、二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,那么m= 9、二次函数2yx ax b 中,假设0a b ,那么它的图象必经过点〔 〕A ()1,1--B ()1,1-C 1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如下图,那么以下选项中正确的选项是〔 〕A 、0,0>>c abB 、0,0><c ab1C 、0,0<>c abD 、0,0<<c ab11、函数c bx ax y ++=2的图象如下图,那么函数b ax y +=的图象是〔 〕12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有〔 〕A .4个B .3个C .2个D .1个 13、抛物线的图角如图,那么以下结论: ①>0;②;③>;④<1.其中正确的结论是〔 〕.〔A 〕①② 〔B 〕②③ 〔C 〕②④ 〔D 〕③④ 14、二次函数2y ax bxc 的最大值是3a ,且它的图象经过()1,2--,1,6两点,求a 、b 、c15、试求抛物线2y ax bx c 与x 轴两个交点间的距离〔240b ac 〕二次函数练习题〔八〕-----确定二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,那么a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,那么所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,那么函数的关系式为4、根据条件求二次函数的解析式〔1〕抛物线过〔-1,-6〕、〔1,-2〕和〔2,3〕三点〔2〕抛物线的顶点坐标为〔-1,-1〕,且与y 轴交点的纵坐标为-3 〔3〕抛物线过〔-1,0〕,〔3,0〕,〔1,-5〕三点;〔4〕抛物线在x 轴上截得的线段长为4,且顶点坐标是〔3,-2〕;5、二次函数的图象经过1,1、2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、二次函数的图象与x 轴交于A 〔-2,0〕、B 〔3,0〕两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题〔九〕-----二次函数与方程和不等式1、二次函数772--=x kx y 与x 轴有交点,那么k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,那么抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为〔 〕 A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是〔 〕 A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,假设有一个交点在x 轴上,那么k 为〔 〕 A 、0 B 、-1 C 、2 D 、41 6、假设方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线〔 〕A 、x =-3 B 、x =-2 C 、x =-1 D 、x =1 7、二次函数2y x px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值。
二次函数练习题及答案
一、选择题(每小题3分,共36分)1.下列函数不是二次函数的是( D )A.y=(x-1)2B.y=1-√3x2C.y=-(x+1)(x-1)D.y=2(x+3)2-2x22.在函数y=√x-1中,自变量x的取值范围是( B )1-xA.x≥1B.x>1C.x<1D.x≤13.下列函数:①y=-3x2;②y=-3(x+3)2;③y=-3x2-1;④y=-2x2+5;⑤y=-(x-1)2.其中,图象形状、开口方向相同的是( D )A.②⑤B.③④C.①③④D.①②③4.将抛物线y=2(x-3)2+2向左平移3个单位,再向下平移2个单位,得到抛物线的表达式是( C )A.y=2(x-6)2B.y=2(x-6)2+4C.y=2x2D.y=2x2+45.已知二次函数y=-x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( C )A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点6.一次函数y=acx+b 与二次函数y=ax 2+bx+c 在同一平面直角坐标系中的图象可能是( B )7.一只葡萄酒杯如图①所示,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,以顶点C 为原点建立如图②所示的平面直角坐标系,若AB=4,CD=3,则抛物线的表达式为( A )① ②A.y=34x 2 B.y=316x 2 C.y=-34x 2 D.y=-316x 28.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at 2+bt,若小球在发射后第2 s 与第6 s 时的高度相等,则下列时刻中小球的高度最高的是( B )A.第3 sB.第3.9 sC.第4.5 sD.第6.5 s9.下列关于二次函数y=ax 2-2ax+1(a>1)的图象与x 轴交点的判断,正确的是( D ) A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧10.(2022岱岳模拟)下表给出了二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y的部分对应值,那么方程ax2+bx+c=0的一个根的近似值可能是( B )A.1.08B.1.18C.1.28D.1.3811.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=-x2+16x-48,则该景点一年中处于关闭状态有( A )A.5个月B.6个月C.7个月D.8个月12.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是( D )A.若(-2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=-2有两个不相等的实数根D.当x≥0时,y随x的增大而减小二、填空题(每小题3分,共18分)13.(2022淄博实验中学模拟)若y=(m2-1)x m2-m是二次函数,则m= 2 .14.已知抛物线y=-x2+bx+c经过点A(-4,1),B(2,1),若函数值y随x 的值的增大而减小,则x的取值范围是x≥-1 .且15.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是k≤54k≠1 .16.抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于C(0,3),且此抛物线的顶点坐标为M(-1,4),则此抛物线的表达式为y=-x2-2x+3 .17.已知抛物线y=x2-k的顶点为P,与x轴交于点A,B,且△ABP是正三角形,则k的值是 3 .18.如图所示,抛物线y=x2经过平移得到抛物线y=x2-4x,其对称轴与两段抛物线所围成的阴影部分的面积为8 .三、解答题(共46分)19.(6分)已知抛物线y=ax2-2ax-3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其表达式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.解:(1)∵y=ax2-2ax-3+2a2=a(x-1)2+2a2-a-3.∴抛物线的对称轴为直线x=1.(2)∵抛物线的顶点在x轴上,∴2a 2-a-3=0, 解得a 1=32,a 2=-1.∴抛物线的表达式为y=32x 2-3x+32或y=-x 2+2x-1.(3)∵抛物线的对称轴为直线x=1,则Q(3,y 2)关于x=1对称的点的坐标为(-1,y 2), ∴当a>0,-1<m<3时,y 1<y 2. 当a<0,m<-1或m>3时,y 1<y 2.20.(8分)某快餐店销售A,B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是多少元?解:设每份A 种快餐降价a 元,则每天卖出(40+2a)份,每份B 种快餐提高b 元,则每天卖出(80-2b)份, 由题意可得,40+2a+80-2b=40+80, 解得a=b,∴总利润W=(12-a)(40+2a)+(8+a)(80-2a) =-4a 2+48a+1 120 =-4(a-6)2+1 264. ∵-4<0,∴当a=6时,W 取得最大值1 264,即两种快餐一天的总利润最多为1 264元.21.(10分)如图所示,某农户计划用长12 m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7 m.(1)若生物园的面积为9 m 2,则这个生物园垂直于墙的一边长为多少? (2)若要使生物园的面积最大,该怎样围? 解:设这个生物园垂直于墙的一边长为x m. (1)由题意,得x(12-3x)=9, 解得x 1=1(不符合题意,舍去),x 2=3, ∴这个生物园垂直于墙的一边长为3 m. (2)设围成生物园的面积为y m 2. 由题意,得y=x(12-3x)=-3(x-2)2+12. ∵{12-3x ≤7,12-3x >0,解得53≤x<4.∴当x=2时,y 最大=12,12-3x=6.∴生物园垂直于墙的一边长为2 m,平行于墙的一边长为6 m 时,围成生物园的面积最大,最大面积为12 m 2.22.(10分)(2022泰山模拟)有一辆宽为2 m 的货车(如图①所示),要通过一条抛物线形隧道(如图②所示).为确保车辆安全通行,规定货车车顶左右两侧离隧道内壁的垂直高度至少为0.5 m.已知隧道的跨度AB 为8 m,拱高为4 m.(1)若隧道为单车道,货车高为3.2 m,该货车能否安全通行?为什么?(2)若隧道为双车道,且两车道之间有0.4 m的隔离带,通过计算说明该货车能够通行的最大安全限高.①②解:(1)货车能安全通行.理由如下:依题意建立平面直角坐标系如图所示., 设抛物线表达式为y=ax2+4,将B(4,0)代入,得16a+4=0,解得a=-14∴抛物线表达式为y=-1x2+4.令x=1可得y=3.75.4∵3.75-0.5=3.25>3.2,∴货车能够安全通行.(2)令x=0.2+2=2.2,可得y=2.79.∵2.79-0.5=2.29,∴货车能够通行的最大安全限高为2.29 m.23.(12分)如图所示,△OAP是等腰直角三角形,∠OAP=90°,点A在第四象限,点P坐标为(8,0),抛物线y=ax2+bx+c经过原点O和A,P两点.(1)求抛物线的函数表达式.(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C,D两点,且BC=AB,求点B坐标;(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求△CBN面积的最大值.解:(1)△OAP是等腰直角三角形,∠OAP=90°,点P坐标为(8,0),则点A在抛物线的对称轴上,故点A(4,-4),故抛物线的表达式为y=a(x-4)2-4,将点P的坐标代入上式并解得a=1,4x2-2x.故抛物线的表达式为y=14(2)设点B(0,m),过点C作CH⊥y轴于H,过点A作AQ⊥y轴于点Q,如图所示.∵∠BAQ+∠QBA=90°,∠QBA+∠HBC=90°,∴∠HBC=∠BAQ.又∵BC=AB,∠CHB=∠BQA=90°,∴△CHB≌△BQA(AAS),∴BH=AQ=4,CH=BQ=4+m,故点C(m+4,m+4).将点C的坐标代入抛物线表达式并解得m=8,故点B(0,8).(3)由(2)知点B(0,8),点C(12,12),设直线BC 的表达式为y=kx+n. 将点B,C 的坐标代入,得 {n =8,12k +n =12,解得{k =13,n =8, ∴直线BC 的表达式为y=13x+8.设点N(x,14x 2-2x),则点M(x,13x+8),∴△CBN 的面积S=12×MN ×CH=12×(13x+8-14x 2+2x)×12=-32x 2+14x+48=-32(x-143)2+2423.∵-32<0,故S 有最大值2423.。
(完整版)二次函数练习题及答案
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
如图①,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高.抛物线y=ax2+2x与直线y= x交于点O、C,点C的横坐标为6.点P在x轴的正半轴上,过点P作PE∥y轴,交射线OA于点E.设点P的横坐标为m,以A、B、D、E为顶点的四边形的面积为S.
27.求OA所在直线的解析式
二次函数练习题及答案
一、选择题
1.将抛物线 先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )
A. B.
C. D.
2.将抛物线 向右平移1个单位后所得抛物线的解析式是………………( )
A. ;B. ;
C. ;D. .
3.将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
考点:二次函数的性质
17.m≥1.二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的自变量的取值范围.
二、填空题
8.二次函数y=-2(x-5)2+3的顶点坐标是.
9.已知二次函数 中函数 与自变量 之间的部分对应值如下表所示,点 、 在函数图象上,当 时,则 (填“ ”或“ ”).
0
1
(完整版)二次函数最经典练习题
一、顶点、平移1、抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)3、抛物线y=x 2-2x -3的顶点坐标是 .4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x − 2)2+ 1 B .y = (x + 2)2+ 1 C .y = (x − 2)2− 3 D .y = (x + 2)2− 35、将二次函数245y x x =-+化为2()y x h k =-+的形式,则y = . 6、二次函数522-+=x x y 有( ) A . 最大值5-B . 最小值5-C . 最大值6-D . 最小值6-7、由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大 .二、a 、b 、c 与图象的关系1、如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是 ( )A .a +b =-1B . a -b =-1C . b <2aD . ac <0 2、已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0 B . b <0 C . c <0 D . a +b +c >0 3、如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四讲二次函数的同象和性质【重点考点例析】考点一:二次函数图象上点的坐标特点例1已知二次函数y=a(x-2)2+c(a>0),当自变量x分别取2、3、0时,对应的函数值分别:y1,y2,y3,,则y1,y2,y3的大小关系正确的是()A.y3<y2<y1 B.y1<y2<y3 C.y2<y1<y3 D.y3<y1<y2对应训练1.已知二次函数y=12x2-7x+152,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y1考点二:二次函数的图象和性质例2 对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.对应训练2.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)²+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A.①② B.②③ C.③④ D.①④考点三:抛物线的特征与a、b、c的关系例3 二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是()A.①② B.①③ C.②④ D.③④对应训练3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=12.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b考点四:抛物线的平移例4 如图,把抛物线y=x2沿直线y=x平移2个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1对应训练4.已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有(填写所有正确选项的序号).【聚焦中考】1.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限2.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于03.(2015•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数ayx在同一平面直角坐标系中的图象大致是()A. B. C. D.4.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y25.已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④abc<0. 其中正确的是()A.①② B.②③ C.③④ D.①④7.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2-3 D.y=3(x-2)2-3【备考真题过关】一、选择题1.二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32.已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1) B.(2,1) C.(2,-1) D.(-2,1)3.若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为()A.1 B.2 C.-2 D.-24.如图,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于05.对于二次函数y=2(x+1)(x-3),下列说法正确的是()A.图象的开口向下 B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=-16.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有()A.3个 B.2个 C.1个 D.0个7.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=(x-2)2+2 D.y=(x-2)2-28.在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(-2,3) B.(-1,4) C.(1,4) D.(4,3)9.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()A.1 B.2 C.3 D.6二、填空题10平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.11二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.其中正确的是(把正确的序号都填上).12将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是.13.函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为.14如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.三、解答题15知:抛物线y=34(x-1)2-3.(1)写出抛物线的开口方向、对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值;(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.第十五讲二次函数的综合题及应用【重点考点例析】考点一:确定二次函数关系式例1 如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.对应训练1.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.考点二:二次函数与x轴的交点问题例2 已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x 的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3对应训练2.二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.-8 B.8 C.±8 D.6考点三:二次函数的实际应用例3 为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?考点四:二次函数综合性题目例4 如图,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA= 12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.对应训练4.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x 轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【聚焦中考】1.如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(2,2)B.(2,2)C.(2,2)D.(2,2)2如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.3如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(-23,0),以0C为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.7.如图,抛物线y=12x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.8.如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,32)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.(1)求抛物线的解析式;(2)若直线l平分四边形OBDC的面积,求k的值;(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.【备考真题过关】一、选择题1.已知函数y=x2+2x-3,当x=m时,y<0,则m的值可能是()A.-4 B.0 C.2 D.32.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)(x0-x2)<0二、填空题3若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.4如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=-n始终保持相切,则n=(用含a的代数式表示).三、解答题5如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.12.如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)当DE=4时,求四边形CAEB的面积.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.。