乘法的速算与巧算

合集下载

乘法奥数——速算、巧算

乘法奥数——速算、巧算

乘法奥数——速算、巧算1、十几乘十几。

口诀:头乘头,尾加尾,尾乘尾。

注:个位相乘,不够两位数要用0占位。

例:12×14=?解: 1×1=1 2+4=6 2×4=8 12×14=16815×13= 14×12= 12×15= 19×17= 16×14=2、头同,尾合十。

口诀:一个头加1后头乘头,尾乘尾,个位相乘不够两位数用0占位。

例:23×27=?解:2+1=3 2×3=6 3×7=21 23×27=62134×36= 82×88= 51×59= 24×26= 74×76=3、尾同,头合十。

口诀:十位相乘加个位放百位,个位相乘不够两位数用0占位。

例:34×74=?解: 3×7+4=25 4×4=16 34×74=251659×51= 83×23= 71×31= 45×64= 16×96=4、第一个乘数互补,另一个乘数数字相同。

口诀:一个头加1后,头乘头,尾乘尾例:37×44=?解:3+1=4 4×4=16 7×4=28 37×44=162837×22= 64×33= 19×88= 82×77= 73×55=5、几十一乘几十一。

口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=8 2+4=6 1×1=1 21×41=86131×41= 61×21= 41×51= 51×71= 81×91=6、11乘任意数。

口诀:首尾拉开,中间加。

例:11×23125=?解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分别在首尾11×23125=254375注:和满十要进一。

小学三年级数学乘、除法的速算与巧算知识点

小学三年级数学乘、除法的速算与巧算知识点

小学三年级数学乘、除法的速算与巧算知识点一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。

⑵在连除时,可以交换除数的位置,商不变。

⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。

⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。

②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。

添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。

竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。

乘法中的速算和巧算

乘法中的速算和巧算

乘法中的速算和巧算1.直接利用乘法结合律的速算利用乘法结合律,可以把两个因数相乘积是整十、整百、整千的先进行计算,使计算简便。

为了计算迅速,可以把有些较常用的乘法算式记熟,例如:25×4=100,125×8=1000,12×5=60,……例1 计算236×4×25解:236×4×25=236×(4×25)=236×100=236002.乘法交换律、结合律同时运用的速算几个因数相乘,先交换因数的位置,使因数相乘积为整十、整百、整千的凑在一起,根据结合律分组计算比较简便。

例2 125×2×8×25×5×4解:原式=(125×8)×(25×4)×(5×2)=1000×100×10=10000003.直接利用乘法分配律的简算例3 计算:(1)175×34×175×66(2)67×12+67×35+67×52+67解:(1)根据乘法分配律:原式=175×(34+66)=175×100=17500(2)把67看作67×1后,利用乘法分配律简算。

原式=67×(12+35+52+1)=67×100=67004.把一个因数拆分成两个因数,利用交换律、结合律进行巧算。

例4 计算(1)28×25(2)48×125(3)125×5×32×5解:(1)原式=4×7×25=7×(4×25)=7×100=700(2)原式=6×8×125=6×(8×125)=6×1000=6000(3)原式=125×8×4×5×5=(125×8)×(4×25)=1000×100=1000005.间接利用乘法分配律进行巧算例5 计算(1)26×99(2)1236×199(3)713×101解:(1)由99=100-1,原式=26×(100-1)=26×100-26×1=2600-26=2574(2)由199=200-1,原式=1236×(200-1)=1236×200-1236×1=247200-1236=246000-36=245964(3)原式=713×(100+1)=713×100+713×1=71300+713=720136.几种常见的特殊因数乘积的巧算(1)任何一个自然数乘以0,其积都等于0。

乘法中的速算和巧算

乘法中的速算和巧算

乘法中的速算和巧算1.直接利用乘法结合律的速算利用乘法结合律,可以把两个因数相乘积是整十、整百、整千的先进行计算,使计算简便。

为了计算迅速,可以把有些较常用的乘法算式记熟,例如:25×4=100,125×8=1000,12×5=60,……例1 计算236×4×25解:236×4×25=236×(4×25)=236×100=236002.乘法交换律、结合律同时运用的速算几个因数相乘,先交换因数的位置,使因数相乘积为整十、整百、整千的凑在一起,根据结合律分组计算比较简便。

例2 125×2×8×25×5×4解:原式=(125×8)×(25×4)×(5×2)=1000×100×10=10000003.直接利用乘法分配律的简算例3 计算:(1)175×34×175×66(2)67×12+67×35+67×52+67解:(1)根据乘法分配律:原式=175×(34+66)=175×100=17500(2)把67看作67×1后,利用乘法分配律简算。

原式=67×(12+35+52+1)=67×100=67004.把一个因数拆分成两个因数,利用交换律、结合律进行巧算。

例4 计算(1)28×25(2)48×125(3)125×5×32×5解:(1)原式=4×7×25=7×(4×25)=7×100=700(2)原式=6×8×125=6×(8×125)=6×1000=6000(3)原式=125×8×4×5×5=(125×8)×(4×25)=1000×100=1000005.间接利用乘法分配律进行巧算例5 计算(1)26×99(2)1236×199(3)713×101解:(1)由99=100-1,原式=26×(100-1)=26×100-26×1=2600-26=2574(2)由199=200-1,原式=1236×(200-1)=1236×200-1236×1=247200-1236=246000-36=245964(3)原式=713×(100+1)=713×100+713×1=71300+713=720136.几种常见的特殊因数乘积的巧算(1)任何一个自然数乘以0,其积都等于0。

四年级思维拓展- 速算与巧算(二)

四年级思维拓展- 速算与巧算(二)

速算与巧算(二)☜知识要点速算与巧算是学习数学、解决生活中数学问题的基础,只有掌握了速算与巧算才能又快又准的计算出正确的结果。

如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。

一、运用乘法运算定律巧算1.乘法交换律:a×b=b×a;2.乘法结合律:(a×b)×c=a×(b×c);3.乘法分配律:(a+b)×c=a×c+b×c ,(a-b)×c=a×c-b×c;4.乘法分配律的逆应用:(1)a×c+b×c=(a+b)×c,(2)a×c-b×c=(a-b)×c;【例1】简便计算:(1)(76×25)×4(2)32×25×2×125×5☝思路点拨:我们知道2×5 =10、4×25=100、8×125=1000、16×625=10000.在做乘法运算时我们可以先把相乘能得整十、整百、整千、整万、、、、、、的数相乘再和其它数相乘。

(1)式中有25、4我们可以利用乘法结合律来计算;(2)式有25、125,没有4、8怎么办呢?可以把32分成4×8,这样就可以使计算简便了。

☝标准答案:解:(1)(76×25)×4=76×(25×4)=76×100=7600(2)32×25×2×125×5=8×4×25×2×125×5=(8×125)×(4×25)×(2×5)=1000×100×10=1000000记住这些好朋友:2×5 =10;4×25=100;8×125=1000;16×625=10000,在乘法运算中看到2就要想到5,看到4就要想到25,看到8就要想到125,看到16就要想到625,没有的就想办法从其它数中分解出来!活学巧用1.(176×125)×322.32×25×2×125×689×53.45×32×625☜知识要点特殊的两位数乘以两位数的计算方法:1同头尾补:两个两位数相乘,十位上的数字相同,个位上的数字相加和等于10,这样的两个两位数就称为同头尾补。

常用的巧算和速算方法

常用的巧算和速算方法

巧算和速算方法,包括:九九乘法口诀:通过记忆乘法口诀表格,可以快速算出两个数的积。

平方差公式:对于两个整数 $a$ 和 $b$,可以快速计算 $(a+b)^2$ 和$(a-b)^2$,分别为 $a^2+2ab+b^2$ 和 $a^2-2ab+b^2$。

除法倒数法:通过求出某个数的倒数,然后用这个倒数乘以需要除的数,可以快速计算除法结果。

11乘法口诀:对于两位数相乘,可以通过将这两个数字的和放在中间,例如$24 \times 11$ 可以计算为 $2$ 和 $4+2$ 和 $4$,得到 $264$。

规律判断法:在一些数列中,如果存在规律,可以通过观察规律推算出下一个数字。

四舍五入法:在进行精确计算不必要的时候,可以使用四舍五入法,保留一定的有效数字即可。

近似取整法:在进行大致计算的时候,可以使用近似取整法,将一个数字取整到最接近的整数,例如 $23.6$ 取整到 $24$。

连加连乘法:对于一些需要进行连加或连乘的数列,可以通过提取公因子,将计算过程简化。

小数移位法:在对小数进行计算时,可以通过移位小数点来将小数转换为整数,然后进行整数运算,最后再将小数点移回原位。

分式化简法:在进行分式运算时,可以通过化简分数,将分式化为最简形式,简化运算。

凑整法:将一个数凑整为最近的整数或10的倍数,然后再进行计算,最后再进行减法运算补回凑整时的误差。

差积因式法:在进行乘法或除法时,将数字拆分为其因子的乘积,然后再进行计算。

近似数法:在进行加减运算时,将数近似为离它最近的10、100、1000等倍数,然后再进行计算。

最后,再将结果还原为原数的近似值。

线性加减法:对于两个数 $a$ 和 $b$,如果它们的差为 $k$,那么 $a\pmb$ 就等于 $a\pm k\pm (b-k)$,其中 $k$ 是某个整数,使得 $b-k$ 或$a-k$ 是一个整数。

平方法:在进行乘法时,如果两个数都离平方数的差不远,那么可以利用公式$(a+b)^2=a^2+2ab+b^2$ 来简化计算。

乘除法中的速算与巧算

乘除法中的速算与巧算

乘除法中的速算与巧算知识储备整数乘除法的速算与巧算,一条最基本的原则就是“凑整”。

要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。

1、乘法的运算定律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc2、除法的运算性质(1)a÷b=(a×c)÷(b×c) (c≠0)(2)a÷b=(a÷c)÷(b÷c) (c≠0)(3)a÷b÷c=a÷(b×c)(4)a÷(b÷c)=a÷b×c3、乘除分配性质(1)(a+b)×c=a×c+b×c(2)(a-b)×c=a×c-b×c(3)(a+b)÷c=a÷c+b÷c(4)(a-b)÷c=a÷c-b÷c注意:除数不能为零。

4、两数之和乘以这两数之差的积等于这两个数的平方差。

(a+b)×(a-b)=a2-b25、乘法凑整法:这是利用特殊数的乘积特性进行速算,如5×2=10,25×4=100,125×8=1000,625×8=5000,625×16=10000等等。

大家要记住这些结果。

思维引导例1、计算:(1)999+999×999 (2)1111×9999(3)125×25×32 (4)576×422+576+577×576跟踪练习:计算:(1)9999+9999×9999 (2)140×299(3)808×125 (4)461+5×4610+461×49例2、计算:34×172-17×71×2-34跟踪练习:计算:42×68+61×2×34-3×68例3、用简便方法计算:8700÷25÷4跟踪练习:9600÷25÷4例4、用简便方法计算:625÷25跟踪练习:42800÷25例5、简算:29×31跟踪练习:简算:68×72例6、计算:11111×11111跟踪练习:计算:22222×22222例7、计算:63×275÷7÷11跟踪练习:计算:123×456÷789÷456×789÷123例8、计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)跟踪练习:计算:15÷(9÷11)÷(11÷34)÷(34÷63)例9、计算:99999×22222+33333×33334跟踪练习:计算:9999×7778+3333×6666例10、计算:98989898×÷÷跟踪练习:计算:199999998×2200220022÷18÷100010001例11、计算:19981999×19991998-19981998×跟踪练习:计算:1997×1999-1996×2000例12、末尾有几个零?跟踪练习:计算:能力对接1、 将相应的序号填入括号中。

三年级 第四讲 乘法的速算与巧算

三年级 第四讲 乘法的速算与巧算

文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本 人删除。
两位数乘11的速算
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本
试着计算下列各人删除题。 ,你发现了 什么规律?
(1)18╳11= 198 34╳11= 374 45╳11= 495 总结:两边一拉,中间一加。
习题3 计算① 29×19+29×81 ②37×12+37×13+37×4+37
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本
3.应用乘法分人配删律除。。
例4 计算① 123×101 ② 123×99
解:①式=123×(100+1)=123×100+123 =12300+123=12423
3.应用乘法分人配删律除。。
例3 计算① 175×34+175×66
②67×12+67×35+67×52+67 解:①式=175×(34+66)
=175×100=17500 ②式=67×(12+35+52+1)
= 67×100=6700
(原式中最后一项67可看成 67×1)
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本 人删除。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本 人删除。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本 人删除。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本 人删除。
一、乘法中的巧算
1.两数的乘积是整十、整百、整千的,要先乘.
②式=7×8×125=7×(8×125)=7×1000=7000 ③式=125×5×4×8×5=(125×8)×(5×5×4)

小学数学速算与巧算方法例解

小学数学速算与巧算方法例解

小学数学速算与巧算方法例解小学数学的速算与巧算方法是指通过一些简单、快捷的计算方法,进行数学运算,节省计算时间,提高计算效率。

下面,我将介绍几种常见的小学数学速算与巧算方法。

一、乘法速算方法1.小数×10的整数幂:将小数点向右移动和移动的位数相等,反之向左移动。

例如:0.32×100=322.两位数之积:求两位数相乘,先算个位上的乘积,再算十位上的乘积,最后相加。

3.乘法竖式中的快速乘法:将个位数乘以个位数,再将十位数乘以十位数,分别相加得到乘积的十位和个位,然后将个位数乘以十位数和十位数乘以个位数,再相加得到乘积的百位数。

例如:37×24=8(×2+×7)+(×2+×3)×10+7(×4)=888二、除法速算方法1.短除法:将被除数和除数对齐,逐位进行计算,得到商和余数。

例如:245÷5=49,余0。

2.效果法:遇到末尾数字是5、50、500等以5结尾的除数时,可以先除以10,然后再乘以2、例如:465÷5=93,930÷10=93×2=1863.两个数相除得到循环小数:将被除数和除数进行移位,使得除数变成整数,然后进行计算。

例如:11÷9=1.2222...,可以近似表示为11/9≈1.2三、加法速算方法1.近似法:将大数近似为最接近的整数相加,然后再根据误差进行修正。

例如:387+597≈400+600=1000-13-3=9842.数量法:将两个数分解成数个量的相同数,然后再进行计算。

例如:387+597=400+500+72+97=1000+169=11693.进位借位法:将两个数按位进行计算,向后进位或借位。

例如:387+597=7+7=14,37+57+1=95,3+1=4,所以387+597=984四、减法速算方法1.进退法:将减数和被减数对齐进行计算,遇到退位时向前退位。

三年级 第四讲 乘法的速算与巧算(课堂PPT)

三年级 第四讲 乘法的速算与巧算(课堂PPT)

下面的题你能很快口算出来吗?
18╳11= 34╳11=
45╳11=
38╳11= 65╳11=
96╳11=
两位数乘11的速算
试着计算下列各题,你发现了 什么规律?
(1)18╳11= 198 34╳11= 374 45╳11= 495 总结:两边一拉,中间一加。
(2)38╳11= 418 65╳11= 715 96╳11= 1056
90÷5÷0.6 56÷3.5 18÷2.5
90÷5÷0.6 56÷3.5
=90÷(5×0.6) =56÷(0.7×5)
=90÷3
=56÷0.7÷5
=3
=8÷5
=1.6
一个数连续除以 把除数分成两个因数
两个数等于除以 的积,然后用被除数 这两个数的积 分别除以这两个因数
18÷2.5
=(18×4) ÷(2.5×4) =72÷10
=7.2
被除数和除数同时扩大或缩 小相同的倍数,商不变
13.2×1.56÷13.2 =13.2÷13.2×1.56 =1×1.56
=1.56
1.25÷0.4×8 =1.25×8÷0.4 =10÷0.4
=25
同一等级的运算中,如需交换 位置时,别忘了把前面的符号 一起带走。
(1)4.8÷2.4=4.8÷( 6 )÷(0.4) (6 )×(0.4)
例13① 13÷9+5÷9
②21÷5-6÷5
③2090÷24-482÷24 ④187÷12-63÷12-52÷12
解:①13÷9+5÷9=(13+5)÷9=18÷9=2
②21÷5-6÷5=(21-6)÷5=15÷5=3
③2090÷24-482÷24=(2090-482)÷24=1608÷24=67

三年级乘除法速算巧算

三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10 25×4=100 125×8=1000例1 计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=1000000分解因数,凑整先乘。

2.例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3 计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4 计算①123×101②123×99解:①式=123×(100+1)=123×100+123 =12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

小学四年级数学乘除法的速算与巧算知识点汇总+练习题

小学四年级数学乘除法的速算与巧算知识点汇总+练习题

速算与巧算要求学生理解乘、除法的意义及其关系;能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质;并能合理利用;解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起;最后再与前面的数相乘;使得运算简便.理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数;其商不变.⑵在连除时;可以交换除数的位置;商不变.⑶在乘、除混合运算中;被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).⑷在乘、除混合运算中;去掉或添加括号的规则去括号情形:①括号前是“×”时;去括号后;括号内的乘、除符号不变.②括号前是“÷”时;去括号后;括号内的“×”变为“÷”;“÷”变为“×”.添加括号情形:加括号时;括号前是“×”时;原符号不变;括号前是“÷”时;原符号“×”变为“÷”;“÷”变为“×”.⑸两个数之积除以两个数之积;可以分别相除后再相乘.上面的三个性质都可以推广到多个数的情形.练习题100题1、45+15×6=2、250÷5×8=3、6×5÷2×4=4、30×3+8=5、400÷4+20×5=6、10+12÷3+20=7、(80÷20+80)÷4=8、70+(100-10×5)=9、360÷40=10、40×20=11、80-25=12、70+45=13、90×2=14、16×6=15、300×6=16、540÷9=17、30×20=18、400÷4=19、350-80=20、160+70=21、18-64÷8=22、42÷6+20=23、40-5×7=24、80+60÷3=25、41+18÷2=26、75-11×5=27、42+7-29=28、5600÷80=29、25×16=30、120×25=31、36×11=32、1025÷25=33、336+70=34、25×9×4=35、200-33×3=36、3020-1010=37、12×50=38、25×8=39、23×11=40、125÷25=41、4200-2200=42、220+80=43、20×8×5=44、600-3×200=45、20+20÷2=46、35-25÷5=47、36+8-40=48、2800÷40=49、98÷14 =50、96÷24 =51、56÷14 =52、65÷13 =53、75÷15 =54、120÷24 =55、200÷25 =56、800÷16 =57、840÷21 =58、560÷14 =59、390÷13 =60、600÷15 =61、72÷24 =62、85÷17 =63、90÷15 =64、96÷16 =65、78÷26 =66、51÷17 =67、80÷40 =68、100÷20 =69、100÷4 =70、240÷40 =71、920÷4 =72、300÷60=73、64÷2 =74、64÷4 =75、50÷5 =76、60÷8 =77、96÷4 =78、90÷6 =79、400+80 =80、400-80 =81、40×80 =82、400÷80 =83、48÷16 =84、96÷24 =85、160×5=86、4×250=87、0×518=88、10×76=89、36×10=90、15×6=91、24×3=92、5×18=93、26×4=94、7×15=95、32×30=96、40×15=97、60×12=98、23×30=99、30×50=100、5×700=答案1、45+15×6= 1352、250÷5×8=4003、6×5÷2×4=604、30×3+8=985、400÷4+20×5= 2006、10+12÷3+20=347、(80÷20+80)÷4=218、70+(100-10×5)=1209、360÷40= 910、40×20= 80011、80-25= 5512、70+45=11513、90×2= 18014、16×6= 9615、300×6= 180016、540÷9=6017、30×20= 60018、400÷4= 10019、350-80= 27020、160+70=23021、18-64÷8= 1022、42÷6+20=2723、40-5×7= 524、80+60÷3=10025、41+18÷2= 5026、75-11×5= 2027、42+7-29= 2028、5600÷80=7029、25×16= 40030、120×25= 300031、36×11= 39632、1025÷25=4133、336+70= 40634、25×9×4= 90035、200-33×3= 10136、3020-1010=38、25×8= 20039、23×11= 25340、125÷25=541、4200-2200=20xx42、220+80= 30043、20×8×5= 80044、600-3×200=045、20+20÷2= 3046、35-25÷5= 3047、36+8-40= 448、2800÷40=7049、98÷14 = 750、96÷24 = 451、56÷14 =452、65÷13 = 553、75÷15 = 554、120÷24 =555、200÷25 = 856、800÷16 = 5057、840÷21 =4058、560÷14 = 4059、390÷13 = 3060、600÷15 =4061、72÷24 = 362、85÷17 = 563、90÷15 =664、96÷16 = 665、78÷26 = 466、51÷17 =367、80÷40 = 268、100÷20 = 569、100÷4 =2570、240÷40 = 671、920÷4 = 23072、300÷60=573、64÷2 = 3274、64÷4 = 1675、50÷5 =1076、60÷8 = 7、577、96÷4 = 2478、90÷6 =1579、400+80 = 48080、400-80 = 32082、400÷80 = 583、48÷16 = 384、96÷24 =485、160×5= 80086、4×250= 100087、0×518= 088、10×76= 76089、36×10=36090、15×6= 9091、24×3= 7292、5×18= 9093、26×4= 7494、7×15=10595、32×30= 96096、40×15= 60097、60×12= 72098、23×30= 69099、30×50=1500 100、5×700=3500。

三年级奥数乘法速算与巧算

三年级奥数乘法速算与巧算

乘法速算与巧算乘法的速算与巧算前面我们已经学习了加、减法中的巧算,大家学会了运用“凑整”的方法进行计算,实际上这种凑整的方法也同样可以运用在乘除计算中。

为了更好地凑整,要牢记以下几对补数:乘法中常用的三对补数:2×5=10,4×25=100,8×125=1000在乘法的巧算中,经常要用到一些运算定律,例如乘法交换律、乘法结合律、乘法分配律等等,善于运用运算定律,是提高巧算能力的关键。

乘法交换律:b c a c b a ⨯⨯=⨯⨯乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯乘法分配律:c a b a c b a ⨯±⨯=±⨯)(乘法分配律的反用:)(c b a c a b a ±⨯=⨯±⨯乘法分配律在除法中的应用:a c b a c a b ÷±=÷±÷)(除法的性质:a ÷(b ×c)=a ÷b ÷c乘除混合运算中还可以利用倍数关系巧算,涉及到去括号和添括号。

在乘法的巧算中同样会用到三个技巧:补数先算、凑整再算、拆数凑整补数先算:2×54×258×125常用的补数要记得:2×5=104×25=1008×125=1000凑整再算:99=100-1102=100+2在做乘除法巧算时,要运用这些规律,先凑整得出10、100、1000……再进行简便计算。

拆数凑整:4=2×2、8=2×4、12=4×3、16=4×4、24=6×4、32=8×4、28=4×7……例题1:简便计算下列各题。

(1)25×17×4(2)125×77×8练习1:(1)5×41×2(2)8×18×125(3)8×25×4×125(4)125×25×8×5×2×4例题2:简便计算下列各题(1)125×32(2)25×48(3)5×25×16(4)5×25×125×64练习2:简便计算下列各题(1)125×56(2)25×5×32(3)45×25×2×4(4)125×25×72×4例题3:简算下列各题。

常用的巧算和速算方法

常用的巧算和速算方法

1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。

常用的巧算和速算方法【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。

例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1 +2 + ……+ 99 + 100所以,1+2+3+4+……+99+100=101×100÷2=5050。

“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2= 2499。

乘法的速算与巧算

乘法的速算与巧算

25 知识导航 主要内容第三讲 乘法的速算与巧算一、乘法一、乘法结合律结合律:(a (a××b)b)××c=a c=a××(b (b××c)c);;牢记并灵活运用三个特殊的牢记并灵活运用三个特殊的牢记并灵活运用三个特殊的等式等式:2×5=10, 45=10, 4××25=10025=100,, 8 8××125=1000二、二、乘法分配律乘法分配律:a ×(b+c)=a (b+c)=a××b+a b+a××c ; a a××(b-c)=a (b-c)=a××b-a b-a××c熟悉提熟悉提公因式公因式:a :a××b+a b+a××c=a c=a××(b+c); a (b+c); a××b-a b-a××c=a c=a××(b-c)一、乘法结合律:一、乘法结合律:(a (a (a××b)b)××c=a c=a××(b (b××c)总结:多个数相乘,任意总结:多个数相乘,任意交换交换相乘的次序,其积不变如:(2×3﹚×﹚×44=2×﹙×﹙33×4﹚但是在计算中,两数的但是在计算中,两数的但是在计算中,两数的乘积乘积是整十、整百、整千的要先乘,为此,要牢记下面三个特殊的等式面三个特殊的等式: 2: 2: 2××5=10, 45=10, 4××25=10025=100,, 8 8××125=1000 利用这三个等式简化计算:利用这三个等式简化计算:5×12= 512= 5××24= 524= 5××28= 2525××12= 2512= 25××24= 2524= 25××28= 125125××16= 12516= 125××24= 12524= 125××32=1、列出25乘以4的1倍到9倍的式子和答案;倍的式子和答案;2、列出125乘以8的1倍到9倍的式子和答案;倍的式子和答案;3、特殊因数的巧算:一个数×、特殊因数的巧算:一个数×101010,数后添,数后添0;一个数×一个数×一个数×100100100,数后添,数后添0000;;一个数×一个数×一个数×100010001000,数后添,数后添000000;;………………以此类推。

乘除速算方法与技巧

乘除速算方法与技巧

乘除速算方法与技巧一、引言乘除是数学中重要的基本运算,也是日常生活中经常使用的运算。

在学习和应用过程中,我们需要掌握一些乘除速算方法和技巧,以提高计算效率和准确性。

本文将介绍一些常用的乘除速算方法和技巧。

二、乘法速算方法和技巧1.倍增法倍增法是指利用相同的数字进行倍增计算。

例如,计算12×16时,可以先计算6×16=96,然后将结果翻倍得到12×16=192。

这种方法适用于相同数字的乘法计算。

2.分解法分解法是指将一个大数分解成较小的数相乘。

例如,计算18×24时,可以将18分解成9×2,然后进行以下计算:18×24=9×2×24=9×48=432。

3.交叉相乘法交叉相乘法是指将两个数各位上的数字交叉相乘,并将结果相加得到最终答案。

例如,计算23×47时,可以按照以下步骤进行:2×4=8;3×7=21;8+21=29;所以23×47=1081。

4.竖式计算法竖式计算法是指按照竖式排列方式进行乘法运算。

例如,计算23×47时,可以按照以下步骤进行:23× 47———161+ 920———1081三、除法速算方法和技巧1.倍数法倍数法是指找到一个与被除数相等或接近的倍数,并将其除以相同的数。

例如,计算168÷4时,可以先将168除以4得到42,然后将42翻倍得到84,再次翻倍得到168。

因此,168÷4=42。

2.分解法分解法是指将一个大的被除数分解成较小的数相除。

例如,计算648÷12时,可以先将648分解成6×100+4×10+8,然后进行以下计算:6×100÷12=50;4×10÷12=3;8÷12=0.67;所以648÷12=50+3+0.67=53.67。

三年级乘法的速算与巧算

三年级乘法的速算与巧算

30×20= 600 20×40=800
20×9= 180
下面的题你能很快口算出来吗?
65╳99= 65╳999=
今天我们就来探究 两位数乘99以及两位数乘999的速算。
方法1:
65X99 =65X(100-1) =65X100-65X1 =6500-65 =6435
65X999 =65X(1000-1) =65X1000-65X1 =65000-65 =64935
第 四
乘法的速算

专题简析:
乘法的巧算方法主要是利用乘法 的运算定律和运算性质以及积的变化 规律,通过对算式适当变形,或者使 这道题计算中的一些数变得易于口算, 从而使计算简便。
口算:
40×4= 160 33×3= 99
200×5=
1000 20×9=
180
40×2= 80
80×4= 320
40×5= 200
习题4 计算① 77×102 ②89×9
例5 一个数×10,数后添0; 一个数×100,数后添00; 以此类推。 一个数×1000,数后添000; 如:15×10=150
15×100=1500 15×1000=15000
习题5 计算(1) 34×10 (2)67×100
例6 一个数×9,数后添0,再减此数; 一个数×99,数后添00,再减此数; 一个数×999,数后添000,再减此数; … 以此类推。
下面的题你能很快口算出来吗?
18╳11= 34╳11=
45╳11=
38╳11= 65╳11=
96╳11=
两位数乘11的速算
试着计算下列各题,你发现了 什么规律?
(1)18╳11= 198 34╳11= 374 45╳11= 495 总结:两边一拉,中间一加。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式:
5×2=10 25×4=100 125×8=1000 例一: 计算①123×4×25 ② 125×2×8×25×5×4 针对训练1:计算①63×5×2 ② 25×125×8×9×4
例题1: ⑪、23×11 ⑫、68×11
⑬、235×11
⑭、285×11
思路导航:
⑪一个两位数与 11 乘的方法是:用两位数的头做积的头,用两位数的尾作 积的尾,用这个两位数两个数字之和作积的中间数。
1.使学生掌握多位数乘两位数(三位数)的乘法计算方法。 2.特殊数的计算方法,学会巧算×11(或者×101 )的乘法。 3.培养学生计算能力和转化迁移的思想。 作业完成情况 交流与沟通
教 针 学 对 性 过 授 课 程
【知识要点】
(一) 学习指导 利用这些定律,可以使式题简便,同时可以推广到多个数相乘,我们可以选择 两个因数相乘,得出较简单的(整十、整百、整千„„)积,再将这个积与其它因 数相乘,有时也可以把某个因数再分解成两个因数,使其中一个因数与其它的乘 数的积成为较简单的数,然后再与其它的因数相乘,这样就可以进行巧算。 1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等
例2. 巧算两位数与 101 相乘。
101 43
竖式:
101 × 43 303 404 4343
101 89
101 × 89 909 808 8989
观察发现“4343、8989”,两位数与 101 相乘,积是把这个两位数连续写两遍。 练一练:
36 101 101 39
101 58 42 101
例3. 巧算三位数与 1001 相乘。
1001 132
竖式:
1001 436
1001 × 132 2002 3003 1001 132132
1001 × 436 6006 3003 4004 436436
发现:三位数与 1001 相乘,积是把这个三位数连续写两遍。 练一练:
456 1001 1001 782
【课后作业】
3254×11 94325×11
20×101
62×101
89×101
4 7 ×11
31×11
634×11
11×85
101 ×125
477×11
589×11
课 后 检 测
【计算集训】
4×60= 280+20= 320-70= 100÷25= 29×300= 7200÷2= 4200÷30= 200×4= 9200÷400= 180×500= 8700÷30= 7000÷28= 62×40= 41×250= 420×14= 160×600= 8100÷30= 750÷5= 6×100= 930-660= 840÷21= 800÷50 = 300×330= 600÷12= 5×20= 620÷4= 470 +180= 20×420= 980÷14= 680+270= 100×50= 50+280= 200×16= 1900÷2= 3×1400= 9600÷8=
【典型例题】
练习一: 计算下列各题。 ①、18×11 ②、76×11
③、125×11
④、837×11
⑤、36×11
⑥、98×11
⑦、326×11
⑧、287×11
⑨、27×11
⑩、256×11
练习二:
45×101 87×101
68×101
43×101
123×101
354×101
214×101
387×101
⑫一个两位数与 11 乘的方法是:用两位数的头做积的头,用两位数的尾作 积的尾, 用这个两位数两个数字之和作积的中间数, 相加满十则把和的十位数 “1” 加到头上。 ⑬一个三位数与 11 乘的方法是:用三位数的头作积的头,用三位数的尾作 积的尾,用三位数前两位与后两位数的和作中间数。若和满 100 则向前进“1”。
全方位教学辅导
学科:数学 星期 二 姓 教 内 重 难 教 目 名 学 容 点 点 学 标 任课教师:蓝老师 授课时间: 2014 年 8 月 日
罗景焕
性 别

年 级
四年级
总课时:72
第 4次课
巧算与速算
重点:掌握巧算×11(和×101 )的乘法。
难点:培养学生计算能力和转化迁移的思想,并且掌握巧算×11(和×101 )的乘法。: 下节课的计划: 学生的状况、接受情况和配合程度:
教务老师:
家长:
课 后 评 价
给家长的建议
相关文档
最新文档