九年级数学圆的对称性2

合集下载

苏教版九年级数学(上)《2.2圆的对称性(2)》教学设计-优质教案

苏教版九年级数学(上)《2.2圆的对称性(2)》教学设计-优质教案

OCDA2.总结 垂径定理:数学语言(符号)表述: 板书垂径定理的内容活动意图:本环节要注重学生在活动中的思考,鼓励学生有条理地表达自己的思考过程,积累数学活动经验,本环节采用学生自主探索与合作交流的方法,通过学生的探究、归纳得出垂径定理性质。

环节三:运用新知 教师活动4例1.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D 。

线段AC 与BD 相等吗?为什么?例2:如图,已知在⊙O 中,弦AB 的长为8㎝,圆心O 到AB 的距离为3㎝,求⊙O 的半径。

变式:在半径为5㎝的⊙O 中,有长为8㎝的弦AB ,求点O 到AB 的距离。

想一想:若点P 是AB 上的一动点,你能写出OP 的范围吗?学生活动4(1)例1需要学生通过添加辅助线解决问题,教师引导学生得出添加辅助线常用的方法.(2)学生独立分析,老师板书,写出证明过程.例2是例1的延伸,要求学生在课堂作业纸上完成,并请一名学生上黑板板演并关注证明过程是否规范.变式:生生互动完成!想一想:学生合作完成,并交流展示,教师引导归纳活动意图:本环节依据学生的实际情况及他们的心理特点,设计了包括例1在内的有梯度的,循序渐进的与物理、代数相关的变式题组训练二,让学生尝试。

采用学生自主探索与合作交流的方法,通过学生的探究体验垂径定理性质的应用。

环节四:课堂小结OABOFEDCBA7.板书设计 2.2圆的对称性(2)垂径定理:例题板书:(略)学生板书:(略)数学语言(符号)表述:8.作业与拓展学习设计1.过⊙O内一点P,最长的弦为10cm,最短的弦长为8cm,则OP的长为 .2.⊙O中,直径AB ⊥弦CD于点P ,AB=10cm,CD=8cm,则OP的长为 cm.3.⊙O的弦AB为103cm,所对的圆心角为120°,则圆心O到这条弦AB的距离为___4.已知:如图,⊙O的直径AB与弦CD相交于点E,AE=1,BE=5, AEC=45°,求CD的长。

数学:5.2圆的对称性(第2课时)讲学稿(苏科版九年级上)

数学:5.2圆的对称性(第2课时)讲学稿(苏科版九年级上)

初三数学师生讲学稿执笔:审核:初三备课组课题:圆的对称性课型:新授课时间:教学目标:1.知识与技能:圆的对称性垂径定理及其逆定理,运用垂径定理及其逆定理进行有关的计算和证明.2.过程与方法:经历探索圆的对称性及其相关性质的过程,进一步体会和理解研究几何图形的各种方法.3.情感态度与价值观:通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动谨慎精神.教学重点:垂径定理及其逆定理.教学难点:垂径定理及其逆定理的证明.教学设计:一、预习检测1._____________________________________________________是轴对称图形.2. 圆是_________________图形,其对称轴为_________________.3. 如图,在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.则有AE=_____, _____= , ____= .4. AB是⊙O直径,AB=4,F是OB中点,弦CD⊥AB于F,则CD=_________5. ⊙O直径为8,弦AB=4 2 ,则∠AOB=_____。

6. ⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5二、讲授新课同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?(圆是轴对称图形.过圆心的直线是它的对称轴,有无数条对称轴.)你是用什么方法解决上述问题的?大家互相讨论一下.我们可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线。

这样便可知圆有无数条对称轴.圆是轴对称图形。

过圆心的任意一条直线都是对称轴.做一做AO BCDM按下面的步骤做一做:1.在一张纸上任意画一个⊙O ,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.得到一条折痕CD .3.在⊙O 上任取一点A ,过点A 作CD 折痕的垂线,得到新的折痕,其中,点M 是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B ,如上图.教师叙述步骤,师生共同操作,并提出问题:1.通过第一步,我们可以得到什么?(可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.)2.很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧? 为什么呢?(AM =BM ,BC ,AD =BD ,因为折痕AM 与BM 互相重合,A 点与B 点重合.)3.还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系? 如右图示,连接OA 、OB 得到等腰△ABC ,即OA=OB ,因CD ⊥AB ,故△OAM 与△OBM 都是Rt △,又OM 为公共边,所以两个直角三角形全等,则AM=BM ,又⊙O 关于直径CD 对称,所以点A 与点B 关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,AC 与BC重合AD 与BD 重合.因此AM =BM ,AC =BC ,AD =BD )4.在上述操作过程中,你会得出什么结论?垂直于弦的直径平分这条弦,并且平分弦所对的弧.[这就是利用圆的轴对称性得到的与圆相关的一个重要性质——垂径定理.在这里注意:①条件中的 “弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦.下面,我们一起看一下定理的证明:如上图,连接OA 、OB ,则OA=OB在Rt △OAM 和Rt △OBM 中,∵ OA=OB ,OM=OM∴ Rt △OAM ≌Rt △OBM∴ AM=BM∴ 点A 和点B 关于CD 对称∵ ⊙O 关于直径CD 对称∴ 当圆沿着直径CD 对折时,点A 和点B 重合,AC 和BC 重合,AD 和BD 重合 ∴BC , 即垂径定理的条件有两项,结论有三项.用符号语言可表述为:AM BM CD AD BD CD AB M AC BC =⎧⎪⎫⇒=⎬⎨⊥⎭⎪=⎩是直径于为了运用的方便,不易出现错误,易于记忆,可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于弦,那么可推出:①平分弦,②平分弦所对的优弧,③平分弦所对的劣弧. A O B C D M例题讲解通过求解例,来熟悉垂径定理以及常见的辅助线已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证AC=BD.(证明略)拓展延伸1. 在半径为5的圆中,弦AB∥CD,AB=6,CD=8,试求AB和CD的距离.2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为( )(A)16cm或6cm, (B)3cm或8cm (C)3cm (D)8cm随堂练习三、课堂小结1.本节课我们探索了圆的对称性.2.利用圆的轴对称性研究了垂径定理.3.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.四、课后作业1.课本习题P93 1、2;2.复习本堂课内容。

3.1.1圆的对称性(2)

3.1.1圆的对称性(2)

CE = DE.
AE − CE = BE − DE.

AC = BD.
练习
1、如图 圆O中,AB∥CD. 、 中
求证: 求证:∠AOC = ∠BOD.
证明: 证明:
由上例知 AC = BD
O · C A B D
∴∠AOC = ∠BOD
2、如图 圆O中,AB∥CD. 、 中 ∥ 求证: 求证:AC=BD.
相等 ……
A B
O · C
D
在同一个圆中,如果弧相等, 在同一个圆中,如果弧相等,那么 它们所对的圆心角相等吗? 它们所对的圆心角相等吗?所对的弦也 相等吗?你能讲出道理吗? 相等吗?你能讲出道理吗?
相等 ……
垂直于弦的直径平分这条弦所对的两条弧吗? 垂直于弦的直径平分这条弦所对的两条弧吗?
如图,直径CD垂直于弦 如图,直径 垂直于弦AB. 垂直于弦 根据定理1可得,直线 是线段 是线段AB的垂直平分线 根据定理 可得,直线CD是线段 的垂直平分线 可得 从而点A与点 关于直线 对称. 从而点 与点B关于直线 对称. 与点 关于直线CD对称
A B O · C D
在同一个圆中,如果圆心角相等, 在同一个圆中,如果圆心角相等, 那么它们所对的弧相等, 那么它们所对的弧相等,所对的弦也相等.
在同一个圆中,如果弦相等, 在同一个圆中,如果弦相等,那 么它们所对的圆心角相等吗? 么它们所对的圆心角相等吗?所对的 弧相等吗?你能讲出道理吗? 弧相等吗?你能讲出道理吗?
证明: 证明
∵ AB∥CD ∥

AC = BD
C A
O · D B
∴ ∠AOC =∠BOD 又 OC=OB OA=OD
∴△AOC≌△BOD ∴ AC=BD

2.2圆的对称性 (2)2

2.2圆的对称性 (2)2

C
在Rt AOC中,AO2 AC2 OC 2
设⊙O的半径为R, 则
R2 302 (R 10)2 R 50
2R 100cm,即内径为100cm的管道。
如图,水平放置的圆柱形排水管的截面为⊙Oቤተ መጻሕፍቲ ባይዱ 有水部分弓形的高为2,弦AB=4
求⊙O的半径.
问题:你知道赵州桥吗? 它的主桥是圆弧形, 它的跨度(弧所对的弦的长)为37.4m, 拱高(弧 的中点到弦的距离)为7.2m,你能求出赵州桥主 桥拱的半径吗?
例2、某居民区一处圆形下水管破裂,修理人 员准备更换一段新管道,如图,污水水面宽 度为60cm,水面至管道顶部距离为10cm,问 修理人员应准备内径多大的管道?
解:过点O作OC⊥AB,垂足为点
C,交⊙O与点D,连接OA。
AC 1 AB 30,
D
2 OC OD CD AO 10.
A
20 E
B
A
. 25
15
C
25
C
O7
D
24
E
B
.F
D
O
EF有两解:15+7=22cm 15-7=8cm
过圆内任意一点有没有最短的 弦和最长的弦,如果有请你把它找 出来
初中数学 九年级(上册)
2.2 圆的对称性 (2)2
垂径定理三种语言:
文字语言 定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
如图∵ CD是直径,
C
CD⊥AB,
A M└
B
●O
∴AM=BM,
A⌒C =B⌒C,
A⌒D=B⌒D.
D
图形语言
几何语言
老师提示: 垂径定理是圆中

苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

2.2 圆的对称性圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心. 【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)注意关系中不能忽视“同圆或等圆”这一前提. (3)圆心角的度数与它所对的弧的度数相等. 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O 中弦AB CD .求证:AD=BC .看例题,涨知识教材知识总结【例题2】如图,在⊙O 中,弧AB =弧AC ,∠A =120°,求∠ABC 的度数.【例题3】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若BE =5,CD =6,求AE 的长.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF 的中点P ;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接OP 交EF 于点Q ,10AB =,6EF =,求PQ 的长度.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等4.如图,CD为⊙O的直径,弦AB CD⊥,垂足为E,1CE=,10AB=,则CD的长为()A.20 B.24 C.25 D.265.如图,在O中,⊥OD AB于点D,AD的长为3cm,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm课后习题巩固一下6.如图,AB是O的直径,弦CD AB⊥于点E,如果20CD=,那么线段OE的长为()AB=,16A.4 B.6 C.8 D.97.如图,AB为圆O的一弦,且C点在AB上.若6BC=,AB的弦心距为3,则OC的长度为何?AC=,2()A.3 B.4 C11D138.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42DE=,AC=4则BC的长是()A.1 B2C.2 D.49.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A 41B 34C .4D .3二、填空题11.在⊙O 中,弦AB =16cm ,弦心距OC =6cm ,那么该圆的半径为__cm .12.如图,AB 为⊙O 的弦,半径OC ⊥AB 于E ,AB =8,CE =2,则⊙O 的半径为_____.13.已知⊙O 的半径为6cm ,弦AB =6cm ,则弦AB 所对的圆心角是________度.14.如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC __2CD (填“>”,“ <”或“=” ).15.如图,AB ,CD 是O 的直径,弦CE AB ,CE 所对的圆心角为40°,则AOC ∠的度数为______.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.三、解答题17.如图,O的弦AB、CD相交于点E,且AB CD=.求证:BE DE=.18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.∠,求19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD 证:劣弧BC与劣弧BD相等.20.如图,已知弓形的弦长AB=8,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径r的长.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .22.如图,AB 为圆O 的直径,点C 在圆O 上.(1)尺规作图:在BC 上求作一点E ,使OE AC ∥(不写作法,只保留作图痕迹); (2)探究OE 与AC 的数量关系.23.如图,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E . (1)求证:四边形ADOE 是正方形; (2)若AC=2cm ,求⊙O 的半径.24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点. (1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA ①求OGC ∠;②请比较GE 和BE 的大小.2.2 圆的对称性解析教材知识总结圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心.【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.(3)圆心角的度数与它所对的弧的度数相等.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(4)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(5)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(6)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O中弦AB CD=.求证:AD=BC.【答案】见解析【分析】先根据等弦所对的劣弧相等得到AB CD=,从而得到AD AB BD CD BD BC=-=-=,再由等弧所对的弦相等即可得到AD BC=.【解析】证明:∵AB=CD,∴AB CD=,∴AD AB BD CD BD BC=-=-=,∴AD BC=.【例题2】如图,在⊙O中,弧AB=弧AC,∠A=120°,求∠ABC的度数.【答案】30°【分析】根据同圆中,相等的弧所对的弦相等,再根据等腰三角形的性质即可求解.【解析】解:∵在⊙O中,弧AB=弧AC,∴AB=AC,∵∠A=120°,∴∠ABC=()1801203012⨯︒-︒=︒.【例题3】如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE的长.看例题,涨知识【答案】95【分析】如图,连接OC ,设OE x =,由垂径定理知132CE CD ==,5OC BE OE x =-=-,在Rt OCE 中,由勾股定理知222CE OC OE =-,解出x 的值,由2AE BE OE =-,计算求解即可. 【解析】解:如图,连接OC ,设OE x =由垂径定理知132CE CD ==5OC BE OE x =-=-在Rt OCE 中,由勾股定理知222CE OC OE =- ∴()22235x x =-- 解得85x =92525AE BE OE x =-=-=∴AE 的长为95.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,10AB=,6EF=,求PQ的长度.【答案】(1)见解析;(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交EF于点P,点P即为所求.(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解.【解析】(1)解:如图中,点P即为所求.(2)解:连接OF,由作图知OP⊥EF,EQ=QF=12EF=3,∵AB=10,∴OF=OP=12AB=5,∴OQ222254OF QF-=-,∴PQ= OP-OQ=1,∴PQ的长度为1.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦课后习题巩固一下②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④【答案】D【分析】根据垂径定理及其推论进行判断.【解析】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm【答案】B【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,AB=4,连接OA,AM=12由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得:OA=5.所以⊙O的半径是5cm.故选:B.3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等【答案】C【分析】利用圆的有关性质、垂径定理、平行四边形的判定方法及平行线的性质分别判断后即可确定正确的选项.【解析】A 、在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧不一定相等,故原命题错误,是假命题,不符合题意;B 、平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,不符合题意;C 、如图,四边形ABCD ,AB ∥CD ,∠A=∠C ,∵AB ∥CD ,∴∠A +∠D =180°,又∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形,故一组对边平行且一组对角相等的四边形是平行四边形,正确,是真命题,符合题意;D 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意.故选:C .4.如图,CD 为⊙O 的直径,弦AB CD ⊥,垂足为E ,1CE =,10AB =,则CD 的长为( )A .20B .24C .25D .26【答案】D 【分析】连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =5,Rt △OAE 中由勾股定理建立方程求解即可;【解析】如图,连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =BE =12AB =5,Rt △OAE 中,OA 2=AE 2+OE 2,x 2=25+(x -1)2,解得:x =13,,∴CD =26, 故选: D .5.如图,在O 中,⊥OD AB 于点D ,AD 的长为3cm ,则弦AB 的长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【分析】根据垂径定理求出AD =BD =3cm 即可.【解析】解:∵AB 为非直径的弦,⊥OD AB ,∴AD =BD =3cm ,∴AB =AD +BD =6cm .故选B .6.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .4B .6C .8D .9【答案】B 【分析】连接OD ,那么OD =OA =12AB ,根据垂径定理得出DE =12CD ,然后在Rt △ODE 中,根据勾股定理求出OE .【解析】解:如图,∵弦CD ⊥AB ,垂足为E∴CE =DE =1116822CD =⨯=, ∵OA 是半径∴OA =11201022AB =⨯=, 在Rt △ODE 中,OD =OA =10,DE =8,22221086OE OD DE =--=,故选:B .7.如图,AB 为圆O 的一弦,且C 点在AB 上.若6AC =,2BC =,AB 的弦心距为3,则OC 的长度为何?( )A .3B .4C 11D 13【答案】D 【分析】作⊥OD AB 于点D ,由垂径定理得4AD BD ==,Rt OCD △中勾股定理即可求解.【解析】解:作⊥OD AB 于点D ,如图所示,由题意可知:6AC =,2BC =,3OD =, 8AB ∴=,4AD BD∴==,2CD∴=,在Rt OCD△中22223213OC OD CD∴+=+故选:D.8.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42AC=4DE=,则BC的长是()A.1 B2C.2 D.4【答案】C【分析】根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.【解析】设OD=x,则OE=OA=DE-OD=4-x.∵AB是O的直径,OD垂直于弦AC于点,42AC=∴1222AD DC AC===∴OD是△ABC的中位线∴BC=2OD∵222OA OD AD=+∴222(4)(22)x x-=+,解得1x=∴BC=2OD=2x=2故选:C9.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【答案】C【分析】过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,由于DE =FG =MN ,所以弦的弦心距也相等,所以OB 、OC 是角平分线,根据∠A =50°,先求出180130ABC ACB A ∠+∠=︒-∠=︒,再求出,进而可求出∠BOC .【解析】解:过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠ACB , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠, ∵∠A =50°,∴180130ABC ACB A ∠+∠=︒-∠=︒,∴1122OBC OCB ABC ACB ∠+∠=∠+∠ ()12ABC ACB =∠+∠ 65=︒,∴∠BOC =()180OBC OCB ︒-∠+∠18065=-︒115=︒故选:C .10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A41B 34C.4 D.3【答案】D【分析】作AH⊥BC于H,作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,则AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3.【解析】作AH⊥BC于H,作直径CF,连接BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE BF=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3,故选:D.二、填空题11.在⊙O中,弦AB=16cm,弦心距OC=6cm,那么该圆的半径为__cm.【答案】10【分析】根据题意画出相应的图形,由OC垂直于AB,利用垂径定理得到C为AB别的中点,由AB的长求出BC的长,再由弦心距OC的长,利用勾股定理求出OB的长,即为圆的半径.【解析】解:如图所示:过点O作OC AB⊥于点C,∵AB=16cm,OC⊥AB,∴BC=AC12=AB=8cm,6OC cm=,在Rt△BOC中,2210.OB OC BC cm∴=+故答案为:10.12.如图,AB为⊙O的弦,半径OC⊥AB于E,AB=8,CE=2,则⊙O的半径为_____.【答案】5【分析】如图,连接OA,设OA=r.在Rt△AOE中,根据OA2=OE2+AE2,构建方程即可解决问题;【解析】解:如图,连接OA,设OA=r.∵OC⊥AB,∴AE=EB=4,∠AEO=90°,在Rt△AOE中,∵OA2=OE2+AE2,∴r2=42+(r﹣2)2,∴r=5,故答案为:5.13.已知⊙O的半径为6cm,弦AB=6cm,则弦AB所对的圆心角是________度.【答案】60【分析】连接OA、OB,可证得△OAB是等边三角形,由此得解.【解析】如图,连接OA、OB,∵OA=OB=AB=6,∴△OAB是等边三角形∴∠AOB=60°故弦AB所对的圆心角的度数为60°.故答案为:60.14.如图,在O中,AB BC CD==,连接AC,CD,则AC__2CD(填“>”,“ <”或“=” ).【答案】<【分析】根据AB BC CD==推出AB=BC=CD,利用三角形三边关系得到答案【解析】解:∵AB BC CD==,AB BC CD∴==,<+,AC AB BCAC CD∴<,2故答案为:<.∠的度数为______.15.如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC【答案】70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE ,根据平行线的性质即可得到∠AOC 的度数.【解析】解:连接OE ,如图,∵弧CE 所对的圆心角度数为40°,∴∠COE =40°,∵OC =OE ,∴∠OCE =∠OEC ,∴∠OCE =(180°-40°)÷2=70°,∵CE //AB ,∴∠AOC =∠OCE =70°,故答案为:70°.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.【答案】30【分析】先根据圆心角定理可得40AOB BOC COD ∠=∠=∠=︒,从而可得120AOD ∠=︒,再根据等腰三角形的性质即可得.【解析】解:∵AB BC CD ==,40COD ∠=︒,∴40AOB BOC COD ∠=∠=∠=︒,∴120AOD ∠=︒, 又OA OD =,∴1(180)302ADO OAD AOD ∠=∠=︒-∠=︒, 故答案为:30.三、解答题17.如图,O 的弦AB 、CD 相交于点E ,且AB CD =.求证:BE DE =.【答案】详见解析【分析】由弧、弦、圆心角的关系进行证明,结合等角对等边,即可得到结论成立.【解析】证明:AB CD=,CAB D∴=,AB AC CD AC∴-=-,即AD BC=,B D∴∠=∠,BE DE∴=;18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.【答案】(1)见解析;(2)10【分析】(1)过点O作OD⊥AC,交AC于点E,交⊙O于点D;(2)由题意可得OD=5,由(1)得:OE⊥AC,点E为AC中点,继而可得118422AE AC==⨯=,然后根据三角形的面积公式即可求得答案.【解析】(1)解:如图,点E即为所求;(2)解:如图,连接AD,∵⊙O的直径是10,∴OD=5,由(1)得:OE⊥AC,点E为AC中点,∴118422AE AC==⨯=,∴11541022OADS OD AE=⋅=⨯⨯=.19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD∠,求证:劣弧BC与劣弧BD相等.【答案】见详解【分析】过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,由题意易得OE=OF,然后可得BOC BOD∠=∠,进而问题可求证.【解析】证明:过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,如图所示:∵PB 平分CPD ∠,∴OE =OF ,∵OC =OD ,∴EOC FOD △≌△(HL ),∴C D ∠=∠,∴BOC BOD ∠=∠,∴BC BD =.20.如图,已知弓形的弦长AB =8,弓高CD =2(CD ⊥AB 并经过圆心O ).求弓形所在⊙O 的半径r 的长.【答案】r =5.【分析】先由垂径定理得AD =4,由于OD =r -2,则利用勾股定理得到62+(r -2)2=r 2,然后解方程即可.【解析】CD AB ⊥并经过圆心O ,∴118422AD BD AB ===⨯=,2OD OC CD r =-=-, 在Rt △OAD 中,2224(2)r r +-=,解得r =5.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .【答案】见解析【分析】根据圆心距、弦、弧之间的关系定理解答即可.【解析】证明:∵四边形ABCD是正方形,∴AB=CD,∴AB CD=,∵AM DM=,∴AB AM CD DM+=+,即BM CM=,∴BM=CM.22.如图,AB为圆O的直径,点C在圆O上.∥(不写作法,只保留作图痕迹);(1)尺规作图:在BC上求作一点E,使OE AC(2)探究OE与AC的数量关系.【答案】(1)见解析;(2)AC=2OE【分析】(1)过点O作OE⊥BC即可.(2)利用三角形中位线定理证明即可.【解析】(1)如图所示,点E即为所求的点.(2)结论:AC=2OE.理由:由作图得:OE⊥BC∴BE=CE,即点E为BC的中点,∴OE为△ABC的中位线,∴AC=2OC.23.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见解析;2cm【分析】(1)根据AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,可得四边形ADOE 是矩形,由垂径定理可得AD=AE ,根据邻边相等的矩形是正方形可证;(2)连接OA ,由勾股定理可得.【解析】(1)证明:∵AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,∴四边形ADOE 是矩形,12AD AB =,12AE AC =, 又∵AB=AC ,∴AD=AE ,∴四边形ADOE 是正方形.(2)解:如图,连接OA ,∵四边形ADOE 是正方形,∴112OE AE AC ===cm , 在Rt △OAE 中,由勾股定理可得:22+2OA OE AE , 即⊙O 2cm .24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点.(1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA①求OGC ∠; ②请比较GE 和BE 的大小.【答案】(1)证明见解析(2)①∠OGC=90°;②BE>GE【分析】(1)先由平行线得出∠COD=∠ODE,再用SAS证△OCF≌△DOE即可;(2)①先由C、D是AB的三等分点,∠AOB=90°,求得∠AOC=∠COD=∠BOD=30°,由(1)知△OCF≌△DOE,所以∠OCF=∠DOE=30°,即可由三角形内角和求解;②由①∠OGC=90°,∠OCF=∠DOE=30°,利用直角三角形的性质和勾股定理即可求得3OG OF=2,又∠OCF=∠COF=30°,所以CF=OF,又由△OCF≌△DOE,所以OE=CF=OF=2,即可求得23GE= 232BE=,再比较即可得出结论;=OC,【解析】(1)解:∵DE AB2AC∴∠COD=∠ODE,∵OC=OD,OF=DE,∴△OCF≌△DOE(SAS);(2)解:①∵C、D是AB的三等分点,∠AOB=90°,∴∠AOC=∠COD=∠BOD=30°,∵△OCF≌△DOE,∴∠OCF=∠DOE=30°,∵∠COG=∠COD+∠DOB=60°,∴∠OGC=90°.②∵23===,OA OC OB∴3OG又∵∠DOE=30°,∴OF=2,∵∠OCF=∠COF=30°,∴CF=OF,∵△OCF≌△DOE,∴OE=CF=OF=2,∴23GE OE OG=-=232=-=,BE OB OE∵3340-,BE GE=>∴BE>GE.。

青岛版初中数学《4.1_圆的对称性(2)圆心角_弧_弦_弦心距之间的关系》课件

青岛版初中数学《4.1_圆的对称性(2)圆心角_弧_弦_弦心距之间的关系》课件
1.下列命题中真命题是( ) A。相等的弦所对的圆心角相等。 B、圆心角相等,所对的弧相等。 C、在同圆或等圆中,相等的弦所对的弧相等。 D、长度相等的弧所对的圆心角相等。
2、在⊙O中, AB = AC ,∠B=70°,则∠A= ___
B 3、如图:AB为⊙O的直径, BC = CD = DE , ∠COD=35°, 则∠AOE=____度。 A E D C
圆的对称性
---圆心角、弧、弦之间的关系
圆绕圆心旋转
2
圆绕圆心旋转
2014-11-11

3
圆绕圆心旋转
2014-11-11

4
圆绕圆心旋转
2014-11-11

5
圆绕圆心旋转
2014-11-11

6
圆绕圆心旋转
2014-11-11

7
圆绕圆心旋转180°后仍与原 来的圆重合。
·
下面的说法正确吗?为什么? 如图,因为 AOB AOB 根据圆心角、弧、 弦的关系定理可知:
AB AB
A
2014-11-11


O
B
B
26
A
例题3
如图,已知AB、CD为 ⊙O的两条弦, AD=BC ,求证AB=CD.
C B O D A
2014-11-11 28
练习1
圆心角、弧、弦心距
在同圆或等圆中,如果①两个圆心角,②两条弧, ③两条弦中,有一组量相等,那么它们所对应的其余 各组量都分别相等.
D
A

D O
A

B
B
O

O′
┏ A′ D′ B′
如由条件: ③AB=A ′ B′

北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案一. 教材分析北师大版数学九年级下册3.2《圆的对称性》是本册教材中的重要内容,主要让学生了解圆的对称性质,掌握圆的对称性的应用。

本节课的内容对于学生来说比较抽象,但与生活实际息息相关,有利于激发学生的学习兴趣,培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念,如圆的半径、直径等,并了解了一些基本的平面几何知识。

但是,对于圆的对称性的理解和应用,还需要进一步的引导和培养。

因此,在教学过程中,要注重启发学生思考,引导学生发现圆的对称性,并学会运用圆的对称性解决实际问题。

三. 教学目标1.知识与技能:让学生理解圆的对称性质,学会运用圆的对称性解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。

四. 教学重难点1.重点:圆的对称性质的理解和应用。

2.难点:圆的对称性质在实际问题中的灵活运用。

五. 教学方法采用问题驱动法、合作学习法、案例教学法等,充分调动学生的积极性,引导学生主动探究,合作交流,提高学生的抽象思维能力和解决问题的能力。

六. 教学准备1.教具:黑板、粉笔、多媒体教学设备等。

2.学具:学生每人一本教材,一份练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆对称现象,如圆形的挂钟、圆形的脸谱等,引导学生发现圆的对称性质,激发学生的学习兴趣。

2.呈现(10分钟)教师通过讲解和演示,向学生介绍圆的对称性质,如圆的任何一条直径所在的直线都是圆的对称轴,圆的任何一点关于圆心都有对称点等。

同时,引导学生发现圆的对称性质与生活的密切关系。

3.操练(10分钟)学生分组讨论,每组设计一个具有圆对称性质的图案,并利用圆规和直尺进行绘制。

通过实践活动,加深学生对圆的对称性质的理解。

2014新版浙教版九年级数学上3.2圆的轴对称性(2)ppt课件

2014新版浙教版九年级数学上3.2圆的轴对称性(2)ppt课件

结论
O A E D B
}{
CD⊥AB
EA=EB
直径平分弧

(1)直径(或过圆心的直线)垂直于弦
(2)直径平分弦
请你用命题的形式表述你的结论?
平分弧的直径垂直平分弧所对的弦
垂径定理:
垂直于弦的直径平分弦,并且平分弦所对的两条弧
直径(或过圆心的直线)垂直于弦

(1)直径平分弦
(2)直径平分弦所对的弧
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
(1)当两条弦在圆心的两侧时 C
A

O B
D
(2)当两条弦在圆心的同侧时
C
A

O B
D
师生共同总结:
1.本节课主要内容: 垂径定理的另两个定理.
2.垂径定理的应用: (1)计算(2)证明.
3.解题的主要方法: (1)连接弧的中点与圆心和画半径是圆中常见的辅助线; (2)已知弦长,弓形高,求半径(或弦心距)时,经常利 用的勾股所对是弦的长)
为36m,拱高(弧的中点到弦的距离)为7m,求桥拱 的半径.
练习2:如图,在直径为130mm的圆铁片上切下一
块高为32mm的弓形铁片,求弓形的弦AB的长.
32mm B O
A
已知圆O的半径为5cm,AB∥CD,AB=6cm,CD=8cm, 求AB与CD间的距离.
EA=EB (AB非直径)
结论
O
}{
CD⊥AB ⌒ ⌒ AC=BC ⌒ AD=BD
A
E D
B
直径平分弦(非直径)

(1)直径(或过圆心的直线)垂直于弦
(2)直径平分弦所对的弧
请你用命题的形式表述你的结论?

3.2 圆的对称性(2)

3.2 圆的对称性(2)

导入新课
情境引入
熊宝宝要过生日了!要把蛋糕平均分成四块, 你会分吗?
讲授新课
一 圆的对称性
探究归纳 问题1 圆是轴对称图形吗?如果是,它的对称轴是 什么?你能找到多少条对称轴? 问题2 你是怎么得出结论的? 用折叠的方法
圆的对称性:
●O
圆是轴对称图形,其对称轴
是任意一条过圆心的直线.
探究归纳 问题3 将圆绕圆心旋转180°后,得到的图形与原图形 重合吗?由此你得到什么结论呢?
求证:∠AOB=∠BOC=∠AOC.
A
证明:∵A⌒B=C⌒D,
∴ AB=AC.△ABC是等腰三角形.

又∠ACB=60°,
B
C
∴ △ABC是等边三角形 , AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
温馨提示:本题告诉我们,弧、圆心角、弦灵 活转化是解题的关键.
( ( ( (
( (
针对训练 填一填: 如图,AB、CD是⊙O的两条弦. (1)如果AB=CD,那么__A_B__=_C_D__,_∠__A_O_B__=_∠__C__O.D
归纳 由圆的旋转不变性,我们发现:D 在⊙O中,如果∠AOB= ∠COD, 那么,AB CD ,弦AB=弦CD
C B
·
O
A
在等圆中探究 如图,在等圆中,如果∠AOB=∠CO ′ D,你发现
的等量关系是否依然成立?为什么?
A
B
C
D

O ·′
归纳 通过平移和旋转将两个等圆变成同一个圆,我 们发现:如果∠AOB=∠COD,那么,A⌒B=C⌒D,弦 AB=弦CD.
180° A
圆的对称性: 圆是中心对称图形,对称中 心为圆心.

苏科版数学九年级上册2.2《圆的对称性》教学设计

苏科版数学九年级上册2.2《圆的对称性》教学设计

苏科版数学九年级上册2.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是苏科版数学九年级上册第二章第二节的内容。

本节课主要学习了圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线等。

通过本节课的学习,使学生能够理解圆的对称性质,并能运用到实际问题中。

二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的定义、圆的方程等,同时也学习了平面图形的对称性。

因此,学生对于对称性的概念已经有所了解,但对于圆的对称性质还需要进一步的引导和探究。

三. 教学目标1.理解圆的对称性质,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

2.能够运用圆的对称性质解决实际问题。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.圆的对称性质的理解和运用。

2.圆的对称轴的确定。

五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,引导学生通过观察、思考、讨论、实践等方式,掌握圆的对称性质,并能够运用到实际问题中。

六. 教学准备1.教学课件或黑板。

2.圆形教具。

3.练习题。

七. 教学过程1.导入(5分钟)通过展示一些具有对称性的图形,如圆、正方形、矩形等,引导学生回顾对称性的概念,并提问:你们认为圆具有对称性吗?圆的对称性质是什么?2.呈现(10分钟)利用多媒体课件或黑板,呈现圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

同时,通过举例说明圆的对称性质。

3.操练(10分钟)让学生拿出圆形教具,观察并尝试找出圆的对称轴。

学生可以自行尝试,也可以与同桌相互讨论。

在学生操作过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些关于圆的对称性的练习题,让学生独立完成。

题目可以包括判断题、选择题和解答题等。

学生完成后,教师进行讲解和点评。

5.拓展(10分钟)让学生思考:圆的对称性质在实际生活中有哪些应用?引导学生举例说明,如圆形的桌面、圆形的路面等。

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿一. 教材分析《圆的对称性》这一节的内容是北师大版数学九年级下册第三章第二节的内容。

本节课的主要内容是让学生了解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性在实际问题中的应用。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。

但是,对于圆的对称性的理解还需要进一步的引导和培养。

因此,在教学过程中,我将会以学生的已有知识为基础,通过实例和问题,引导学生深入理解圆的对称性。

三. 说教学目标1.知识与技能:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.过程与方法:通过观察、思考、交流等活动,学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

3.情感态度与价值观:学生能够培养对数学的兴趣,提高对几何图形的审美能力。

四. 说教学重难点1.教学重点:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.教学难点:学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和实例教学法。

通过提出问题,引导学生思考和探索,从而发现圆的对称性。

同时,我会利用多媒体教学手段,展示相关的几何图形和实例,帮助学生更好地理解和掌握圆的对称性。

六. 说教学过程1.导入:通过提出问题,引导学生思考和探索圆的对称性。

2.新课导入:介绍圆的对称性,让学生了解圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

3.实例讲解:通过展示相关的实例,让学生深入理解圆的对称性。

4.练习与讨论:让学生进行相关的练习,并通过讨论交流,巩固对圆的对称性的理解。

5.总结与拓展:总结本节课的主要内容,并进行拓展,引导学生思考圆的对称性在实际问题中的应用。

2022春九年级数学下册第27章圆27.1圆的认识2圆的对称性第2课时垂直于弦的直径性质习题课件华东

2022春九年级数学下册第27章圆27.1圆的认识2圆的对称性第2课时垂直于弦的直径性质习题课件华东
DB,则下列结论不一定正确的是( ) ︵︵
A.AD=BD B.AF=BF C.OF=CF D.AC=︵BC ︵
【点拨】∵DC是⊙O的直径,弦AB⊥CD,∴点D是 优弧ADB的中点,点C是劣弧ACB的中点,且AF= BF,故选项A,B,D一定正确;无法证明OF=CF, 故选C. 【答案】C
2.【2020·滨州】在⊙O中,直径AB=15,弦DE⊥AB于
HS版九年级下
第27章 圆
27.1.2 圆的对称性 第2课时 垂直于弦的直径性质
提示:点击 进入习题
1C 2C 3B 4C
答案显示
5 见习题 6C 7B 8 26
提示:点击 进入习题
9 见习题
10 见习题
11 见习题
12 见习题
答案显示
13 见习题
1.如图,DC是⊙O的直径,弦AB⊥CD于点F,连结BC、
设半径OA=OE=r寸, ∵ED=1寸,∴OD=(r-1)寸. 在Rt△OAD中,根据勾股定理可得(r-1)2+52=r2, 解得r=13.∴木材的直径为26寸.
【答案】26
9 . 如 图 , AB 是 ⊙ O 的 直 径 , CD 是 ⊙ O 的 一 条 弦 , CD⊥AB于点E,则下列结论:①∠COE=∠DOE; ︵︵ ②CE=DE;③BC=BD;④OE=BE.其中一定正确的 有( )
*8.【2020•宁夏】我国古代数学经典著作《九章算术》中 记载了一个“圆材埋壁”的问题:“今有圆材埋在壁 中,不知大小.以锯锯之,深一寸,锯道长一尺.问 径几何?”意思是:今有一圆柱形
木材,锯口深ED=1寸,锯道长AB=1尺 (1尺=10寸).这根圆柱形木材的直径是________寸. 【点拨】由题意可知 OE⊥AB. ∵OE 为⊙O 的半径, ∴AD=BD=12AB=12尺=5 寸.

初中数学苏科版九年级上册2.2 圆的对称性

初中数学苏科版九年级上册2.2 圆的对称性


3.如图,在半径为13的⊙O中,OC垂直弦 AB于点B,交⊙O于点C,AB=24,则CD 的长为_7_____。
●O
A
D
B
C
4:如图, ⊙O的弦AB=8 ㎝ , DC=2㎝,直
径CE⊥AB于D, 则半径OC=_5_____。
E
O
x D x-2
A
4
B

2
C
如 图 , ⊙ O 的 半 径 为 5 , 弦 AB 的 长 为8,M是弦AB上的动点,则线段OM
垂径定理的应用
5.在横截面为圆形的油槽内装入一些油后,若油面宽 AB = 600mm,圆的直径为650mm,求油的最大深 度.
E
A
600
B
O
O ø650
A
C
B
E
D
600
F
D
谈谈你今天的收获是什么?
C
O
A
EB
D
图3
1.圆是轴对称图形.过圆心的任意一条 直线都是它的对称轴.
2.垂径定理:垂直于弦的直径平分 这条弦,并且平分弦所对的弧.
如图圆形纸片, CD是⊙O直 径.
1.在⊙O上任取一点A,过 A 点A作直径CD的垂线,交⊙O 于点B,点P为垂足.·
C
●O
P
B
D
2. 将圆沿着直径CD对折,你有什么发现呢? 发现:CP=DP,弧AD=弧BD,弧AC=弧BC。
垂直于弦的直径平分这条弦,并且平 分弦所对的弧.
∵在⊙O中 直径CD⊥AB ∴AP=BP,
米,求⊙O的半径。
A 4E
B
.3
5?
O
2.你知道赵州桥吗?它是1300多年前 我国隋代建造的石拱桥,是我国古代人民勤 劳和智慧的结晶.它的主桥拱是圆弧形,它 的跨度(弧所对的弦的长)为37.4米, 拱高(弧的中点到弦的距离)为7.2米, 你能求出赵州桥主桥拱的半径吗?(精确到 0.1) C

圆的对称性2

圆的对称性2
1、了解10的弧的意义,理解圆心角的度数与所 对弧度数相等的关系; 2、能够熟练运用圆的对称性及相关性质定理进 行简单的计算和证明; 3、通过小组合作学习中,培养学生 的合作交流意识与习惯。
已知 AB = CD 你能得到什么结论?
(可以添加线段)
.A .B
... O
..ห้องสมุดไป่ตู้
CD
(1)线段AB=5cm,CD=5cm,两条线段相等吗? (2)AB的长为5cm,CD的长为5cm,两条弧相 等吗? (3)“弧相等”指什么相等?
(1)弧的弯曲程度可以用度数来刻画,那 么弧的度数是怎么定义的呢?什么是1度的 弧? (2)10 的弧所对的圆心角的的度数是多少? 反过来呢? (3)700的弧所对的圆心角的度数是 多少? (4)n0的弧所对的圆心角的度数是多 少?
1. 如图4-15,在⊙O中,已知弦AB所对的劣弧
为圆的
1 3
,⊙O的半径为R,求弦AB的长。
...O
A
B
已知⊙O的半径为R,弦AB长为 R, 试求弧AB的度数。
2. 如图4-16,已知AB,CD为 ⊙O的两条直径, 弦CE∥AB,∠BOD=1100,求弧CE的度数。
D A
E
O
B C
(1)了解了10的弧的意义;
(2)知道了圆心角的度数与它所 对弧的度数相等的关系。
大演草:习题5.3第1,2,3(画图)

湘教版数学九年级下册2.1《圆的对称性》教学设计

湘教版数学九年级下册2.1《圆的对称性》教学设计

湘教版数学九年级下册2.1《圆的对称性》教学设计一. 教材分析《圆的对称性》是湘教版数学九年级下册第2.1节的内容,主要介绍了圆的对称性质。

本节内容是在学生已经掌握了圆的基本概念和性质的基础上进行授课的,为后续学习圆的方程和应用打下基础。

教材从圆的轴对称性和中心对称性两个方面展开,通过实例和习题使学生理解和掌握圆的对称性质。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对圆的基本概念和性质有一定的了解。

但是,对于圆的对称性质的理解可能会存在一定的困难,特别是对于圆的轴对称性和中心对称性的区别和联系。

因此,在教学过程中,需要通过具体的实例和习题,帮助学生理解和掌握圆的对称性质。

三. 教学目标1.理解圆的轴对称性和中心对称性的概念。

2.掌握圆的对称性质,并能够运用到实际问题中。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的轴对称性和中心对称性的概念及区别。

2.圆的对称性质的应用。

五. 教学方法1.采用问题驱动的教学方法,通过提问和解答的方式引导学生思考和探索圆的对称性质。

2.使用多媒体辅助教学,通过图形和动画的展示,帮助学生直观地理解和掌握圆的对称性质。

3.运用实例和习题,让学生在实践中巩固和应用圆的对称性质。

六. 教学准备1.多媒体教学设备。

2.教学PPT。

3.实例和习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)使用PPT展示圆的轴对称性和中心对称性的定义和性质,让学生直观地理解圆的对称性质。

3.操练(10分钟)让学生通过观察和分析具体的实例,找出圆的对称轴和中心,加深对圆的对称性质的理解。

4.巩固(10分钟)让学生分组讨论,总结圆的对称性质,并互相解答疑问。

教师巡回指导,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生运用圆的对称性质解决实际问题,如圆的切割、设计等,提高学生的应用能力。

5.2圆的对称性(2)教学案+课堂作业(南沙初中九年级上)

5.2圆的对称性(2)教学案+课堂作业(南沙初中九年级上)

南沙初中初三数学教学案教学内容:5.2圆的对称性 (2)课型:新授课学生姓名:______ 教学目标:1、使学生通过观察实验理解圆的轴对称性;2、掌握垂径定理,理解垂径定理的推证过程;3、能初步应用垂径定理进行计算和证明.4、进一步培养学生观察问题、分析问题和解决问题的能力.教学重点:垂径定理及应用.教学难点:垂径定理的证明教学过程:一、知识回顾1、如果一个图形沿着一条直线折叠,直线的两旁的部分能够互相重合,那么这个图形叫做__________________,这条直线叫做_______________。

2、圆是中心对称图形,_________是它的对称中心;圆具有_________性。

二、操作与探索提出问题:“圆”是不是轴对称图形?它的对称轴是什么?操作:①在圆形纸片上任画一条直径;②沿直径将圆形纸片折叠,你发现了什么?结论:圆也是_________图形,___________________________它的对称轴。

三、探究与思考1.判断下列图形是否具有对称性?如果是中心对称图形,指出它的对称中心;如果是轴对称图形,指出它的对称轴。

2.(1) 将第一个图中的弦AB改为直径(AB与CD相互垂直的条件不变),结果如何?(2)将第二个图中的直径AB改为怎样的一条弦,它将变成轴对称图形?3、思考:如何确定圆形纸片的圆心?四、尝试与交流1、如图,CD是⊙O的弦,画直径AB⊥CD,垂足为P,将圆形纸片沿AB对折。

通过折叠活动,我们可以发现:___________________________。

2、你能给出几何证明吗?(写出已知、求证并证明)3、得出垂径定理:____________________________________________________.4、注意:①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧。

5、几何语言:五、例题解析例1、如图,以O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D,AC与BD相等吗?为什么?例2、如图,已知:在⊙O中,弦AB的长为8,圆心O到AB的距离为3。

2.1圆的对称性(教案)

2.1圆的对称性(教案)

湘教版数学九年级2.1圆的对称性教学设计课题 2.1圆的对称性单元第二章圆学科数学年级九年级学习目标1、通过观察生活中的图片,使学生理解圆的定义.2、结合图形理解圆的有关概念.3、理解圆的对称性.4、掌握点与圆的位置关系的判定方法.重点理解圆的有关概念及圆的对称性.难点掌握点与圆的位置关系的判定方法.教学过程教学环节教师活动学生活动设计意图导入新课“一切立体图形中最美的是球,一切平面图形中最美的是圆”.这是希腊的数学家毕达哥拉斯一句话.圆也是一种和谐、美丽的图形,无论从哪个角度看,它都具有同一形状.圆有哪些性质?为什么车轮做成圆形?欣赏毕达哥拉斯的话.体会圆的和谐美,激发学生学习的兴趣.讲授新课一、圆的定义1、观察下列生活中圆的形象.你还能举例说明生活中哪些物体是圆形吗?2、圆的定义圆是平面内到一定点的距离等于定长的所有点组成的图形,这个定点叫作圆心,定长叫作半径.线段OA的长度叫做半径,记作半径r.以点O为圆心的圆叫作圆O,记作⊙O.观察生活中的圆的形象.理解圆的定义.观察生活中的圆的形体验圆的和谐与美丽.使学生理解并掌握圆的定义.注意:1.在同一个圆中,所有半径都相等.2.在同一个圆中,半径有无数条.圆也可以看成是平面内一个动点绕一个定点旋转一周所形成的图形,定点叫作圆心,定点与动点的连线叫做半径.二、点与圆的位置关系1、我们把到圆心的距离小于半径的点叫作圆内的点;到圆心的距离大于半径的点叫作圆外的点.等于半径的点叫做圆上的点.2、点与圆的位置关系有几种?点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外.观察图中点A,B,C,D,E,F与圆的位置关系?点A,D在圆内,点B,F在圆上,点C,E在圆外.3、怎样确定点与圆的位置关系?一般地,设⊙O的半径为r,点P到圆心的距离OP=d.观察图形,交流、讨论、归纳出点与圆的位置关系.理解并掌握与圆的有关概念.理解并掌握点与圆的位置关系,会判定点与圆的位置关系.准确掌握与圆有关的概念,为今后的学习打下三、与圆的有关概念1、弦:连接圆上任意两点的线段(图中的线段AB、CD)叫做弦.经过圆心的弦(图中的AB)叫做直径.观察图中AB和CD的特点,说出弦和直径之间的关系.注意:凡直径都是弦,是圆中最长的弦,但弦不一定是直径.2、圆弧:连接圆上任意两点间的部分叫作圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫作半圆.小于半圆的弧叫作劣弧.以A、B为端点的弧记作AB.读作“圆弧AB”或“弧AB”.大于半圆的弧叫作优弧.A、B间大于半圆的弧记作AMB.其中点M是优弧上一点.四、圆的对称性1、等圆和等弧:如图,在一块硬纸板和一张薄的白纸上分别画一个圆,使它们的半径相等,把白纸放在硬纸板上面,使两个圆的圆心重合,观察这两个圆是否重合.动手操作,认识圆的对称性.基础.使学生通过操作探究认识并掌握圆的对称性.能够重合的两个圆叫作等圆,能够互相重合的弧叫作等弧.2、旋转对称和中心对称:如图,用一根大头针穿过上述两个圆的圆心.让硬纸板保持不动,让白纸绕圆心旋转任意角度.观察旋转后白纸上的圆是否仍然与硬纸板上的圆重合?这体现圆具有什么样的性质?由于圆是由一个动点绕一个定点旋转一周所形成的图形.因此圆绕圆心旋转任意角度,都能与自身重合.圆是旋转对称图形,即圆绕圆心旋转任意角度,都能与自身重合.圆是中心对称图形,圆心是它的对称中心.3、圆的轴对称性如图,在纸上任画一个⊙O,并剪下来.将⊙O沿任意一条直径(例如直径CD)对折,你发现了什么?直径CD两侧的两个半圆能完全重合.上述操作中体现了圆具有怎样的对称性?圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.同学之间交流、讨论.通过交流活动使学生进一步加强对圆的认识.圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.4、为什么通常要把车轮设计成圆形?请说说理由.把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变.因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.1、下列说法:①半圆是弧;②弧是半圆;③圆中的弧分为优弧和劣弧.其中正确的个数有()A.0 B.1 C.2 D.32、如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°3、圆内最大的弦长为10 cm,则圆的半径()A.小于5 cm B.大于5 cmC.等于5 cm D.不能确定4、下列语句中,不正确的是()A.当圆绕它的中心旋转89°57′时,不会与原来的圆重合学生先自主思考,完成后小组交流确定结果,最后上台展示成果.通过练习加深对圆的理解.B.圆是轴对称图形,过圆心的直线是它的对称轴C.圆既是中心对称图形,又是旋转对称图形D.圆的对称轴有无数条,但是对称中心只有一个5、填空:(1)______是圆中最长的弦,它是半径的____倍.(2)图中有_____条直径,_____条非直径的弦,圆中以A为一个端点的优弧有_____条,劣弧有_____条.6、正方形ABCD的边长为2 cm,以A为圆心2 cm 为半径作⊙A,则点B在⊙A_____;点C在⊙A_____;点D在⊙A_____.7、一点和⊙O上的最近点距离为4 cm,最远的距离为10 cm,则这个圆的半径是________________.课堂小结圆的定义:平面内到一定点的距离等于定长的所有点组成的图形.平面内一动点绕一定点旋转一周所形成的图形.圆有关概念:弦(直径:是圆中最长的弦).点与圆的位置关系:回顾本节课所学知识.通过小结,再次让学生认识圆及有关概念,会判定点和圆的位置关系,强化了学生的学习成果.圆的对称性:圆是中心对称图形,圆心是它的对称中心.圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.板书圆的定义:圆有关概念:弦(直径:是圆中最长的弦).点与圆的位置关系:圆的对称性:圆是中心对称图形,圆心是它的对称中心.圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

爱博体育官网 [单选,A1型题]有关协调性子宫收缩乏力,下列描述正确的是()A.子宫收缩节律性、对称性和极性均正常,仅收缩力弱B.容易发生胎儿宫内窘迫C.不宜静脉点滴缩宫素D.潜伏期不宜应用哌替啶E.多数产妇自觉持续性腹痛,且产程延长 [判断题]海绵动物由于具有特殊的水沟系结构,故对漂浮生活能很好的适应。?()A.正确B.错误 [多选]进出境邮寄物检疫的范围是()。A.动植物、动植物产品及其他检疫物的国际邮寄物品B.来自疫区的被传染病病体污染的或可能成为传染病传播媒介的国际邮寄物品C.微生物、人体组织、生物制品、血液及其制品等特殊物品的国际邮寄物品D.通过邮政渠道运递并需实施检疫的其他国际邮寄 [单选]16、17号车钩弹性支承装置每组有()支承弹簧。A、3个B、2个C、1个D、4个 [问答题,案例分析题]【病例摘要】某女,30岁,教师。于2011年1月4日就诊。患者于3天前食辛辣肥甘之品后,出现尿频、尿急、尿道灼痛,患者未予重视,又食肥甘厚味之品,今日不适症状加重而来诊治。现症见:尿频、尿急,排尿时自觉尿道灼痛,小腹胀痛,不思饮食,睡眠欠佳,舌质红, 脉数滑。T36.6℃,P80/min,R18/min,BP120/80mmHg。小腹正中压痛,无反跳痛,双肾区无叩痛。尿常规检查:白细胞+++,细菌培养示:有大肠杆菌生长。泌尿系B超示:未见异常。【答题要求】 [单选]在正常情况下,Water位X线片上颌窦密度与眼眶密度相比()A.上颌窦密度高于眼眶密度B.上颌窦密度高于眼眶密度C.上颌窦密度等于眼眶密度D.上颌窦密度低于或等于眼眶密度E.因个体差异,无法相比 [单选]以Boyden小室法能检测()A.小吞噬细胞的随机运动能力B.受检的细胞吞噬能力C.反映细胞杀菌的情况D.中性粒细胞的吞噬调理能力E.中性粒细胞的定向运动能力 [单选,A1型题]患者男,32岁。右小腿持续剧烈疼痛,不能行走,到医院就诊,检查:右小腿皮肤苍白,肌萎缩,足背动脉搏动消失,诊断为血栓闭塞性脉管炎,目前患者最主要的护理诊断是()A.组织灌注量改变B.潜在皮肤完整性受损C.有外伤出血的危险D.疼痛E.知识缺乏 [问答题,简答题]请简述农村合作金融机构发生的广告费和业务宣传费,计税时如何扣除? [单选]具有结构简单、价格低廉、可靠性高,但灵敏度较低等特点的火灾探测器是()。A.感温火灾探测器B.感烟火灾控测器C.感光火灾探测器D.气体火灾探测器 [单选]免疫荧光显微技术中,特异性最高,非特异性荧光染色因素最少的方法是()A.直接法B.间接法C.补体结合法D.双标记法E.多标记法 [单选]无线中继属于无线列调系统的()设备A.调度所B.沿线地面C.传输 [单选,A2型题,A1/A2型题]器官移植后发生慢性移植排斥反应的患者体内明显升高的是()A.IL-1B.IL-2C.IL-6D.GM-CSFE.IFN-&gamma; [单选]体外检测诊断用核仪器有()A.放射性活度计B.脏器功能测定仪C.单光子发射型计算机断层(SPECT)D.正电子发射型计算机断层(PET)E.&gamma;闪烁计数器 [单选,A4型题,A3/A4型题]成年患者,热烧伤10%Ⅲ度,伤后10天,创面溶痂,有脓性分泌物并伴有创缘炎性反应,体温39℃,伴有寒战,创面分泌物细菌培养为耐甲氧西林金黄色葡萄球菌,痂下组织细菌计数&gt;10CFU/g,血培养(-)。该患者诊断为()A.非侵入性感染B.创面脓毒症C.败血症D. 染E.毒血症 [单选]鼻咽癌患者Ⅸ、Ⅹ、Ⅺ、Ⅻ脑神经受累的原因是()A.局部扩散B.血行转移C.脑转移D.种植转移E.转移淋巴结压迫所致 [单选]下列多囊卵巢综合症状和声像图的表现,哪一项是错误的A.多毛B.肥胖C.卵泡少于5个D.双侧卵巢增大E.彩色多普勒检查卵巢髓质血流丰富 [名词解释]浓度克拉克值 [单选]晚间护理的目的是()A.提醒陪护人员离开病室B.保持病室美观、整洁C.保持患者清洁舒适D.做好术前准备E.进行卫生宣教 [名词解释]单腔共振吸声材料又称亥姆霍兹共振吸声结构 [单选]()是指订货前的库存原料存量。A.期末需存量B.下期需用量C.现有库存量D.日平均消耗量 [单选]关于入境展览品,以下表述正确的是:A.无需办理报检手续B.入境动植物展品免于检疫审批C.展览期间应接受检验检疫监管D.留购得展品无需重新办理报检手续 [单选]颈椎病是否需要行手术治疗的主要依据是()A.临床症状和体征B.X线平片上脊髓受压的程度CT片上颈脊髓受压的程度D.MRI上颈脊髓受压的程度E.患者对手术的期望程度 [问答题,简答题]杀虫 [单选,A4型题,A3/A4型题]男,29岁,火焰烧伤3小时,烧伤总面积80%,其中深Ⅱ&deg;30%,Ⅲ&deg;50%,伤后无尿,心律148次/分,呼吸32次/分,伤后头8小时输液4500ml(其中胶体1800ml)后仍无尿。伤后第9天,体温39.8℃,心律148次/分,呼吸36次/分,创面潮湿,焦痂下积脓,感染向邻近健 袭,血培养阴性。最可能的原因是()A.二重感染B.烧伤创面脓毒症C.多器官功能障碍综合征D.蜂窝织炎E.休克 [单选]分离塔是用来进行()的设备。A、气液、液液之间的传质B、气液、液液之间的传热C、气液、液液之间的传质和传热D、气液之间的传质和传热 [问答题,简答题]增压机突然停机时,如何处理? [单选]“春伤于风,邪气留连”而发生的病证是()。A.疟疾B.洞泄C.温病D.咳嗽E.濡泻 [单选]减少用电容量的期限,最长期限不得超过()。A.半年B.一年C.两年D.两年半 [单选]对饭店市场进行细分的主要目的是()。A.确定自己的目标市场B.开发新产品提供资料C.了解市场价格D.确定自己在市场中的地位 [单选]采用乘数原理进行投资宏观效应分析时,投资乘数与()成正比。A.收入增量B.投资增量C.消费增量D.边际储蓄倾向 [单选]患者突然发生口角歪斜,右侧额纹消失,右侧眼裂较左侧大,露齿口角偏左,右侧鼻唇沟变浅,可能是()A.右侧中枢性面瘫B.左侧中枢性面瘫C.右侧周围性面瘫D.左侧周围性面瘫E.双侧周围性面瘫 [单选]()未成年人凭学生证、户口簿或者户口所在地公安机关出具的身份证明可做为乘机的有效证件。A.十二周岁以下B.十八周岁以下C.十六周岁以下D.二十周岁以下 [单选,A1型题]从中药水提液中除去鞣质可用()A.硅胶柱层析法B.明胶沉淀法C.雷氏盐沉淀法D.碱溶酸沉法E.活性炭柱层析法 [填空题]在不同类型的原油中,()原油是石油的低凝产品和优质道路沥青的宝贵原料。 [单选]是否做到(),是人员招聘成败的关键。A.公开招聘B.择优录用C.公平公正D.效率优先 [填空题]矿山投资项目是指使矿山形成设计生成能力所需要的(),由基本建设投资、流动资金组成。 [单选,A1型题]乳腺癌出现“酒窝征”的机制是()A.合并感染B.癌肿压迫乳管C.癌肿侵犯cooper韧带D.淋巴管癌栓阻塞E.周围组织粘连 [单选]光盘的读取速度一般利用倍速来表示,CD的1倍速一般是指(1),DVD的1倍速是指(2)。空白(2)处应选择()A.150KB/sB.450KB/sC.750KB/sD.1350KB/s [问答题,案例分析题]病例摘要:陈某,男,60岁,已婚,于2011年11月16日急诊入院。患者主因反复发作劳累后心悸、气急、水肿20年,加重2月入院。患者20年前常宿营野外,常常发热、咽痛,此后常感四肢大关节游走性酸痛,但无红肿及活动障碍。5年前,晨起发觉双眼睑水肿,午后及傍晚下 2年前,于快步行走后感胸闷、心悸,休息片刻即能缓解。近2月劳累后感心悸、气急,多次发生夜间阵发性呼吸困难,咳吐泡沫痰,被迫坐起1小时左右渐缓解,腹胀,下肢水肿,尿少。曾于5年前在外院诊断为&quot;风湿性心脏病&quot;,无食物、药物过敏史。体格检查:T37.8℃.P92/min,R2 BP130/70mmHg。神清,半卧位。舌暗淡,苔白滑,脉细促。双眼睑无水肿,结膜轻度充血。口唇轻度发绀,无疱疹。咽后壁轻度充血。颈软,颈静脉怒张。双侧呼吸动度增强,呼吸音粗糙,双肩胛下区闻及少许细湿啰音。心尖搏动位于左腋前线第6肋间,搏动范围弥散,心前区与心尖部均有抬举性 尖部并可触及舒张期震颤。心浊音界向两侧扩大,以向左下扩大为主。心率120/min,心律绝对不齐,心音强弱不等,心尖区可闻及全收缩期粗糙4/6级吹风性杂音,向左腋下传导,也可闻及局限性舒张中、晚期隆隆样杂音。全腹膨隆,可见腹壁静脉显露,腹式呼吸消失,未见肠型及蠕动波。腹壁 肿,肝肋下10cm,剑突下13cm,质偏硬,边钝,表面光滑,轻触痛。肝颈静脉回流征阳性。腹部移动性浊音阳性,肝区有轻度叩击痛,双下肢凹陷性水肿,下肢无静脉曲张及溃疡。肱二头肌腱反射、膝腱反射正常存在。巴氏征阴性,凯尔尼格征阴性。血常规:白细胞13.5&times;109/L,中性83%, ,红细胞4&times;1012/L,血红蛋白108g/L。X线胸片:心影普遍增大肺内有明显肺瘀血征象,肺动脉圆锥突出,右膈肌光整,肋膈角锐利;左膈肌被心影遮盖。心电图:快速心房纤颤,右室肥厚,ST-T改变。心脏、肝脏彩超:二尖瓣狭窄及关闭不全,主动脉瓣狭窄及关闭不全,全心增大,心源性
相关文档
最新文档