自动控制原理4 第五节控制系统的根轨迹分析法

合集下载

自动控制原理第5章根轨迹分析法

自动控制原理第5章根轨迹分析法

04
CATALOGUE
根轨迹分析法的限制与挑战
参数变化对根轨迹的影响
参数变化可能导致根轨迹的形状和位置发生变化 ,从而影响系统的稳定性和性能。
对于具有多个参数的系统,根轨迹分析可能变得 复杂且难以预测。
需要对参数变化进行细致的监测和控制,以确保 系统的稳定性和性能。
复杂系统的根轨迹分析
对于复杂系统,根轨 迹分析可能变得复杂 且难以实现。
02
CATALOGUE
根轨迹的基本概念
极点与零点
极点
系统传递函数的极点是系统动态 特性的决定因素,决定了系统的 稳定性、响应速度和超调量等。
零点
系统传函数的零点对系统的动 态特性也有影响,主要影响系统 的幅值和相位特性。
根轨迹方程
根轨迹方程是描述系统极点随参数变 化的关系式,通过求解根轨迹方程可 以得到系统在不同参数下的极点分布 。
05
CATALOGUE
根轨迹分析法的改进与拓展
引入现代控制理论的方法
状态空间法
将根轨迹分析法与状态空间法相结合,利用状态空间法描述系统的动态行为,从而更全 面地分析系统的稳定性。
最优控制理论
将根轨迹分析法与最优控制理论相结合,通过优化系统的性能指标,提高系统的稳定性 和动态响应。
结合其他分析方法
根轨迹方程的求解方法包括解析法和 图解法,其中图解法是最常用的方法 。
根轨迹的绘制方法
手工绘制
通过选取不同的参数值,计算对应的极点,然后绘制极点分布图。这种方法比较繁琐,但可以直观地了解根轨迹 的形状和变化规律。
软件绘制
利用自动控制系统仿真软件,如MATLAB/Simulink等,可以方便地绘制根轨迹图,并分析系统的动态特性。

自动控制第五章根轨迹法资料

自动控制第五章根轨迹法资料

8
绘制根轨迹的基本条件
根轨迹的幅值条件:
n
s pj
j 1
负反馈根轨迹的相角条件:
m
n
(s z j ) (s pi ) (2q 1)
j 1
i 1
满足此式的根轨迹,称为1800根轨迹;
正反馈根轨迹的相角条件:
m
n
(s z j ) (s pi ) (2q)
j 1
i 1
满足此式的根轨迹,称为00根轨迹;
9
绘制根轨迹的基本条件
n
s pi
i 1 m
K1
s zj
j 1
m
n
(s z j ) (s pi ) (2q 1)
j 1
i 1
➢ 根轨迹的幅值条件不仅取决于系统开环零极点的分 布,同时还取决于开环根轨迹的增益K1。
➢ 根轨迹的相角条件仅仅取决于系统开环零极点的分 布,与开环根轨迹的增益K1无关。
2
第一章根轨迹的基本概念
根轨迹的概念的提出 反馈控制系统的性质取决于闭环传函。只要求解
出闭环系统的根,系统的响应就迎刃而解。但是对于 3阶以上的系统求根比较困难。如果系统中有一个可 变参数时,求根更困难了。
1948年,伊凡思提出了一种确定系统闭环特征根 的图解法——根轨迹法。在已知开环零极点分布的基 础上,当某些参数变化时确定闭环极点的一种简单的 图解方法。
12
第二节 绘制根轨迹的基本规则
当K1 时,① s z j ( j 1 ~ m) ,上式成立。 z j 是开环传递
函数有限值的零点,有m个。故n阶系统有m支根轨迹的终点在
利用这一方法可以分析系统的性能,确定系统应 有的结构和参数。
3
第一节 根轨迹的基本概念

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理 第四章 根轨迹法

自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。

本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。

4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。

例如某控制系统的结构图如图4.1所示。

图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。

于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。

箭头表示随K 值增加根轨迹的变化趋势。

这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。

画出根轨迹的目的是利用根轨迹分析系统的各种性能。

通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。

又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。

可以看出,根轨迹与系统性能之间有着比较密切的联系。

图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。

而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。

下面给出图解法绘制根轨迹的根轨迹方程。

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

自动控制原理--控制系统的根轨迹分析及特殊根轨迹

自动控制原理--控制系统的根轨迹分析及特殊根轨迹

j1
s0
j1
jk
s sk
j1
jk
单位阶跃响应为
n
y(t) A0 Akeskt k 1
m
m
Ks zi Kzi
A0
i1 n
s sj
i1 n
GB(0)
sj
j1
s0
j1
m
m
K s zi
Ak
i1 n
s sj
1 s
K sk zi
i1 n
sk sk sj
jk
1
s2
100 8s 100
4 3
os1
1.5
1.7
可求得 0.4, ,n 10
s3
所以 % e 1 2 100% 25%,ts (s3.)5 n 3.5 4 0.9
j
0
利用根轨迹分析控制系统的性能
例11 分析K的变化对系统稳定性的影响
K (s 3) G(s)H (s) s(s 5)(s 6)(s2 2s 2)
增加开环极点的影响 增加极点对根轨迹形状的影响
增加开环零点的影响 增加零点对根轨迹形状的影响
例9 已知某系统闭环传递函数
GB (s) 0.67s 1
1 0.01s2
0.08s 1
试计算在单位阶跃输入时的系统输出超调量 % 和调节时间t。s
解:该闭环系统有三个极点,s1 1.5, s2,3 零4 、j9.2极点 分布如右图。
系统稳定的K的范围为: 0<K<35
例12 分析K的变化对系统的影响。设负反馈系统的开环传递函数为
K s z G(s)H(s) ss p
z p
求系统闭环根轨迹,并分析 p 2, 时z系 统4 的动态性能。

自动控制原理第四章--根轨迹法

自动控制原理第四章--根轨迹法
G(s)H(s) 1
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl

自动控制原理根轨迹法总结

自动控制原理根轨迹法总结

自动控制原理根轨迹法总结
【根轨迹法概述】
-根轨迹法是分析线性时不变系统稳定性和动态性能的一个重要工具。

它通过在复平面上绘制闭环极点随系统参数变化的轨迹来实现。

【根轨迹法的基本原理】
1. 定义与目的:
-根轨迹是系统开环增益变化时,闭环极点在s平面上的轨迹。

-主要用于分析系统稳定性和设计控制器参数。

2. 绘制原则:
-根据系统开环传递函数,确定轨迹的起点和终点,分支点,穿越虚轴的点等。

-利用角度判据和幅值判据确定根轨迹。

【根轨迹法的应用】
1. 系统稳定性分析:
-根据闭环极点的位置判断系统的稳定性。

-极点在左半平面表示系统稳定,右半平面表示不稳定。

2. 控制器设计:
-调整控制器参数(如比例增益、积分时间常数、微分时间常数等),使根轨迹满足性能指标要求。

-确定合适的开环增益,使闭环系统具有期望的动态性能和稳定裕度。

【根轨迹法的优势与局限性】
-优势:直观、便于分析系统特性,特别是在控制器设计中。

-局限性:仅适用于线性时不变系统,对于非线性或时变系统不适用。

【实践中的注意事项】
-在绘制根轨迹时,应仔细考虑系统所有极点和零点的影响。

-必须结合其他方法(如奈奎斯特法、波特法等)进行综合分析。

【结语】
-根轨迹法是自动控制领域中一种非常有效的工具,对于理解和设计复杂控制系统具有重要意义。

-掌握根轨迹法,能够有效地指导实际的控制系统设计和分析。

编制人:_____________________
日期:_____________________。

根轨迹法(自动控制原理)

根轨迹法(自动控制原理)

i1
l 1
nm
规则4:实轴上的根轨迹
➢ 实轴上的开环零点和开环极点将实轴分为若干段,对其中任一段,如果其右
边实轴上的开环零、极点总数是奇数,那么该段就一定是根轨迹的一部分。
❖ 该规则用相角条件可以证明,设实轴上有一试验点s0。 ➢ 任一对共轭开环零点或共轭极点(如p2,p3),与其对应的相角(如θ2,θ3)
第四章 根轨迹法
4.1 根轨迹的基本概念 4.2 绘制典型根轨迹 4.3 特殊根轨迹图 4.4 用MATLAB绘制根轨迹图 4.5 控制系统的根轨迹分析
内容提要
➢ 根轨迹法是一种图解法,它是根据系统的开环零 极点分布,用作图的方法简便地确定闭环系统的 特征根与系统参数的关系,进而对系统的特性进 行定性分析和定量计算。
规则3:渐近线
❖ 当n>m时,根轨迹一定有n-m支趋向无穷远;当n<m时,根轨迹一定有m-n支 来自无穷远。可以证明:
➢ 当n≠m时,根轨迹存在|n-m|支渐近线,且渐近线与实轴的夹角为:
所有渐近线交于k实轴上(2的k一n点1,)m1其8坐00标,为 k 0,1,2,,| n m | 1
n
m
pi zl
之和均为360°,也就是说任一对共轭开环零、极点不影响实轴上试验点s0的相 角条件。
➢ 对于在试验点s0左边实轴上的任一开环零、极点,与其对应的相角(如θ4,φ3) 均为0。
➢ 而试验点s0右边实轴上任一开环零、极点,与其对应的相角(如θ1,φ1,φ2) 均为180°。
所以要满足相角条件,s0右边实轴上的开环零、极点总数必须是奇数。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它不 直接求解特征方程,而用图解法来确定系统的闭环 特征根。

孙炳达版 《自动控制原理》第4章 控制系统的根轨迹分析法-5

孙炳达版 《自动控制原理》第4章 控制系统的根轨迹分析法-5

R(s)
s 1
k s 2 (s 2)
Y(s)
j
j
σ
-1/τ
σ
4.5 系统性能的根轨迹分析
系统开环传递函数:
Gk ( s) Kg s( s 2)(s 3)
Þ ¿ Î ª » ·Á ã µ ã
j¦ Ø 2 -3 -2 -1 0 ¦ Ò -2
增加零点-z
Gk ( s) K g (s z) s( s 2)(s 3)
4.5 系统性能的根轨迹分析
例 系统的结构图如下,
R(s)
K
s 2 2 s 5 ( s 2 )( s 0.5 )
Y(s)
要求: 1)用根轨迹法确定使系统稳定的K的取值范围; 2)用根轨迹法确定系统的阶跃响应不出现超调 量的K的最大值。
4.5 系统性能的根轨迹分析
解 由已知条件画出根轨迹如图, 其中根轨迹与虚轴的交点 分别为0和1.254j,对应的开环 增益K分别为0.2和0.75。 分离点为d=-0.409。 所以,系统稳定K的取值范围为:0.2<K<0.75 不出现超调量的K最大值出现在分离点处d=-0.409 处。将d代入 D( s ) ( s 2)(s 0.5)
由根轨迹图可测得该对主导极点为:
s1, 2 b jn n j 1 2 n 0.35 j 0.61
由根轨迹方程的幅值条件,可求得A、B两点:
Kg OA CA DA 2.3
根据闭环极点和的关系可求得另一闭环系统极 点s3=-4.3,它将不会使系统超调量增大,故取 Kg=2.3可满足要求。
4.5 系统性能的根轨迹分析
将零点z1<-10,系统根轨迹为 系统根轨迹仍有两条始 终位于S平面右半部, 系统仍无法稳定。

控制系统的根轨迹分析方法 自控原理 教学PPT课件

控制系统的根轨迹分析方法  自控原理 教学PPT课件

P3×
分别起始于p1, p2, p3,4,
P2
终止于无穷远。
×
-2
Im(s)
× 0 P1
Re(s)
根据规则四、实轴上存在
根轨迹是从-2到0之间。
P4×
例4-2-6
p1=0, p2= -2, p3,4= -1±j2
根据规则五、n-m=4条渐近线
与实轴交点: 渐近线相角分别为:
P3×
Im(s)
P2 ×
j5.66
×
-j5.66
例4-2-5 作
的根轨迹。
该系统 n=3 ,m=1。
有三个开环极点:
一个零点:
根据规则一、二、三: 该根轨迹有三个分支,
分别起始于p = 0(两条)和p = -12处,
有一个分支终止于z = -1,
另两个分支趋于无穷远。
× -12 -6 -4
根据规则四:
实轴上存在根轨迹是从-12到-1之间。
s1是分离点,s2是会合点。 ×
-12 -6
作完业整:的A绘-4-出7,根A轨-4-迹11,如图4-9所示。
看书p130,表4-1常规根轨迹。
●× -4 -2
图4-9
例4-2-6
分析:n=4,m=0。
根据规则一、二、三、有四个极点:
p1=0, p2= -2, p3,4= -1±j2
该根轨迹共有四个分支,
例如系统的开环零、极点分布如图。
要判断 和 之间的线段是否存
在根轨迹,取实验点
开环共轭极点和零点提供的相角 相互抵消,G(s0)的相角由实轴上的 开环零极点决定。 。
×
● ● × ××
﹣5
﹣2 ﹣1 0
处在G(s0)左边的开环零极点提供的角度 × 均为零, 相角条件由其右边的零极点决定。

自动控制原理第四章根轨迹法(管理PPT)

自动控制原理第四章根轨迹法(管理PPT)

根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。

《自动控制原理》第4章_根轨迹分析法

《自动控制原理》第4章_根轨迹分析法
一般有两个解,从中
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法
仿真与实验研究
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数

自控第四章

自控第四章

(4-7)
K 式中:
* H
为反馈通道的根轨迹增益。
* * G ( s) H ( s) K G K H
( s z ) ( s z
i 1 q i j 1 l i 1 i i 1
f
l
j
) )
(4-8)
( s p ) ( s p
j
j
K*
( s z ) ( s z
• 闭环特征方程 D(s)=1+G(s)H(s)=0 (4-11) 闭环极点就是闭环特征方程的解,也称为特征 根。 • 根轨迹方程 G(s)H(s)=-1 (4-12) 式中G(s)H(s)是系统开环传递函数,该式明确表 示出开环传递函数与闭环极点的关系。
设开环传递函数有m个零点,n个极点,并假 定n≥m,这时式(4-12)又可以写成:
最后绘制出根轨迹如图4-7所示。
图4-7
例4-3根轨迹
五、根轨迹的渐近线
渐近线与实轴正方向的夹角为
(2k 1) π a nm
渐近线与实轴相交点的坐标为
a
p z
i 1 i j 1
n
m
j
nm
例4-4 已知系统的开环传递函数
K * ( s 1) G ( s) H ( s) s ( s 4)( s 2 2 s 2)
•根轨迹法可以在已知开环零、极点时,迅速求
出开环增益(或其他参数)从零变到无穷时闭环 特征方程所有根在复平面上的分布,即根轨迹。
4-2 绘制根轨迹的基本法则 一、根轨迹的分支数
分支数=开环极点数 =开环特征方程的阶数
即为max(n,m)条。
二、根轨迹的连续性与对称性 根轨迹是连续曲线,对称于实轴

控制系统根轨迹分析法课件

控制系统根轨迹分析法课件

根轨迹的概念与分类
根轨迹定义
根轨迹是控制系统中的一种图示方法,用来表示系统的极点 与零点随系统参数变化的关系。根轨迹可以用来分析系统的 稳定性、响应速度和阻尼特性等。
根轨迹分类
根据根轨迹的性质和应用,可以将其分为常规根轨迹和广义 根轨迹。常规根轨迹通常用于分析线性时不变系统的稳定性 ,而广义根轨迹则可以用来分析更复杂的非线性、时变和离 散系统。
优化目标
通过优化控制系统的参数,使得 系统的根轨迹具有更好的分布, 从而提高系统的稳定性和性能。
优化方法
采用遗传算法、粒子群算法等优化 算法对控制系统的参数进行优化。
应用
用于优化控制系统的设计,提高控 制系统的性能和鲁棒性。
05
CHAPTER
控制系统根轨迹分析法的软 件实现
使用MATLAB进行控制系统根轨迹分析
系统的稳定性
稳定性定义
如果一个系统受到外部干扰后能够自我调节并恢复到原始状态,那么这个系统 被认为是稳定的。在控制系统中,稳定性是保证系统正常运行的重要条件。
稳定性判别方法
判断控制系统稳定性的方法有多种,包括劳斯判据、赫尔维茨判据、奈奎斯特 判据等。这些方法可以用来判断系统的稳定性,并指导设计者进行系统参数的 调整。
MATLAB软件介绍
MATLAB是一种科学计算软件,广泛应用于控制系统的设计和分析。
MATLAB在控制系统根轨迹分析中的应用
使用MATLAB的Control System Toolbox可以进行控制系统的根轨迹分析,通过调用相 关函数,可以方便地绘制根轨迹图并进行系统性能的分析。
MATLAB根轨迹分析实例
使用Simulink的Control Design Toolbox可以进行控制系统的根轨迹分析,通过搭建系统模型并设置相应的参数, 可以方便地进行根轨迹分析和系统优化。

大学自动控制原理第四章 根轨迹法

大学自动控制原理第四章 根轨迹法

0.4 0.707
arctan
1 2

arctan1

4
在图上过坐标原点作与负实轴 夹角为45°的射线,它与根轨 迹的交点S=-05±j0.5,这就是 所求的希望闭环极点。
可见,根轨迹图全面地描述了参数K对闭环特征 根分布的影响。 当系统中某一参数(一般以增益为变化参数)发生 变化时,系统闭环特征根在s平面上描绘的曲线 称系统的根轨迹。 它是一种用图解方式表示特征方程的根于系统某 一参数的全部数值关系的方法。 一般地,绘制系统根轨迹时选择的可变参量可以 是系统的任意参量。以系统根轨迹增益K为可变 参量绘制的根轨迹称为常规根轨迹。以其它参数 为变量绘制的根轨迹称为参量根轨迹。
l 1 l i 1 n i
m

1 K0
m
幅值条件
当K0→∞时,则有 K
0
lim
s z s p
l 1 l i 1 n i
lim
1 0 K 0 K 0
可见,s→∞ejυ也能满足上式,即n-m条根轨迹终 止与无穷远处。 小结:n条根轨迹起始于n个开环极点,其中m条 终止于m个开环零点,n-m条终止于无穷远处。
根的相角条件:argGs H s (2k 1) , k 0,1,2, 假设系统开环传递函数用零、极点形式表示:
K s z1 s z2 s zm G s H s ,n m s p1 s p2 s pn
K s( s 1)
C (s) K 闭环传函 2 R( S ) s s K
闭环特征方程: s2 s K 0
1 1 s 1 4K 闭环特征根:1, 2 2 2

自动控制原理根轨迹分析知识点总结

自动控制原理根轨迹分析知识点总结

自动控制原理根轨迹分析知识点总结自动控制原理是研究自动控制系统的基本理论和方法的学科,而根轨迹分析是自动控制原理中的一项重要内容。

本文将对根轨迹分析的知识点进行总结,帮助读者更好地理解和运用这一分析方法。

一、根轨迹分析的基本概念根轨迹是描述控制系统传递函数的极点随参数变化而在复平面上运动的轨迹。

通过绘制根轨迹图,可以直观地了解系统的稳定性、动态响应和频率特性等重要信息。

二、根轨迹的性质1. 根轨迹图是在复平面上绘制的闭合曲线,其中包含了系统的所有极点。

2. 根轨迹出发点(即开环传递函数极点)的数量等于根轨迹终止点(即闭环传递函数极点)的数量。

3. 根轨迹关于实轴对称,即系统的实部极点只存在于实轴的左半平面或右半平面上。

4. 根轨迹通过传递函数零点的个数和位置来确定。

三、根轨迹的画法1. 确定系统的开环传递函数。

2. 根据传递函数的表达式,求得系统的特征方程。

3. 计算特征方程的根,即极点的位置。

4. 绘制根轨迹图,显示系统极点随参数变化的轨迹。

四、根轨迹的稳定性分析1. 若根轨迹通过左半平面(实部为负)的点的个数为奇数,则系统是不稳定的。

2. 若根轨迹通过左半平面的点的个数为偶数,则系统是稳定的。

五、根轨迹的频率特性分析1. 根轨迹的形状和分布可以判断系统的阻尼比、振荡频率和衰减时间等性能指标。

2. 根轨迹与系统的频率响应曲线之间存在一一对应的关系。

六、根轨迹的应用1. 根据根轨迹可以设计和优化控制系统的参数,使系统具有所需的动态性能。

2. 利用根轨迹可以直观地观察到系统的稳定性和动态响应,便于故障诊断和故障排除。

七、根轨迹分析的注意事项1. 在绘制根轨迹图时,应注意传递函数的极点和零点的位置,以及参数的范围。

2. 在分析根轨迹时,应考虑系统的稳定性、动态响应和频率特性等综合因素。

以上就是自动控制原理根轨迹分析的知识点总结。

根轨迹分析作为自动控制原理中的一项重要内容,对于理解和设计控制系统具有重要意义。

控制系统的根轨迹法分析

控制系统的根轨迹法分析

可得
s2 20s 50 0
解得
s1,2 10 5 2
因此,分离点为-2.93,会合点为-17.07。
分离角和会合角分别 为 , 90 根轨迹为圆,如下图所示。
(2)当 2 时,阻尼角
2Hale Waihona Puke 45,表示 45角的直线为OB,其方程为

代入特征方程整理后得
(5 k) 10k j(2 2 5 k ) 0
解:(1)起点:有三个开环极点,所以起点为
p1 0, p2 2 j2 3, p3 2 j2 3
(2)终点:因没有有限零点,所以三条根轨迹都将趋于无穷远。
(3)实轴上的根轨迹:根轨迹存在的区间为(-∞,0]。
(4
(5
①渐近线的倾角:根据渐近线计算公式得
φα
180 (1 2μ) 2
60 ,60 ,180
例:单位反馈控制系统的开环传递函数为
K
G (s)
K
s(s 4)(s 6)
若要求闭环系统单位阶跃响应的最大超调量
σ%≤18%,试确定系统的开环增益。
解:绘出 K由零变化到∞时系统的根轨迹如图所示。当K=17时,根轨迹在实轴
上有分离点。当K≥240时,闭环极点是不稳定的。根据σ%≤18 %的要求,求得阻尼 角应为β≤60°,在根轨迹图上作β=60 °的射线,并以此直线和根轨迹的交点A , B作为满足性能指标要求的闭环系统主导极点,即闭环系统主导极点为
闭环系统的极点为
s 2 1
1, 2
n
n
图中阻尼角β与阻尼比ζ的关 系为
cos1
根据根轨迹我们可以确定系统工作在根轨迹上任一点时所对应的ζ,ωn 值,再根据暂态指标的计算公式
% 12 100%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s2 s 2
1
s
2 s 2 ks 1
s2 s 2
18
4.5 控制系统的根轨迹分析法
由此可知,系统A是一单位反馈系统,前向通路的传递函数
为:ks 1 s 2 s 2
。系统B的前向通路传递函数为:
s2
k
s
2
,反馈通路
传递函数为:s 1 。由于系统A和B有相同的被控对象,因此,
系统的A的前向通路传递函数可写为:s
kg
23
s(s 1)(s 2)(s 3)
4.5 控制系统的根轨迹分析法
2、增加零点: 若在开环传递函数中增加一个零点,则原根轨迹向 左移动。从而增加系统的稳定性,减小系统响应的调整时间。
Gk
(s)
s2 s(s 1)
24
Gk (s)
(s
2 j1)(s 2 s(s 1)
j1)
4.5 控制系统的根轨迹分析法
递函数和闭环特征方程式也完全相同。由上页图可知系统A和B
的开环传递函数为:
Gs
ks 1 s2 s 2
特征方程为:Ds s2 s 2 ks 1
②系统A和B的闭环传递函数分别为:
A s
ks 1 Ds
s 2 s
ks 1 2 ks
1
B
s
k
Ds
s2 s
k
2
ks
1
ks 1
k
1
s
2 s 2 ks 1
另外可以根据
Kg
D(s) N (s)
求实轴分离点的近似值。
求出[-4,0]之间的增益如下表所示
s 0 -0.5 -1 -1.5 -2.0 -2.5 -3 -3.5 -4
K gd 0
1.628 3
5.971 8.80 9.375 7.457 3.949 0
Kgd的最大值为9.375,这时s=-2.5,是近似分离点。
4)2
⒉能否通过选择Kg满足最大超调量δ%≤5%的要求? ⒊能否通过选择Kg满足调节时间ts≤2秒的要求? ⒋能否通过选择Kg满足位置误差系数Kp≥10的要求? 解:⒈画根轨迹
①实轴无根轨迹
②渐近线 2.5,=±45°, ±135°
③与虚轴交点=±2,Kgp=100
13
4.5 控制系统的根轨迹分析法 4 3 2 1 0 -1 -2 -3 -4 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
14
4.5 控制系统的根轨迹分析法
⒉能否通过选择Kg满足最大超调量δ%≤5%的要求?
当取阻尼角为45°的主导极点时, δ%≤5%的要求。 由根轨迹可见阻尼角为45°的线与根轨迹相交,可求得主 导极点为s=-0.8+0.8j,另一对极点为s=-4.2+0.8j 相差5.25倍,满足主导极点的要求。 ⒊能否通过选择Kg满足调节时间ts≤2秒的要求? 要求ts≤2秒,即要求3/ 2, .5。由根轨迹可知主导极点 的实部 ,所以不能通过选择Kg满足ts≤2秒的要求。
五、用Matlab绘制根轨迹 Matlab参考书推荐: 现代控制工程,[美]Katsuhiko Ogats,卢伯英译, 电子工业出版社 MATLAB控制系统设计,欧阳黎明著, 国防工业出版社
25
4.5 控制系统的根轨迹分析法
[例子]系统的开环传递函数为:Gk (s) Matlab画出系统的根轨迹。
3 2
1
6
4
0
设A点坐标为: j ,则:
tg60 3
(1)
相角条件为:1 2 3
120 tg1 tg1
4
6
(2)
4.5 控制系统的根轨迹分析法
由(1),(2)式解得: 1.2, 2.1 共轭主导极点为:s1,2 1.2 j2.1 。
也可令 s x 3xj 代入特征方程 s3 10s2 24s Kg 0
三、利用根轨迹求解代数方程的根
例 求如下代数方程的根
s3 3s2 4s 20 0
解:为了将此题作为一个根轨迹问题来考虑,应将上式变换成 根轨迹方程的形式。因式中无根轨迹增益,变换结果不唯一。
1
4s 20 s3 3s2
0
1
Kg (s 5) s3 3s2
0
(Kg 4)
1
s3
20 3s2
ts
3
n
3
(为极点实部 )
n
j 1 2n
%和 的关系如下图
100
80
60 δ%
40
20
若闭环极点落在下图中红线包围
的区域中,有:
% ectg 和ts
3
0
0
30 60 90
β
9
4.5 控制系统的根轨迹分析法
[例4-12]单位反馈系统的开环传递函数为:Gk
(s)
s(s
Kg 4)( s
6)
⒋能否通过选择Kg满足位置误差系数Kp≥10的要求?
Kp
lim
s0
Gk
(s)
K gp 16
6.25
所以不能通过选择Kg满足Kp≥10的要求。
15
4.5 控制系统的根轨迹分析法
问题 ⒈增加开环零点改变根轨迹,因而改变闭环极点。那么是 否改变闭环零点? ⒉当两个系统的根轨迹相同并选择相同的闭环极点时,这 两个系统的瞬态响应是否一样?
一、 条件稳定系统的分析
[例4-11]:设开环系统传递函数为:Gk
(s)
s(s
Kg(s2 2s 4)(s 6)(s2
4) 1.4s
1)
试绘制根轨迹,并讨论使闭环系统稳定时Kg 的取值范围。
[解]根据绘制根轨迹的步骤,可得:
➢ 开环极点:0,-4,-6,-0.7±j0.714,零点:-1±j1.732
16
4.5 控制系统的根轨迹分析法
[例4-15]:设系统A和B有相同的被控对象,且有相同的根轨迹, 如下图所示。已知系统A有一个闭环零点,系统B没有闭环零点。 试求系统A和B的开环传递函数和它们所对应的闭环方块图。
17
4.5 控制系统的根轨迹分析法
[解]:①由于两系统的根轨迹完全相同,因而它们对应的开环传
4s
0
1
s3
Kg 3s2
4s
0
(Kg 20)
20
4.5 控制系统的根轨迹分析法
8
8
8
7
7
7
6
6
6
5
5
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
-1
-1
-1
-2
-2
-2
-3
-3
-3
-4
-4
-4
-5
-5
-5
-6
-6
-6
-7
-7
-7
-8
-8
-8
-6 -5 -4 -3 -2 -1 0 1 2 -6 -5 -4 -3 -2 -1 0 1 2 -6 -5 -4 -3 -2 -1 0 1 2
分离角:
d
2
4
4.5 控制系统的根轨迹分析法
➢ 出射角:c 55,
➢入射角:r 103
➢ 与虚轴的交点和
对应的增益值:
1.213
2.151
3.755
15.6
kgp
67.5
168.6
画出根轨迹如图所示,该图是用
Matlab工具绘制的。
由图可知:当 0 Kg 15.6 和 67.5 Kg 168 .6 时,系统是 稳定的; 当 Kg 168 .6和15.6 Kg 67.5
条件稳定系统:参数在一定的范围内取值才能使系统稳定,这 样的系统叫做条件稳定系统。
下面的系统就是条件稳定系统的例子: ❖ 开环非最小相位系统,其闭环系统的根轨迹必然有一部分在s 的右半平面; ❖ 具有正反馈的环节。 条件稳定系统的工作性能往往不能令人满意。在工程实际上, 应注意参数的选择或通过适当的校正方法消除条件稳定问题。
实部方程 虚部方程
8x3 20x2 24x Kg
20 3x2 24 3x 0
m
0解得:x 1.2,s Kg 43.776
1.2 2.1 j
K (is 1)
开环传递函数以Gk (s)
i 1 n
的形式表示时,K称为开环放
大系数。
(Tjs 1)
j 1
显然K与Kg的关系为:K Kg
4.5 控制系统的根轨迹分析法
二、瞬态性能分析和开环系统参数的确定
利用根轨迹可以清楚的看到开环根轨迹增益或其他开环系
统参数变化时,闭环系统极点位置及其瞬态性能的改变情况。
以二阶系统为例:开环传递函数为Gk
闭环传递函数为(s)
s2
n2 2 n s
n2
(s)
s(s
n2 2n )
共轭极点为:s1,2 n j 1 2n 在s平面上的分布如右图: 闭环极点的张角 为:
1 s(s 1)(s 2)
,试利用
[解]打开Matlab,创建一个m文件,输入下列程序片段: num=[0 0 0 1];%开环传递函数分子系数,降幂排列
den=[1 3 2 0]; %开环传递函数分母系数,降幂排列
r=rlocus(num,den);
执行之,可得到根轨迹。
zi,式中 p j不计为0极点。 pj
所以,开环放大系数:K 43.776 1.824
46
由于闭环极点之和等于开环极点之和,所以另一个闭环极点
为: s3 7.6 。该极点是共轭复极点实部的6倍多。
12
4.5 控制系统的根轨迹分析法
例:单位反馈系统的开环传递函数为
相关文档
最新文档