全国高中数学联赛试题及解答
历年全国高中数学联赛试题及答案76套题
历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。
为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。
请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。
解:由题意得,房子在四周建墙,所以共4个墙面。
墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。
因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。
用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。
因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。
当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。
当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。
所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。
因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。
2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。
求$\sum_{k=1}^{2019}s_k$的个位数。
全国高中数学联赛甘肃省预赛试题及参考答案
全国高中数学联赛甘肃省预赛试题一.填空题(本题满分56分,每小题7分)1.已知集合{|(2)(6)3,,07}A x x x x Z x =--≥∈≤≤,则A 的非空子集的个数为.2. 若()()sin2f g x x =,()tan (0)2xg x x π=<<,则2f ⎛= ⎝⎭.3. 若底边长为2的正四棱锥恰内切一半径为12的球,则此正四棱锥的体积是 . 4. 在平面直角坐标系中,已知点(1,2)A 和(4,1)B . 圆2225x y +=上的动点(,)P x y 与,A B 形成三角形,则三角形ABP 的面积的最大值为 .5.将正整数1,2,3,4,5,6,7任意分成两组,使每组至少有一个数,则第一组数的和与第二 组数的和相等的概率是 .6. 数列满足410=a ,及对于自然数n ,n n n a a a +=+21,则∑=+2011011n na 的整数部分是 .7. 四次多项式)(x f 的四个实根构成公差为2的等差数列,则()f x '的所有根中最大根与最小根之差是 .8.设][x 表示不超过实数的最大整数,则在平面上,由满足50][][22=+y x 的点所形成的图形的面积是 .二.解答题 (本题满分64分, 第9、10题每题14分,第11、12题每题18分)9. 已知正项数列{}n a 满足:(1)12012a =;(2)23,a a 是整数;(3)数列2{}n na n -是公比不大于10的等比数列. 求数列{}n a 的通项公式.10. 已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上, 若12PF F ∆的面积是,求12F PF ∠.11. 设1a ,2a ,…, n a 为正数,且121n a a a +++=,求证:()2222212121111()()()n nn a a a a a a n+++++++≥.12.设11n ≥是一正整数,由不大于n 的连续10个正整数的和组成集合A ,由不大于n 的连续11个正整数的和组成集合B 。
全国高中数学联赛江苏赛区初赛试卷(含答案)
全国高中数学联赛江苏赛区初赛试卷(含答案)全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分,要求直接将答案写在横线上。
)1.已知点P(4,1)在函数$f(x)=\log_a(x-b)$($b>0$)的图像上,则$ab$的最大值是______。
解:由题意知,$\log_a(4-b)=1$,即$a+b=4$,且$a>0$,$a\neq 1$,$b>0$,从而$ab\leq 4$。
当$a=b=2$时,$ab$的最大值是4.2.函数$f(x)=3\sin(2x-\frac{\pi}{4})$在$x=\frac{3\pi}{4}$处的值是______。
解:$2x-\frac{\pi}{4}=\frac{3\pi}{4}$,所以$f(\frac{3\pi}{4})=3\sin(\frac{3\pi}{4}-\frac{\pi}{4})=-\frac{3}{\sqrt{2}}$。
3.若不等式$|ax+1|\leq 3$的解集为$\{x|-2\leq x\leq 1\}$,则实数$a$的值是______。
解:设函数$f(x)=|ax+1|$,则$f(-2)=f(1)=3$,故$a=2$。
4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是______。
解:有两类情况:同为白球的概率是$\frac{3}{25}\times\frac{10}{25}=\frac{6}{125}$,同为红球的概率是$\frac{7}{25}\times\frac{6}{25}=\frac{42}{625}$,所求的概率是$\frac{6}{125}+\frac{42}{625}=\frac{72}{625}$。
5.在平面直角坐标系$xOy$中,设焦距为$2c$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$)与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$有相同离心率$e$,则$e$的值是______。
解析版-2024年全国高中数学联赛福建赛区预赛试卷
2024 年全国高中数学联赛福建赛区预赛 暨 2024 年福建省高中数学竞赛试卷参考答案(考试时间: 2024 年 6 月 22 日上午 9:00-11:30, 满分 160 分)一、填空题 (共 10 小题, 每小题 6 分, 满分 60 分. 请直接将答案写在题中的横线上) 1. 在 △ABC 中,已知 AB =4,BC =2,AC =2√3 ,若动点 P 满足 |CP⃗⃗⃗⃗⃗ |=1 ,则 AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 . 【答案】 5【解答】取 AB 中点 O ,则AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =14[(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ )2−(PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )2]=14[(2PO ⃗⃗⃗⃗⃗ )2−BA⃗⃗⃗⃗⃗ 2]=PO ⃗⃗⃗⃗⃗ 2−14×42=PO ⃗⃗⃗⃗⃗ 2−4由 AB =4,BC =2,AC =2√3 ,知 AB 2=CA 2+CB 2 ,于是 CA ⊥CB . 所以 CO =12AB =2 .又 |CP⃗⃗⃗⃗⃗ |=1 ,所以 |PO ⃗⃗⃗⃗⃗ | 的最大值为 CO +1=3 . 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 32−4=5 . 2. 已知 z 1,z 2,z 3 为方程 z 3=−i 的三个不同的复数根,则 z 1z 2+z 2z 3+z 3z 1= . 【答案】 0【解答】设 z =x +yi (x,y ∈R ) 为方程 z 3=−i 的复数根, 则 z 3=(x +yi )3=x 3+3x 2(yi )+3x (yi )2+(yi )3=−i . 即 x 3+3x 2yi −3xy 2−y 3i =−i,x 3−3xy 2+(3x 2y −y 3)i =−i . 由 x,y ∈R ,得 {x 3−3xy 2=03x 2y −y 3=−1,解得 {x 1=0y 1=1 , {x 2=√32y 2=−12,{x 3=−√32y 3=−12.于是 z 1=i, z 2=√32−12i, z 3=−√32−12i . 所以 z 2+z 3=(√32−12i)+(−√32−12i)=−i ,z 2z 3=(√32−12i)(−√32−12i)=(−12i)2−(√32)2=−14−34=−1.因此 z 1z 2+z 2z 3+z 3z 1=z 1(z 2+z 3)+z 2z 3=i ×(−i )−1=0 .3. 设a=66⋯6⏟10个6,b=33⋯3⏟6个3,则a,b的最大公约数为 .【答案】 33【解答】用(x,y)表示正整数x,y的最大公约数.则(a,b)=(66⋯6⏟10个6,33⋯3⏟6个3)=(33⋯3⏟10个3,33⋯3⏟6个3)=3(11⋯1⏟10个1,11⋯1⏟6个1) .设m=11⋯1⏟10个1, n=11⋯1⏟6个1,则由m=11⋯1⏟10个1=104×11⋯1⏟6个1+1111 ,可知(m,n)=(1111,11⋯1⏟6个1) .同理可得, (m,n)=(1111,11⋯1⏟6↑1)=(11,1111)=(11,11)=11 .所以(a,b)=3(m,n)=33 .4. 某校三个年级举办乒乓球比赛, 每个年级选派 4 名选手参加比赛. 组委会随机将这 12 名选手分成 6 组, 每组 2 人, 则在上述分组方式中每组的 2 人均来自不同年级的概率为 .【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有: C122C102C82C62C42C22A66=11×9×7×5×3×1种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有C42×C42×A44=36×24种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有2×1种.所以每组的 2 人均来自不同年级的分组方式有36×24×2种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5. 如图,在棱长为 6 的正方体ABCD−A1B1C1D1中,点E,F分别为 AB,BC 的中点,点 G 在棱 CC 1 上. 若平面 EFG 与底面 ABCD 所成角的余弦值为 3√1717,则平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得截面多边形的周长为 . 【答案】 6√13+3√2【解答】如图,以 D 为原点,射线 DA,DC,DD 1 分别为 x 轴, y 轴,(第 5 题图) z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E (6,3,0),F (3,6,0) . 设 G (0,6,t ) ,则 EF ⃗⃗⃗⃗⃗ =(−3,3,0) , EG ⃗⃗⃗⃗⃗ =(−6,3,t ) . 设 m ⃗⃗ =(x,y,z ) 为平面 EFG 的一个法向量,则{m ⃗⃗ ⋅EF⃗⃗⃗⃗⃗ =−3x +3y +0=0m ⃗⃗ ⋅EG⃗⃗⃗⃗⃗ =−6x +3y +tz =0 ,于是 m ⃗⃗ =(t,t,3) 为平面 EFG 的一个法向量.又 n ⃗ =(0,0,1) 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为 3√1717, 所以 |cos⟨m ⃗⃗ ,n ⃗ ⟩|=|m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ ||=√2t 2+9⋅1=3√1717. 结合 t >0 ,解得 t =2 . 所以 G (0,6,2),CG =2 .延长 EF 交直线 DC 于点 M ,由 E,F 分别为 AB,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 . 由 CG DD 1=26=39=MCMD 知, M,G,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得的截面多边形. 易知 EF =√32+32=3√2,FG =√32+22=√13,GD 1=√42+62=2√13 ,D 1P =√62+42=2√13, PE =√22+32=√13.所以截面五边形的周长为 6√13+3√2 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF,∠GHC 为二面角 G −EF −D 的平面角,于是 tan∠GHC =CGCH =3√22=2√23,因此 CG =2 。
全国高中数学联合竞赛一试试题及参考答案
全国高中数学联合竞赛一试试题及参考答案20XX年全国高中数学联合竞赛一试试卷(考试时间:上午8:00―9:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P ABCD中,∠APC=60°,则二面角A PB C的平面角的余弦值为() A. 2. 设实数a使得不等式|2x a|+|3x 2a|≥a2对任意实数x恒成立,则满足条件的a所组成的集合是()A. [ ,] 1 7B. 1 7C. 1 2D. 1 21133B. [ 11,] 22C. [ 11,] 43D. [ 3,3]3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b。
则使不等式a 2b+100成立的事件发生的概率等于()A. 52 81B. 59 81C. 60 81D. 61 814. 设函数f(x)=3sinx+2cosx+1。
若实数a、b、c使得af(x)+bf(xc)=1对任意实数x恒成立,bcosc的值等于()a11A. B. 22则C. 1 D. 15. 设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()6. 已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集。
若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为()A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A( 3,0),B(1,1),C(0,3),D( 1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值为__________。
8. 在△ABC和△AEF中,B是EF的中点,AB=EF=1,BC=6,CA 33,若AB AE AC AF 2,则EF与BC的夹角的余弦值等于________。
全国高中数学联赛省级预赛模拟试题
全国高中数学联赛省级预赛模拟试题第Ⅰ卷(选择题 共60分)参考公式1.三角函数的积化和差公式sinα•cosβ=[sin(α+β)+sin(α-β)],cosα•sinβ=[sin(α+β)-sin(α-β)],cosα•cosβ=[cos(α+β)+cos(α-β)],sinα•sinβ=[cos(α+β)-cos(α-β)].2.球的体积公式V球=πR3(R为球的半径)。
一、选择题(每小题5分,共60分)1.设在xOy平面上,0<y≤x2,0≤x≤1所围成图形的面积为。
则集合M={(x,y)|x≤|y|}, N={(x,y)|x≥y2|的交集M∩N所表示的图形面积为A. B. C.1 D.2.在四面体ABCD中,设AB=1,CD=,直线AB与直线CD的距离为2,夹角为。
则四面体ABCD的体积等于A. B. C. D.3.有10个不同的球,其中,2个红球、5个黄球、3个白球。
若取到一个红球得5分,取到一个白球得2分,取到一个黄球得1分,那么,从中取出5个球,使得总分大于10分且小于15分的取法种数为A.90 B.100 C.110 D.1204.在ΔABC中,若(sinA+sinB)(cosA+cosB)=2sinC,则A.ΔABC是等腰三角形,但不一定是直角三角形B.ΔABC是直角三角形,但不一定是等腰三角形C.ΔABC既不是等腰三角形,也不是直角三角形D.ΔABC既是等腰三角形,也是直角三角形5.已知f(x)=3x2-x+4, f(g(x))=3x4+18x3+50x2+69x+48.那么,整系数多项式函数g(x)的各项系数和为A.8 B.9 C.10 D.116.设0<x<1, a,b为正常数。
则的最小值是A.4ab B.(a+b)2 C.(a-b)2 D.2(a2+b2)7.设a,b>0,且a2008+b2008=a2006+b2006。
则a2+b2的最大值是A.1 B.2 C.2006 D.20088.如图1所示,设P为ΔABC所在平面内一点,并且AP=AB+AC。
《全国高中数学联赛真题暨答案(2011-202
−−→ AF1
·
−−→ AF2
+
−−→ BF1
·
−−→ BF2
=
0,
则
|AB| |F1F2|
的值为
.
3.
设a
>
0,函数 f (x)
=
x+
100 x
在区间 (0, a] 上的最小值为 m1,在区间 [a, +∞) 上的
最小值为 m2,若 m1m2 = 2020,则 a 的值为 .
4.
设z
为复数,若
z−2 z−i
为实数(i 为虚数单位),则 |z + 3| 的最小值为
.
5. 在 △ABC 中,AB = 6,BC = 4,边 AC 上的中线长为 √10,则 sin6 A + P − ABC 的所有棱长均为 1,L, M, N 分别为棱 P A, P B, P C 的中点,则该 正三棱锥的外接球被平面 LM N 所截的截面面积为 .
2011 年全国高中数学联赛二试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2020 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 72 2020 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 78 2020 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 84 2020 年全国高中数学联赛二试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 89 2019 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 93 2019 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 97 2019 年全国高中数学联赛一试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 101 2019 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 105 2018 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 109 2018 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 114 2018 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 118 2018 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 122 2017 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 125 2017 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 133 2017 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 141 2017 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 147 2016 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 2016 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2015 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2015 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2014 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2014 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 2013 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2013 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2012 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2012 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2011 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2011 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
2023_年全国高中数学联赛(四川预赛)试题及解析
2023年全国高中数学联赛(四川预赛)试题及解析张㊀君(四川省温江中学ꎬ四川成都611130)摘㊀要:文章给出2023年全国高中数学联赛(四川预赛)试题及解析ꎬ部分试题给出一题多解ꎬ解答题给出了有别于参考答案的精彩解法.关键词:高中数学联赛ꎻ四川预赛ꎻ数学竞赛试题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)28-0088-05收稿日期:2023-07-05作者简介:张君(1978.10-)ꎬ男ꎬ四川省宣汉人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2023年全国高中数学联赛(四川预赛)试题ꎬ全卷共11道题(满分120分)ꎬ其中8道填空题(每小题8分)ꎬ3道解答题(第9题16分ꎬ第11㊁12题各20分).笔者参考2022年四川预赛试题及其解析[1]ꎬ对2023年四川预赛每道题都进行了分析和研究ꎬ逐个给出解析.1试题内容简析该试题涉及函数性质(第1题)ꎬ平面向量(第2题)ꎬ二项式定理(第3题)ꎬ函数与导数(第4题)ꎬ数论(第5题)ꎬ立体几何(第6题)ꎬ平面解析几何(第9题)ꎬ三角函数与三角变换(第7ꎬ8题)ꎬ函数与数列(第5ꎬ10题)ꎬ函数与不等式(第8ꎬ11题).2试题及其解析题1㊀已知f(x)是定义在R上的函数ꎬ且对任意实数xꎬ均有2f(x)+fx2-1()=1ꎬ则f(2)的值为.解析㊀令x=1ꎬ得2f(1)+f0()=1.①令x=-1ꎬ得2f(-1)+f0()=1.②令x=0ꎬ得2f(0)+f-1()=1.③由①②③解得f(1)=13.令x=2ꎬ得2f(2)+f1()=1.解得f(2)=13.题2㊀设平面向量aꎬb满足:|a|=1ꎬ|b|=2ꎬaʅb.点OꎬAꎬB为平面上的三点ꎬ满足OAң=2a+bꎬOBң=-3a+2bꎬ则ΔAOB的面积为.解析㊀由aʅb建立以O为原点ꎬ分别以向量aꎬb的方向为正方向建立平面直角坐标系ꎬ因为|a|=1ꎬ|b|=2ꎬ所以a=(1ꎬ0)ꎬb=(0ꎬ2).所以OAң=2a+b=(2ꎬ2)ꎬOBң=-3a+2ba=(-3ꎬ4).即A(2ꎬ2)ꎬB(-3ꎬ4).从而求得SΔAOB=7.题3㊀在(-xy+2x+3y-6)6的展开式中ꎬx4y3的系数为.(用具体数字作答)解析㊀因为(-xy+2x+3y-6)6=(y-2)6(x+3)6ꎬ所以x4y3的系数为C36(-2)3 C26 32=-21600.题4㊀设P(0ꎬa)是y轴上异于原点的任意一点ꎬ过点P且平行于x轴的直线与曲线y=1alnx交于点Qꎬ曲线y=1alnx在点Q处的切线交y轴于点Rꎬ则ΔPQR的面积的最小值为.解析㊀由题意知ꎬa=1alnxꎬ解得x=ea2.所以Q(ea2ꎬa).因为yᶄ=1axꎬ所以切线RQ的方程为y-a=1aea2(x-ea2).令x=0ꎬ得R(0ꎬa-1a).所以SΔPRQ=12PQ PR=12aea2.令f(a)=12aea2(a>0)ꎬ所以fᶄ(a)=12ea2(2-a-2).当aɪ0ꎬ22æèçöø÷时ꎬfᶄ(a)<0ꎬf(a)单调递减ꎻ当aɪ22ꎬ+ɕæèçöø÷时ꎬfᶄ(a)>0ꎬf(a)单调递增[2].㊀所以f(a)min=f(22)=2e2.题5㊀㊀设集合I={0ꎬ1ꎬ2ꎬ ꎬ22}ꎬA={(aꎬbꎬcꎬd)|aꎬbꎬcꎬdɪIꎬa+dʉ1(mod23)ꎬ且ad-bcʉ0(mod23)}ꎬ则集合A中元素的个数为.解析㊀若aꎬd中有0ꎬ由于a+dʉ1(mod23)ꎬ则aꎬd()有0ꎬ1()和1ꎬ0()两种情况.此时ad=0ꎬ且ad-bcʉ0(mod23)ꎬ则bꎬc中有0ꎬbꎬc()有45种情况.所以ꎬ此类共有2ˑ45=90种情况.若aꎬd中无0ꎬ由于a+dʉ1(mod23)ꎬ则aꎬd()有2ꎬ22()ꎬ3ꎬ21()ꎬ ꎬ22ꎬ2()共21种情况.因为ad-bcʉ0(mod23)ꎬ注意到km(kꎬmɪ1ꎬ2ꎬ ꎬ22{})对每一个确定的kꎬkm(mɪ1ꎬ2ꎬ ꎬ22{})的每两个值对于mod23不同余ꎬ即与1ꎬ2ꎬ ꎬ22关于mod23同余的值各有一个ꎬ则km(kꎬmɪ1ꎬ2ꎬ ꎬ22{})的值与1ꎬ2ꎬ ꎬ22关于mod23同余的各有22个.则对于每一个aꎬd()ꎬbꎬc()有22种情况.故此类共有21ˑ22=462种情况.㊀所以ꎬ集合A中元素的个数为90+462=552.题6㊀在直三棱柱ABC-A1B1C1中ꎬAB=1ꎬBC=CC1=3ꎬøABC=90ʎꎬ点P是平面ABC上一动点ꎬ则A1P+12PC的最小值为.解析㊀易知ꎬ点P在线段AC上时ꎬA1P+12PC才可能最小.由已知可求得AC=2ꎬAA1=3.设øAA1P=αꎬ则αɪ0ꎬarctan23æèçöø÷ꎬA1P=3cosαꎬAP=3tanα.则A1P+12PC=3cosα+2-3tanα2=1+32-sinα()2cosα.设t=2-sinαcosαꎬ则tcosα+sinα=2.于是t2+1ȡ2ꎬtȡ3.则A1P+12PCȡ52.当t=3时ꎬ3cosα+sinα=2ꎬ则sinα+π3æèçöø÷=1ꎬ解得α=π6.故当α=π6时ꎬA1P+12PC取最小值52.题7㊀如图1ꎬ将函数y=cosx+1(0ɤxɤ2π)的图象Γ画在矩形OABC内ꎬ将AB与OC重合围成一个圆柱ꎬ则曲线Γ在圆柱表面形成的曲线的离心率为.解析㊀如图2ꎬ设图1中OAꎬCB的中点分别为EꎬDꎬ则围成圆柱后AEꎬBD分别为上㊁下底面的直径ꎬ易知AE=2.设AE的中点为GꎬP为曲线上一点ꎬ作PQʅ底面ꎬ垂足为点QꎬQMʅAE于点MꎬMNʊAB交BE于点N.㊀图1㊀函数y=cosx+1图象㊀㊀㊀㊀㊀图2㊀圆柱设AQ(=xꎬ则PQ=1+cosxꎬøAGQ=xꎬøAEQ=x2.所以EQ=AEcosøAEQ=2cosx2ꎬME=QEcosøAEQ=2cos2x2.易知әNME为等腰直角三角形ꎬ则MN=ME=2cos2x2=1+cosx.所以PQ=NMꎬ则四边形PQMN为矩形.所以PNʅNMꎬ则PNʅ平面ABDEꎬ于是点P在平面ABDE内的投影为点N.所以曲线在平面ABDE内的投影为线段BEꎬ于是曲线为过直线BE且垂直于平面ABDE的平面截圆柱侧面所得曲线[3].该曲线为椭圆ꎬ长轴为BE=22ꎬ短轴长等于底面直径2ꎬ所以离心率为22.题8㊀设AꎬBꎬC是ΔABC的三个内角ꎬ则3cosA+2cos2B+cos3C的取值范围为.解析㊀设M=3cosA+2cos2B+cos3C.易知M<6ꎬ当Aң0ꎬBңπꎬCң0时ꎬMң6.当Cң0时ꎬM=-3cosB+C()+2cos2B+cos3Cң-3cosB+2cos2B+1ꎬ又-3cosB+2cos2B+1=4cos2B-3cosB-1=4cosB-38æèçöø÷2-2516ꎬ所以ꎬ当Cң0ꎬB=arccos38πꎬAңπ-arccos38时ꎬMң-2516.下面证明M>-2516.当Aɤπ3时ꎬMȡ3cosπ3-3=-32>-2516.当A>π3时ꎬ0<B<2π3ꎬ0<C<2π3ꎬ0<B+C<2π3.此时ꎬA不是AꎬBꎬC中最小的.(1)若C最小ꎬ则C<AꎬCɤB.此时cosA+cosB-cosC+cos2Cȡ0ꎬ证明如下:cosA+cosB-cosC+cos2C=-cosB+C()-cosC+cosB+cos2C=-2cosB+2C2cosB2+2cosB+2C2cosB-2C2=4cosB+2C2sinB-C2sinC2.因为B+2C2ꎬB-C2ꎬC2ɪ0ꎬπ2[öø÷ꎬ所以cosA+cosB-cosC+cos2Cȡ0成立.所以3cosA+2cos2B+cos3Cȡ3-cosB+cosC-cos2C()+2cos2B+cos3C=-3cosB+2cos2B+3cosC-3cos2C+cos3C=4cos2B-3cosB+4cos3C-6cos2C+1=4cosB-38æèçöø÷2+2cosC-1()22cosC+1()-2516.因为0<C<2π3ꎬ-12<cosC<1ꎬ所以3cosA+2cos2B+cos3C>-2516.(2)若B最小ꎬ则BɤCꎬB<Aꎬ3B+C2ɪ0ꎬπ()ꎬC-B2ɪ0ꎬπ2[öø÷.于是cosA+cos2B=-cosB+C()+cos2B=2sin3B+C2sinC-B2ȡ0ꎮ所以3cosA+2cos2B+cos3CȡcosA+cos3C=-cosB+C()+cos3C>-cosC+cos3C=4cos3C-4cosC.设t=cosCꎬ由于0<C<2π3ꎬ-12<cosC<1ꎬ则-12<t<1.令4cos3C-4cosC=4t3-4t=ft()ꎬ则fᶄt()=12t2-4=43t2-1()ꎬ则ft()的极值点为ʃ13.则ft()在-12ꎬ-13æèçöø÷上单调递增ꎬ在-13ꎬ13æèçöø÷上单调递减ꎬ在13ꎬ1æèçöø÷上单调递增.计算知f-12æèçöø÷=32>-2516ꎬf13æèçöø÷=-833>-2516ꎬ所以ft()>-2516.所以3cosA+2cos2B+cos3C>-2516.综上所述ꎬ3cosA+2cos2B+cos3C的取值范围是-2516ꎬ6æèçöø÷.题9㊀已知抛物线Γ的顶点是原点Oꎬ焦点是F(0ꎬ1).过直线y=-2上任意一点A作抛物线Γ的两条切线ꎬ切点分别为PꎬQꎬ求证:(1)直线PQ过定点ꎻ(2)øPFQ=2øPAQ.证明㊀(1)易得拋物线Γ的方程为x2=4y.设点A(tꎬ-2)ꎬPx1ꎬy1()ꎬQx2ꎬy2()ꎬ则过点P的抛物线Γ的切线l1的方程为y-y1=x12x-x1().即x1x-2y-2y1=0.同理ꎬ过点Q的抛物线Γ的切线l2的方程为x2x-2y-2y2=0.由l1ꎬl2过点Aꎬ可得x1t+4-2y1=0ꎬx2t+4-2y2=0ꎬ这表明ꎬ点Px1ꎬy1()ꎬQx2ꎬy2()的坐标满足方程tx-2y+4=0.所以直线PQ的方程为tx-2y+4=0.所以易得直线PQ过定点(0ꎬ2).(2)不妨设点P在点Q的左边ꎬ则x1<x2.因为tanøPAQ=x1/2-x2/21+(x1/2) (x2/2)=2x1-x2()x1x2+4ꎬ所以tan2øPAQ=2tanøPAQ1-tan2øPAQ=4x1-x2()/x1x2+4()1-4x1-x2()2/x1x2+4()2=4x1-x2()x1x2+4()x1x2+4()2-4x1-x2()2.又因为tanøPFQ=(y1-1)/x1-(y2-1)/x21+[(y1-1)/x1] [(y2-1)/x2]=x2x21/4-1()-x1x22/4-1()x1x2+x21/4-1()x22/4-1()=4x1-x2()x1x2+4()x1x2+4()2-4x1-x2()2ꎬ所以tan2øPAQ=tanøPFQ.易知0ʎ<øPAQ<90ʎ<øPFQ<180ʎ.所以øPFQ=2øPAQ.题10㊀给定正整数n(nȡ2).已知2n个正实数a1ꎬa2ꎬ ꎬa2nꎬ满足:ðnk=1a2k-1 ðnk=1a2k=ᵑnk=1a2k-1+ᵑnk=1a2k.求S=ð2nk=1an-1kak+1的最小值ꎬ其中a2n+1=a1.解析㊀一方面ꎬ记A=ᵑ2nk=1ak()1nꎬ则S=ðnk=1an-12ka2k+1+ðnk=1an-12k-1a2kȡnᵑnk=1an-12ka2k+1æèçöø÷1n+nᵑnk=1an-12k-1a2kæèçöø÷1n=nAᵑnk=1a2k-1+ᵑnk=1a2k()=nAðnk=1a2k-1 ðnk=1a2k()ȡnAnᵑnk=1a2k-1()1n nᵑnk=1a2k()1n=n3.另一方面ꎬ易知n=2时ꎬ取a1=a3=1ꎬa2=a4=2+3时可满足条件ꎬ且S=n3.nȡ3时ꎬ取a1=a2= =a2n=n22æèçöø÷1n-2时可满足条件ꎬ且S=n3.综上所述ꎬ所求的最小值是n3.题11㊀给定正整数aꎬb(aɤb).数列fn{}满足:f1=aꎬf2=bꎬfn+2=fn+1+fn(n=1ꎬ2ꎬ ).若对任意的正整数nꎬ都ðnk=1fk()2ɤλ fnfn+1ꎬ求实数λ的最小值.解析㊀先证以下3个引理:引理1㊀对任意nɪN∗ꎬ有fn+2=ðnk=1fk+f2.证明㊀fn+2=ðn+1k=2fk+1-fk()+f2=ðn+1k=2fk-1+f2=ðnk=1fk+f2.引理2㊀记T=a2+ab-b2ꎬ则对任意nɪN∗ꎬ有fnfn+2+(-1)nT=f2n+1.证明㊀由条件知f3=a+b.从而f1f3+(-1)1T=a(a+b)-a2+ab-b2()=b2=f22ꎬ故结论对n=1成立.假设n=k(kȡ1)时ꎬ结论成立ꎬ即fkfk+2+(-1)kT=f2k+1.当n=k+1时ꎬfk+1fk+3+(-1)k+1T=fk+1fk+1+fk+2()+fkfk+2-f2k+1=fk+1fk+2+fkfk+2=f2k+2ꎬ故当n=k+1时ꎬ结论也成立.由归纳原理知ꎬ对任意的正整数nꎬ都有fnfn+2+(-1)nT=f2n+1.引理3㊀limnң+ɕfnfn+1=5-12.证明㊀首先ꎬ由fnfn+1-fn+1fn+2=fnfn+2-f2n+1fn+1fn+2=(-1)nTfn+1fn+2ң0知limnң+ɕfnfn+1存在ꎬ设其值为aꎬ其中0ɤaɤ1.其次ꎬ将fn+2=fn+1+fn同时除以fn+1ꎬ再令nң+ɕꎬ得1a=1+aꎬ解得a=5-12.回到原题:记Tn=ðnk=1fk()2fnfn+1ꎬn=1ꎬ2ꎬ3ꎬ ꎬ则Tn+1-Tn=ðn+1k=1fk()2fn+1fn+2-ðnk=1fk()2fnfn+1=fnðnk=1fk+fn+1()2-fn+2ðnk=1fk()2fnfn+1fn+2=fn-fn+2()ðnk=1fk()2+2fnfn+1ðnk=1fk()+fnf2n+1fnfn+1fn+2=-fn+1fn+2-f2()2+2fnfn+1fn+2-f2()+fnf2n+1fnfn+1fn+2=2fn+1f2-f22+fnfn+2-f2n+1fnfn+2=2bfn+1-b2-(-1)nTfnfn+2.注意到fn+1ȡbꎬ且(-1)nT=(-1)na2+ab-b2()ɤb2ꎬ所以2bfn+1-b2-(-1)nTȡ2b2-b2-b2=0.因此ꎬTn+1ȡTn对任意的正整数n均成立.由Tn{}单调递减可知:若limnң+ɕTn存在ꎬ则其值为λ的最小值.又limnң+ɕTn=limnң+ɕðnk=1fk()2fnfn+1=limnң+ɕfn+2-f2()2fnfn+1=limnң+ɕfn+1+fn-f2()2fnfn+1=limnң+ɕfn+1+fn()2fnfn+1=limnң+ɕfnfn+1+fn+1fn+2æèçöø÷=5-12+5+12+2=2+5.综上可知ꎬλ的最小值为2+5.参考文献:[1]张君.2022年全国高中数学联赛(四川预赛)试题及解析[J].数理化解题研究ꎬ2022(25):84-88.[2]李鸿昌.我这样做奥数[M].成都:四川省教育电子音像出版社ꎬ2021.[3]甘志国.圆锥曲线光学性质的证明及其应用[J].数学教学ꎬ2017(09):16-18ꎬ37.[责任编辑:李㊀璟]。
历年全国高中数学竞赛试卷及答案(77套)
(5月14日下午14:30—16:30)
题目
一
二
三
总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.
2023年全国中学生数学奥林匹克暨2023年全国高中数学联合竞赛一试(A卷)试题及参考答案
2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试(A 卷)试题(含参考答案)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设复数910i z (i 为虚数单位),若正整数n 满足2023n z ,则n 的最大值为 . 答案:2.解:22910181nnnnz z.因21812023z ,而当3n 时,181132023nn n z,故n 的最大值为2.2. 若正实数,a b 满足lg 2b a ,lg lg 5a b a b ,则lg ()ab ab 的值为 . 答案:20.解:因为lg lg lg lg 102a a b b b a ,所以lg lg lg lg lg lg lg ()()()52220ab a b a b b a ab ab a b a b .3. 将一枚均匀的骰子独立投掷三次,所得的点数依次记为,,x y z ,则事件“777C C C x y z”发生的概率为 . 答案:127.解:由于162534777777C C C C C C ,因此当,,{1,2,3,4,5,6}x y z 时,事件“777C C C x y z”发生当且仅当“{1,6},{2,5},{3,4}x y z ”成立,相应的概率为321627. 4. 若平面上非零向量,, 满足 ,2|| ,3|| ,则||的最小值为 .答案:23.解:由 ,不妨设(,0),(0,)a b ,其中,0a b ,并设(,)x y,则由2||得2by a ,由3|| 得3ax b .所以2232||2223b ax y xy a b. 取3,2a b ,此时6x y ,||取到最小值23.5. 方程sin cos2x x 的最小的20个正实数解之和为 . 答案:130 .解:将2cos212sin x x 代入方程,整理得(2sin 1)(sin 1)0x x ,解得532,2,2()662Z x k k k k.上述解亦可写成2()36Z k x k,其中0,1,,19k 对应最小的20个正实数解,它们的和为192219202013036326k k. 6. 设,,a b c 为正数,a b .若,a b 为一元二次方程20ax bx c 的两个根,且,,a b c 是一个三角形的三边长,则a b c 的取值范围是 .答案:7,518. 解:由条件知2222()()()ax bx c a x a x b ax a ab x a b ,比较系数得22,b a ab c a b ,故24,11a a b c a a,从而 24231a a a b c a a a a a .由于201a a b a,故112a .此时显然0b c .因此,,,a b c 是一个三角形的三边长当且仅当a c b ,即4211a a a a a,即2(1)0a a a ,结合112a ,解得15122a .令23()f x x x x ,则()a b c f a .显然当0x 时()f x 连续且严格递增,故a b c 的取值范围是151,22f f,即7,518 . 7. 平面直角坐标系xOy 中,已知圆 与x 轴、y 轴均相切,圆心在椭圆2222:1(0)x y a b a b内,且 与 有唯一的公共点(8,9).则 的焦距为 .答案:10.解:根据条件,可设圆心为(,)P r r ,则有222(8)(9)r r r ,解得5r 或29r .因为P 在 内,故5r .椭圆 在点(8,9)A 处的切线为2289:1x y l a b ,其法向量可取为2289,n a b. 由条件,l 也是圆 的切线,故n 与PA 平行,而(3,4)PA ,所以223227a b.又2264811a b ,解得22160,135a b .从而 的焦距为22210a b .8. 八张标有,,,,,,,A B C D E F G H 的正方形卡片构成下图.现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多一张有公共边(例如可按,,,,,,,D A B E C F G H 的次序取走卡片,但不可按,,,,,,,D B A E C F G H 的次序取走卡片),则取走这八张卡片的不同次序的数目为 .AB C D EFGH答案:392.解:如左下图重新标记原图中的八张卡片.现将每张卡片视为顶点,有公共边的两张卡片所对应的顶点之间连一条边,得到一个八阶图,该图可视为右下图中的2m n 阶图(,)G m n 在3,3m n 时的特殊情况.231-3-20P-1 G (m , n )Pn...210-1-2-m ...取卡片(顶点)的规则可解释为:(i) 若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完; (ii) 若顶点P 未取走,则必为某个(,)(,0)G m n m n 的情形,此时若0m ,则将P 视为1 号顶点,归结为(i)的情形;若0,0m n ,则将P 视为1号顶点,归结为(i)的情形;若,1m n ,则当前可取P 或m 号顶点或n 号顶点,分别归结为(i)或(1,)G m n 或(,1)G m n 的情形.设(,)G m n 的符合要求的顶点选取次序数为(,)f m n ,本题所求即为(3,3)f .由(i)、(ii)知1(,0)2(0)m f m m ,1(0,)2(0)n f n n ,且(,)2(1,)(,1)(,1)m n f m n f m n f m n m n .由此可依次计算得(1,1)12f ,(1,2)(2,1)28f f ,(1,3)(3,1)60f f ,(2,2)72f ,(2,3)(3,2)164f f ,(3,3)392f ,即所求数目为392.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)平面直角坐标系xOy 中,抛物线2:4y x ,F 为 的焦点,,A B 为 上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.解:设1122(,),(,)A x y B x y .不妨设AP PQ QB ,则121222,33x x y y P. 易知(1,0)F .由于点P 位于线段OF 上,故122[0,1]3x x ,12203y y . ……………4分可设12,2y t y t ,则2212,4t x x t .此时有2122[0,1]32x x t ,且由,A B 不重合知0t ,所以2(0,2]t . ……………8分设(,)Q Q Q x y ,则21212232,343Q Q x x y y x t y t,有243Q Q y x . 注意到2330,42Q x t ,故点Q 的轨迹方程为243(0)32y x x .……………16分10.(本题满分20分)已知三棱柱111:ABC A B C 的9条棱长均相等.记底面ABC 所在平面为 .若 的另外四个面(即面111111111,,,A B C ABB A ACC A BCC B )在 上投影的面积从小到大重排后依次为23,33,43,53,求 的体积.解:设点111,,A B C 在平面 上的投影分别为,,D E F ,则面11111,,A B C ABB A 1111,ACC A BCC B 在 上的投影面积分别为,,,DEF ABED ACFD BCFE S S S S .由已知及三棱柱的性质,DEF 为正三角形,且,,ABED ACFD BCFE 均为平行四边形.由对称性,仅需考虑点D 位于BAC 内的情形(如图所示). 显然此时有ABED ACFD BCFE S S S . ……………5分XFEB DCA由于,,,23,33,43,53DEF ABED ACFD BCFE S S S S ,故,ABED ACFD S S 必为23,33的排列,53BCFE S ,进而43DEF S ,得DEF 的边长为4,即正三棱柱 的各棱长均为4. ……………10分不妨设23,33ABED ACFD S S ,则333,2ABD ACD S S .取射线AD 与线段BC 的交点X ,则23ABD ACD BX S CX S ,故85BX .因此2242cos60195AX AB BX AB BX , 而58ABD ACD ABC AD S S AX S ,故192AD. ……………15分 于是 的高221352h AA AD. 又43ABC S ,故 的体积615ABC V S h . ……………20分11.(本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意,[1,]a b t ,总存在,[1,]c d t ,使得()()1a c b d .解:记[1,]t I t ,()()S a c b d .假如2t ,则当a b t 时,对任意,t c d I ,均有2(1)1S t ,不满足要求.假如312t,则当1,2a b t 时,对任意,t c d I ,均有 21a c t ,12t b d .若,a c b d 同正或同负,则2(1)1S t ,其余情况下总有01S ,不满足要求. ……………5分以下考虑322t 的情形.为便于讨论,先指出如下引理.引理:若1,2u v ,且52u v ,则1uv .事实上,当32u v 时,22225312244u v u v uv . 当32u v 时,1131222uv .引理得证. 下证对任意,t a b I ,可取11,t c d I ,使得111()()1S a c b d .① 若12a b ,则取111c d ,此时1(1)(1)(1)(1)S a b a b ,其中31311,12222a b b a ,且5(1)(1)2()2a b a b ,故由引理知11S .若12a b ,则取1132t c d I ,此时13322S a b, 其中331,222a b ,且3353222a b a b ,故由引理知11S . ……………15分 注意到,当,t a b I 时,可取2t c I ,使得21a c (例如,当[1,1]a 时取20c ,当(1,]a t 时取21c ),同理,可取2t d I ,使得21b d .此时22222()()1S a c b d a c b d .②根据①、②,存在一个介于12,c c 之间的实数c ,及一个介于12,d d 之间的实数d ,使得()()1a c b d ,满足要求.综上,实数t 满足要求当且仅当322t . ……………20分。
2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]
2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 11一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为.(其中i 为虚数单位)2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为.3.若点A -12,32关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB,则△ABC 最大角的正弦值为.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-a n +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为.7.已知四面体ABCD 满足AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,且异面直线AD 与BC 所成的角为60°,则四面体ABCD 的外接球的体积为.ABCD A 1D 1O 1O 8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p 0≤p ≤1 的概率消失,有1-p3的概率保持不变,有1-p 3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p 至多为.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分 已知函数f x =ln x -sin x ,若两不相等的实数x 1,x 2∈0,π 满足曲线y =f x 在点x 1,f x 1 和点x 2,f x 2 处的切线斜率相等,求证:f x 1 +f x 2 >-2.10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)一、填空题(每小题8分,共计96分)1.设集合A =x x -12x -1≤0 ,集合B =x ∣x 2+2x +m ≤0 .若A ⊆B ,则实数m 的取值范围为.2.设函数f :{1,2,3}→{2,3,4}满足f f x -1 =f x ,则这样的函数有个.3.函数y =sin 2x +sin x +1sin 2x +1的最大值与最小值之积为.4.已知数列x n 满足:x 1=22,x n +1=x n n n +1x 2n+n n +1,n ≥1,则通项x n =.5.已知四面体A -BCD 的外接球半径为1,若BC =1,∠BDC =60°,球心到平面BDC 的距离为.6.已知复数z 满足z 24=z -1 510=1,则复数z =.7.已知平面上单位向量a ,b 垂直,c 为任意单位向量,且存在t ∈0,1 ,使得向量a +1-t b 与向量c -a 垂直,则a +b -c的最小值为.8.若对所有大于2024的正整数n ,成立n2024=2024i =0a i C in ,a i ∈N ∗,则a 1+a 2024=.9.设实数a ,b ,c ∈(0,2],且b ≥3a 或a +b ≤43,则max {b -a ,c -b ,4-2c }的最小值为.10.在平面直角坐标系xOy 上,椭圆E 的方程为x 212+y 24=1,F 1为E 的左焦点;圆C 的方程为x -a 2+y -b 2=r 2,A 为C 的圆心.直线l 与椭圆E 和圆C 相切于同一点P 3,1 .当∠OAF 1最大时,实数r =.11.设n 为正整数,且nk =0-1 kC knk 3+9k 2+26k +24=1312,则n =.12.设整数n ≥4,从编号1,2,⋯,n 的卡片中有放回地等概率抽取,并记录下每次的编号.若1,2均出现或3,4均出现就停止抽取,则抽取卡片数的数学期望为.二、解答题(13题满分14分,14、15题满分各20分,合计54)13.正实数k 1,k 2,k 3满足k 1<k 2<k 3;实数c 1,c 2满足c 1=k 2-k 1,c 2-c 1=2k 3-k 2 ,定义函数f x =k 1x ,0≤x ≤1k 2x -c 1,1<x ≤2,k 3x -c 2,x >2 g x =k 1x ,0≤x ≤1k 2x -c 112,1<x ≤2k 3x -c 212,x >2 试问,当k 1,k 2,k 3满足什么条件时,存在A >0使得定义在[0,A ]上的函数g x +f A -x 恰在两点处达到最小值?14.设集合S ={1,2,3,⋯,997,998},集合S 的k 个499元子集A 1,A 2,⋯,A k 满足:对S 中任一二元子集B ,均存在i ∈{1,2,⋯,k },使得B ∈A i .求k 的最小值.15.设f x ,g x 均为整系数多项式,且deg f x >deg g x .若对无穷多个素数p ,pf x +g x 存在有理根,证明:f x 必存在有理根.(考试时间:2024年5月19日9:00∼11:00)一、填空题:本大题共8小题,每小题8分,满分64分.1.设函数f x =ln x +x -2的零点都在区间[a ,b ]a ,b ∈Z ,a <b 内,则b -a 的最小值为.2.已知a >b >1,若log a b +log b a =52,则ba +4的最大值为.3.设a ∈R ,若函数f x =ax -ax-2ln x 在其定义域内为单调递增函数,则实数a 的最小值为.4.用f X ,Γ 表示点X 与曲线Γ上任意一点距离的最小值.已知⊙O :x 2+y 2=1及⊙O 1:x -4 2+y 2=4,设P 为⊙O 上的动点,则f P ,⊙O 1 的最大值为.5.设△ABC 中,AC =2,∠ABC =2∠BAC ,则△ABC 面积的最大值为.6.将边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1绕着其中心旋转45°得到一个十面体ABCD -EFGH (如图),则该十面体的体积为.7.若T =100k =1299+k ⋅3101-k ,则T 的末尾数字0的个数为.8.记I ={1,4,5,6},U ={1,2,3,⋯,25},集合U 的子集A =a 1,a 2,a 3,a 4,a 5 ,满足a i -a j ∉I ∀1≤i <j ≤5 ,则符合条件的集合A 的个数为.(用具体数字作答)二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(16分)已知t 为正实数,若曲线y =t ⋅e x 与椭圆C :x 22+y 2=1交于A 、B 两个不同的点,求证:直线AB 的斜率k <22.10.(20分)设复数x ,y ,z 满足:x +2y +3z =1.求x 2+y 2+z 2+x 2+y 2+z 2的最小值.11.(20分)给定正整数n ≥2,数组a 1,a 2,⋯,a n 称为“好数组”是指:a 1,a 2,⋯,a n 均不为0,a 1=1,且对任意的1≤k ≤n -1,均有a k +1+a k a k +1-a k -1 =0.求“好数组”a 1,a 2,⋯,a n 的组数.一、选择题:本大题共6小题,每小题x 分,满分x 分.1.记S =32+432-4+42+442-4+52+452-4+⋯+132+4132-4,则与S 最接近的整数为()A.14B.15C.16D.172.在四边形ABCD 中,AB ⎳CD ,AC =λAB +μAD λ,μ∈R .若λ+μ=32,则CDAB=()A.13B.12C.1D.23.函数f x =ax 3-6x a ∈R ,若f x ≤2对∀x ∈-1,12成立,则()A.f x ≤1对∀x ∈-12,12 成立B.f x ≤32对∀x ∈-12,12成立C.f x ≤18对∀x ∈-32,32成立D.f x ≤352对∀x ∈-32,32成立4.在正四面体ABCD 中,棱AD 的中点和面BCD 的中心的连线为MN ,棱CD 的中点和面ABC 的中心的连线为PQ ,则MN 与PQ 所成角的余弦值为()A.118B.117C.116D.1155.已知函数f x =2x 4-18x 2+12x +68+x 2-x +1,则()A.f x 的最小值为8 B.f x 的最小值为9C.f x =8有1个实根D.f x =9有1个实根6.已知A ,B ,C 是平面上三个不同点,且BC =a ,CA =b ,AB =c ,则c a +b +bc的最小值为()A.2-12B.22-12C.2-22D.1-22二、填空:本大题共6小题,每小题x 分,满分x 分.7.设集合S ={1,2,3,4,5}.若S 的子集A 满足:若x ∈A ,则6-x ∈A ,则称子集A 具有性质p ,现从S 的所有非空子集中,等可能地取出一个,则所取出的非空子集具有性质p 的概率为.8.函数f x =log a 4-ax (a >0,且a ≠1),若f x ≥1对∀x ∈[1,2]成立,则实数a 的取值范围.9.已知甲、乙、丙、丁四位同学对某10道判断题的解答情况如下表:题号12345678910甲×√××√×√√√×乙××√√×√√√××丙√√×√√√×√×√丁××√√××√√××若甲、乙、丙三人均答对7题,则丁答对的题数为.10.已知函数f x =ln x -1x2+2ax -ax .若∃m >0,使得f m ≥a 2,则实数a 的最大值为11.设函数f x =sin x⋅sin3x,若关于x的方程f x =a在(0,π]上有奇数个不同的实数解,则实数a的值为.12.在△ABC中,AP平分∠BAC,AP交BC于P,BQ平分∠ABC,BQ交CA于Q,∠BAC=30°,且AB+BP =AQ+QB,则∠ABC的度数为.三、解答:本大题共4小题,每小题x分,满分x分.13.已知椭圆C1的中心为坐标原点O,焦点在坐标轴上.圆C2的圆心为坐标原点O,过点A-2,0且倾斜角为30°的直线与圆C2相切.(1)求圆C2的方程;(2)过圆C2上任意一点P x0,y0x0⋅y0≠0作圆C2的切线,与椭圆C1交于A,B两点,均有∠AOB=90°成立.判断椭圆C1是否过定点?说明理由.14.已知数列a n满足:a1=1,a2=2,a n+1=1a n+an-1n≥2.求证:2024k=11a k>88.15.如图,⊙O1、⊙O2外切于点A,过点A的直线交⊙O1于另一点B,交⊙O2于另一点C,CD切⊙O1于点D,在BD的延长线上取一点F,使得BF2=BC2-CD2,连接CF交⊙O2于E,求证:DE与⊙O2相切.16.全体正有理数的集合Q+被分拆为三个集合A,B,C(即A∪B∪C=Q+,且A∩B=B∩C=C∩A=∅,满足B*A=B,B*B=C,B*C=A,这里H*K={h⋅k∣h∈H,k∈K}.(1)给出一个满足要求的例子(即给出A,B,C);(2)给出一个满足要求的例子,且1,2,⋯,35中的任意两个相邻正整数均不同时在A中.2024年广西省高中数学联赛初赛试题一、填空题(本大题共8小题,每小题10分,共80分).1.设函数f x =log2x.若a<b且f a =f b ,则a+2024b的取值范围是.2.已知椭圆x 2a2+y2b2=1a>b>0的焦点为F1,F2,M为椭圆上一点,∠F1MF2=π3,OM=153b.则椭圆的离心率为.3.若正实数x,y满足x-2y=2x-y,则x的最大值为.4.方程3x=x37的正整数解为.5.设x1,x2,x3,x4均是正整数,且x i x j x k∣1≤i<j<k≤4=18,36,54.则x1+x2+x3+x4=.6.正三棱雉P-ABC中,AP=3,AB=4.设D是直线BC上一点,面APD与直线BC的夹角为45°,则线段PD的长度是.7.已知四次多项式x4-25x3+ax2+61x-2024的四个根中有两个根的乘积是-253,则实数a=.8.设数列x n满足x1=2001,x n+1=x n+y n,其中y n等于x n的个位数,则x2024=.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(15分)如图所示,AD=CD,DP=EP,BE=CE,DP<AD<BE,∠ADC=∠DPE=∠BEC=90°.证明:P为线段AB的中点.10.(15分)设A为数集{1,2,3,⋯,2024}的n元子集,且A中的任意两个数既不互素又不存在整除关系.求n 的最大值.11.(20分)用[x]表示不超过x的最大整数.设数列x n满足:x1=1,x n+1=4x n+11x n.求x2024的个位数.12.(20分)图G是指一个有序二元组V,E,其中V称为顶点集,E称为边集.一个图G中的两点x,y的距离是指从x到y的最短路径的边数,记作d x,y.一个图G的直径是指G中任意两点的距离的最大值,记作diam G.∣x,y∈G,即diam G=max d x,y记Z n={[0],[1],[2],⋯,[n-1]}是模n的剩余类,定义Z n上的加法和乘法,均是模n的加法和乘法,例如在Z12={[0],[1],[2],⋯,[11]}中:[3]+[4]=[7],[6]+[9]=[3];[3]⋅[4]=[0],[6]⋅[9]=[6].在Z n中,设[x]≠[0].若存在[y]≠[0]使得[x]⋅[y]=[0],则称[x]是Z n的一个零因子.记Z n的所有零因子的集合为D Z n,它是以={[2],[3],[4],[6],[8],[9],[10]}.Z n的零因子图,记为ΓZ n .例如D Z12D Z n为顶点集,两个不同的顶点[x],[y]之间有一条边相连当且仅当[x]⋅[y]=[0].下图是ΓZ12的例子.证明:对一切的整数n≥2,都有diamΓZ n≤3.2024年内蒙古高中数学联赛初赛试题(2024年5月19日,8:30-9:50)一、填空题(本题满分64分,每小题8分)1.集合M ={1,2,3,5,6}的全部非空子集的元素和等于.2.设a ,b ,c 是实数,满足a +b +c =1,a 2+b 2+c 2=1,a ≠0,bca 3的取值范围为.3.已知正三棱柱ABC -A 1B 1C 1的侧棱长为4,底面边长为2,过点A 的一个平面截此棱柱,与侧棱BB 1,CC 1分别交于点M ,N ,若△MNA 为直角三角形,则△MNA 面积的最大值为.4.已知在△ABC 中BC =3,A =π3,BD =14BC,则线段AD 的最大值为.5.从1,2,⋯,11中任取三个不同的数,则这三个数可以构成等差数列的概率为.6.O 是原点,椭圆x 24+y 25=1,直线l 过1,0 且与椭圆交于A ,B 两点,则△ABO 面积的最大值为.7.数列a n 中,a 1=110,且对任意n ∈N *,a n +1=a 2n +a n ,求2024n =11a n+1 的整数部分是.8.已知关于x 的方程x 3-3x +4=0的三个复数根分别为z 1,z 2,z 3,则z 1-z 2 2z 2-z 3 2z 3-z 1 2的值为.二、解答题(本题满分56分)9.(16分)已知双曲线C :x 24-y 23=1,直线l :y =kx +1与双曲线C 的左右支分别相交于A ,B 两点,双曲线C 在A ,B 两点处的切线相交于点P ,求△ABP 面积的最小值.10.(20分)已知函数f x =e x -1-xax 2-2x +1.(1)当a =0时,讨论f x 在-4,12上的极值.(2)若x =0是f x 的极小值点,求a 的取值范围.11.(20分)设n 是一个给定的正整数,集合S n =i ,j ∣1≤i ,j ≤2n ,i ,j ∈N * ,求最大的正数c =c n ,使得对任意正整数d 1,d 2,都存在集合S n 的子集P ,满足集合P 至少有cn 2个元素,且集合P 的任两个元素i ,j ,k ,l 均有i -k2+j -l 2≠d 1,i -k 2+j -l 2≠d 2.2024年北京市高中数学联赛初赛一试考试时间:8:00-9:20一、填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合A=a1,a2,a3,a4,a5,若A中所有三元子集的三个元素之积组成的集合为B={-30,-15, -10,-6,-5,-3,2,6,10,15},则集合A={-30,-15,-10,-6,-5,-3,20,10,15},则集合A=.2.已知函数f x =x+2,x<0;ln12x+1,x≥0.若关于x的方程f f x=m恰有三个不相等的实数根x1,x2,x3且满足x1<x2<x3,则2x1+9ln x2+4的取值范围是.3.从1,2,⋯,2024中任取两个数a,b a≤b,则3a+7b的值中,个位数字为8的数有个.4.设复数z满足3z-2i=6,令z1=z2-10z+74z-5+7i,则z1的最大值是.5.已知函数f x =x,若x为无理数;q+1p,若x=qp,其中p,q∈N*,且p,q互质,p>q.则函数f x 在区间89,910上的最大值为.6.对于c>0,若非零实数a,b满足4a2-2ab+4b2-c=0,且使2a+b最大,则3a-4b+2c的最小值为.7.已知函数f x =cos4x+sin4x+a sin4x-b,且f x+π6为奇函数.若方程f x +m=0在[0,π]上有四个不同的实数解x1,x2,x3,x4,则fx1+x2+x3+x44的平方值为.8.已知A⊆{1,2,⋯,2625},且A中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式f x =x2024+2023i=0c ix i,其中c i∈{-1,0,1}.记N为f x 的正整数根的个数(含重根).若f x 无负整数根,N的最大值是.10.在棱长为4的正方体ABCD-A1B1C1D1中,E为棱AA1上的一点,且A1E=1,F为截面A1BD上的动点,则AF+FE的最小值等于.11.数列a n定义如下:设2n!n!n+2024!写成既约分数后的分母为A n ,a n等于2A n 的最大质因数,则a n的最大值等于.2024年北京市高中数学联赛初赛二试考试时间:9:40-12:301.(40分)设a,b,c是三个正数,求证:2a2a2+b2+c2+2ba2+2b2+c2+2ca2+b2+2c2≤32a+b+c5a2+5b2+5c2+ab+bc+ca.2.(40分)如图所示,锐角△ABC的三条高线AD,BE,CF交于点H,过点F作FG⎳AC交直线BC于点G,设△CFG的外接圆为⊙O,⊙O与直线AC的另一个交点为P,过P作PQ⎳DE交直线AD于点Q,连接OD,OQ.求证:OD=OQ.3.(50分)有n个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.4.(50分)设a1,a2,⋯,a n为n个两两不同的正整数且a1a2⋯a n恰有4048个质因数.如果a1,a2,⋯,a n中任意多个数相乘均不是一个整数的4049次方,求n的最大值.2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 112024年重庆市高中数学联赛初赛试题一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为2-2.(其中i 为虚数单位)【答案】2-2【解析】z -4z 为纯虚数⇒z -4z =-z -4z⇔z +z =4z +zzz.当z +z=0时,,z -1-i min =1;当z +z≠0时,,则z =2,,此时z -1-i min =2-2<1,,当z =21+i 可取等号.2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为-12,52 .【答案】-12,52 【解析】因为f x 为R 上单调递增的奇函数,,且值域为R ,,所以f -1x 也为R 上单调递增的奇函数.注意f 1 =32,,故f -1x -1 <1⇔-32<x -1<32⇔-12<x <52.3.若点A -12,32 关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =3.【答案】3【解析】注意点A 在圆x 2+y 2=1上,,且A 关于直线y =kx 对称的点必然在圆x 2+y 2=1上,,而圆x 2+y 2=1与圆x -2 2+y 2=1仅有唯一公共点B 1,0 ,,因此对称点只能是B .易知∠AOB =120°,,因此k =tan60°= 3.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB ,则△ABC 最大角的正弦值为31010.【答案】31010【解析】设△ABC 的内角A ,,B ,,C 所对的边分别为a ,,b ,,c ,,由条件知b 2+c 2-a 22=a 2+c 2-b 2=3a 2+b 2-c 2 2,,解得b 2=85a 2,,c 2=95a 2,,故最大角为角C ,,由余弦定理得cos C =a 2+b 2-c 22ab =1010⇒sin C =31010.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-an +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=62029.【答案】62029【解析】由a n +1-a n a n =a n +2-a n +1a n +2可得1a n +1a n +2=2a n +1,,则数列1a n 为等差数列,,首项为1a 1=1,,设公差为d ,,则a 1a 2+a 2a 3+⋯+a 6a 7=11+d +11+d 1+2d +⋯+11+5d 1+6d=1d 1-11+d +11+d -11+2d +⋯11+5d -11+6d =61+6d =3⇒d =16,,故1a 2024=1+20236=20296⇒a 2024=62029.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为21600.【答案】21600【解析】一个圆排列满足要求当且仅当该排列中8,,9与7,,9这两对数均不能相邻.设满足8,,9相邻的圆排列有N1个,,满足7,,9相邻的圆排列有N2个,,满足8,,9相邻且7,,9相邻的圆排列有N3个,,则N1= N2=A22⋅7!,,N3=A22⋅6!,,从而由容斥原理,,满足要求的排列的个数为N=8!-N1+N2-N3=21600.7.已知四面体ABCD满足AB⊥BC,BC⊥CD,AB=BC=CD=1,且异面直线AD与BC所成的角为60°,则四面体ABCD的外接球的体积为55π6.ABC DA1D1 O1O【答案】55π6【解析】由题设条件,,可将四面体补成直三棱柱ABD1-A1CD,,如图所示.由题知∠A1AD=60°,,AA1=1,,于是A1D=AD1=3,,又AB=BD1=1,,则∠ABD1=120°.设四面体ABCD的外接球球心为O,,则O在平面ABD1的投影O1为△ABD1的外心,,且OO1=12.由正弦定理知,,O1A=1,,从而外接球半径R=OA=52,,于是V=43πR3=55π6.8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p0≤p≤1的概率消失,有1-p3的概率保持不变,有1-p3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p至多为5 17.【答案】517【解析】设开始有一个珍稀生物、最终灭绝的概率为f1 =q≤12,,那么若开始有n个珍稀生物、最终灭绝的概率则为f n =q n.由题知,,f1 =p+1-p3f1 +1-p3f2 +1-p3f3 ,,从而有q=p+1-p3q+1-p 3q2+1-p3q3即q-11-p3q2+2q+3-1∣=0,,由于q≤12,,则0=1-p3q2+2q+3-1≤1-p 3⋅174-1,,得p≤517.故p至多为517.注:该题也可以用母函数.其第n天的母函数为f n x ,,其中f x =p+1-p3x+1-p3x2+1-p3x3,,考虑limn→+∞f n 0 ≤12即可.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分已知函数f x =ln x-sin x,若两不相等的实数x1,x2∈0,π满足曲线y=f x 在点x1,f x1和点x2,f x2处的切线斜率相等,求证:f x1 +f x2 >-2.【解析】先证一个引理:对x>0,,有sin x<x.引理的证明:令φx =sin x-x,,φ x =cos x-1≤0,,故φx 为减函数,,所以当x>0时,,φx <φ0 =0,,引理得证!4分回到原题:f x =1x-cos x,,由题知f x1=f x2 .不妨x 1>x 2,,则x 1-x 22∈0,π2,,于是由f x 1 =f x 2 并结合引理可得x 1-x 2x 1x 2=cos x 2-cos x 1=2sin x 1+x 22sin x 1-x228分≤2sin x 1-x 22<2×x 1-x22=x 1-x 2,,因此x 1x 2>1.12分所以f x 1 +f x 2 =ln x 1x 2-sin x 1-sin x 2>-sin x 1-sin x 2≥-2.16分10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.【解析】设M x 1,x 21 ,,N x 2,x 22 ,,注意k MN =x 22-x 21x 2-x 1=x 1+x 2,,从而当MN ⎳AB 时,,k MN =k AB =3⇒x 1+x 2= 3.5分因为y =2x ,,所以k AM =2x 1,,可得切线AM 的方程为y -x 21=2x 1x -x 1 ,,即y =2x 1x -x 21.同理可得切线BN 的方程为y =2x 2x -x 22.由题设中A ,,B 的要求,,可设A t ,3t -3 ,,B t +3,3t ,,10分将A t ,3t -3 代入切线AM 的方程,,得3t -3=2tx 1-x 21,,即x 21-2tx 1+3t -3=0,,可求得x 1=t -t 2-3t +3,,这里取较小的根是因为M 为左边的切点.同理可求得x 2=t +3+t 2+3t +3.15分于是x 1+x 2=3⇒t -t 2-3t +3+t +3+t 2+3t +3=3,,整理得t 1+3t 2-3t +3+t 2+3t +3=0⇒t =0.故点A 的横坐标为0.20分11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)【解析】设f x =x +14-x +2=12x +14+x +2.对于x >0,,f x 连续且单调递减.由于x 1>2,,则0<x 2=f x 1 <f 2 =2,,进而依次可以得到x 3>2,,0<x 4<2,,即0<x 2k <2,,x 2k +1>2.5分令g x =x +f x .由于g x =1+12x +14-12x +2>0恒成立,,故当x ≥0时,,g x 单调递增.又由于g 2 =4,,故当x >2时,,g x >4;当0<x <2时,,g x <4.10分当n 为偶数时,,设n =2k k ∈N * ,,有x 1+⋯+x 2k =x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k =g x 1 +g x 3 +⋯+g x 2k -1 >4k ,,且x 1+⋯+x 2k =x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k -2+x 2k -1 +x 2k =x 1+g x 2 +g x 4 +⋯+g x 2k -2 +x 2k <4k +1,,故x 1+x 2+⋯+x 2k =4k =2n .当n 为大于1的奇数时,,设n =2k +1k ∈N * ,,有x 1+⋯+x 2k +1=x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k +x 2k +1=g x 1 +g x 3 +⋯+g x 2k -1 +x 2k +1>4k +2x 1+⋯+x 2k +1=x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k +x 2k +1=x1+g x2+g x4 +⋯+g x2k<4k+3,,故x1+x2+⋯+x2k+1=4k+2=2n.当n=1时,,x1=3.综上,,当n=1时,,x1=3;当n≥2时,,x1+x2+⋯+x n=2n.20分2024年浙江省高中数学联赛初赛试题一、填空题(每小题8分,共计96分)1.设集合A=x x-12x-1≤0,集合B=x∣x2+2x+m≤0.若A⊆B,则实数m的取值范围为m≤-3.【答案】m≤-3【解析】集合A=x 12<x≤1,,要使A⊆B,,则12+2×1+m≤0,,解得m≤-3.2.设函数f:{1,2,3}→{2,3,4}满足f f x -1=f x ,则这样的函数有10个.【答案】10【解析】令y=f x -1∈{1,2,3},,则f y =y+1.对f1 =2以下三种情况都满足条件f2 =f3 =2;f2 =f3 =3;f2 =f3 =4,,共3种.同理对f2 =3,,f1 =f3 有3种情况;f3 =4,,f1 =f2 也有3种情况.又f1 =2,,f2 =3,,f3 =4显然满足条件.所以满足已知条件的函数共有3×3+1=10个.(可以看出这种映射的限制仅在值域上,,因此也可对值域大小分类讨论.)3.函数y=sin 2x+sin x+1sin2x+1的最大值与最小值之积为34.【答案】34【解析】令t=sin x,,-1≤t≤1,,原式变形y=1+1t+1t ,,当t≠0时,,12≤y≤32.当t=0时,,y=1.所以y的最大、最小值分别为32,,12,,其积为34.4.已知数列x n满足:x1=22,x n+1=xnn n+1x2n+n n+1,n≥1,则通项x n=n3n-1.【答案】n3n-1【解析】将已知条件变形得1x2n+1-1x2n=1n-1n+1,,将上式从1到n叠加得到1 x2n -1x21=1-1n,,即x n=n3n-1.5.已知四面体A-BCD的外接球半径为1,若BC=1,∠BDC=60°,球心到平面BDC的距离为6 3.【答案】63【解析】因为球心在平面BDC上的投影就是△BDC的外心,,由已知求得△BDC的外接圆半径为33,,所以球心到平面BDC的距离为1-332=63.6.已知复数z满足z24=z-1510=1,则复数z=12±32i.【答案】12±32i【解析】由已知得z =z-1=1,,解得z=12±3i2.显然这两个解满足题设条件.。
历年全国高中数学联赛试题及答案(76套题)
1988年全国高中数学联赛试题第一试(10月16日上午8∶00——9∶30)一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分):1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x +y=0对称,那么,第三个函数是( )A .y=-φ(x )B .y=-φ(-x )C .y=-φ-1(x )D .y=-φ-1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1<k <1 D .0<|k |<1 3.平面上有三个点集M ,N ,P :M={(x ,y )| |x |+|y |<1},N={(x ,y )|(x -12)2+(y +12)2+(x +12)2+(y -12)2<22}, P={(x ,y )| |x +y |<1,|x |<1,|y |<1}.则A .M ⊂≠P ⊂≠NB .M ⊂≠N ⊂≠PC .P ⊂≠N ⊂≠MD .A 、B 、C 都不成立 4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a ,β∩γ=b ,γ∩α=c .若有 命题甲:θ>π3;命题乙:a 、b 、c 相交于一点. 则A .甲是乙的充分条件但不必要B .甲是乙的必要条件但不充分C .甲是乙的充分必要条件D .A 、B 、C 都不对5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠Ø. ⑶ M ≠Ø. ⑷ P ≠Ø中,正确的表达式的个数是A .1B .2C .3D .4 二.填空题(本大题共4小题,每小题10分):1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3a 2-a 1= .2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 .3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DEBC= .4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 .三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积. 四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置.五.(15分)已知a 、b 为正实数,且1a +1b =1,试证:对每一个n ∈N *,(a +b )n -a n -b n ≥22n -2n +1.1988年全国高中数学联赛二试题一.已知数列{a n },其中a 1=1,a 2=2,a n +2=⎩⎨⎧5a n +1-3a n (a n ·a n +1为偶数),a n +1-a n (a n ·a n +1为奇数).试证:对一切n ∈N*,a n ≠0.二.如图,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在AB 边上,求证:S ∆PQR S ∆ABC >29.三.在坐标平面上,是否存在一个含有无穷多直线l 1,l 2,……,l n ,…的直线族,它满足条件: ⑴ 点(1,1)∈l n ,(n=1,2,3,……); ⑵ k n +1=a n -b n ,其中k n +1是l n +1的斜率,a n 和b n 分别是l n 在x 轴和y 轴上的截距,(n=1,2,3,……); ⑶ k n k n +1≥0,(n=1,2,3,……). 并证明你的结论.N ACBPQ R H1988年全国高中数学联赛解答一试题一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分): 1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x +y=0对称,那么,第三个函数是( )A .y=-φ(x )B .y=-φ(-x )C .y=-φ-1(x )D .y=-φ-1(-x )解:第二个函数是y=φ-1(x ).第三个函数是-x=φ-1(-y ),即y=-φ(-x ).选B .2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1<k <1 D .0<|k |<1 解:因是椭圆,故k ≠0,以(0,0)代入方程,得k 2-1<0,选D . 3.平面上有三个点集M ,N ,P :M={(x ,y )| |x |+|y |<1},N={(x ,y )|(x -12)2+(y +12)2+(x +12)2+(y -12)2<22}, P={(x ,y )| |x +y |<1,|x |<1,|y |<1}.则A .M ⊂≠P ⊂≠NB .M ⊂≠N ⊂≠PC .P ⊂≠N ⊂≠MD .A 、B 、C 都不成立解:M 表示以(1,0),(0.1),(-1,0),(0,-1)为顶点的正方形内部的点的集合(不包括边界);N 表示焦点为(12,-12),(-12,12),长轴为22的椭圆内部的点的集合,P 表示由x +y=±1,x=±1,y=±1围成的六边形内部的点的集合.故选A .4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a ,β∩γ=b ,γ∩α=c .若有命题甲:θ>π3;命题乙:a 、b 、c 相交于一点. 则A .甲是乙的充分条件但不必要B .甲是乙的必要条件但不充分C .甲是乙的充分必要条件D .A 、B 、C 都不对解:a ,b ,c 或平行,或交于一点.但当a ∥b ∥c 时,θ=π3.当它们交于一点时,π3<θ<π.选C .5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠Ø. ⑶ M ≠Ø. ⑷ P ≠Ø中,正确的表达式的个数是A .1B .2C .3D .4 解:均正确,选D .二.填空题(本大题共4小题,每小题10分):1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3a 2-a 1= .解:a 2-a 1=14(y -x ),b 4-b 3=23(y -x ),⇒b 4-b 3a 2-a 1=83.2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 . 解:(x +2)2n +1-(x -2)2n +1=2(C 12n +12x n +C 32n +123x n -1+C 52n +125x n -2+…+C 2n +12n +122n +1). 令x=1,得所求系数和=12(32n +1+1).3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DEBC = .解:△AED ∽△ABC ,DE BC =ADAC=|cos α|.4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 .解 画1行14个格子,每个格子依次代表一场比赛,如果某场比赛某人输了,就在相应的格子中写上他的顺序号(两方的人各用一种颜色写以示区别).如果某一方7人都已失败则在后面的格子中依次填入另一方未出场的队员的顺序号.于是每一种比赛结果都对应一种填表方法,每一种填表方法对应一种比赛结果.这是一一对应关系.故所求方法数等于在14个格子中任选7个写入某一方的号码的方法数.∴共有C 714种比赛方式.三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.解:过轴所在对角线BD 中点O 作MN ⊥BD 交边AD 、BC 于M 、N ,作AE ⊥BD 于E ,则△ABD 旋转所得旋转体为两个有公共底面的圆锥,底面半径AE=23=63.其体积V=π3(63)2·3=239π.同样, △BCD 旋转所得旋转体的体积=239π.其重叠部分也是两个圆锥,由△DOM ∽△DAB ,DO=32,OM=DO ·AB DA =64. ∴其体积=2·13π·(64)2·32=38π.∴ 所求体积=2·239π-38π=23723π.四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置.解:Z 1=-1Z ,故得|-1Z -Z 0|=|1Z |,即|ZZ 0+1|=1.|Z +1Z 0|=|1Z 0|.即以-1Z 0为圆心|1Z 0|为半径的圆.五.(15分)已知a 、b 为正实数,且1a +1b =1.试证:对每一个n ∈N *,(a +b )n -a n -b n ≥22n -2n +1.证明:由已知得a +b=ab .又a +b ≥2ab ,∴ ab ≥2ab ,故a +b=ab ≥4.于是(a +b )k =(ab )k ≥22k . 又 a k +b k ≥2a k b k =2(a +b )k ≥2k +1.下面用数学归纳法证明: 1° 当n=1时,左=右=0.左≥右成立. 2° 设当n=k (k ≥1,k ∈N )时结论成立,即(a +b )k -a k -b k ≥22k -2k +1成立.则(a +b )k +1-a k +1-b k +1=(a +b )(a +b )k -(a k +b k )(a +b )+ab (a k -1+b k -1)=(a +b )[(a +b )k -a k -b k ]+ ab (a k -1+b k -1)≥4∙(22k -2k +1)+4∙2k =22(k +1)-4∙2k +1+4∙2k =22(k +1)-2(k +1)+1.即命题对于n=k +1也成立.故对于一切n ∈N *,命题成立.二试题一.已知数列{a n },其中a 1=1,a 2=2,O N MEBCD Aa n +2=⎩⎨⎧5a n +1-3a n (a n ·a n +1为偶数),a n +1-a n (a n ·a n +1为奇数).试证:对一切n ∈N *,a n ≠0.(1988年全国高中竞赛试题)分析:改证a n ≢0(mod 4)或a n ≢0(mod 3).证明:由a 1=1,a 2=2,得a 3=7,a 4=29,…… ∴ a 1≡1,a 2≡2,a 3≡3(mod 4).设a 3k -2≡1,a 3k -1≡2,a 3k ≡3(mod 4).则 a 3k +1≡5×3-3×2=9≡1(mod 4);a 3k +2≡1-3=-2≡2(mod 4);a 3k +3≡5×2-3×1=7≡3(mod 4). 根据归纳原理知,对于一切n ∈N ,a 3n -2≡1,a 3n -1≡2,a 3n ≡3(mod 4)恒成立,故a n ≢0(mod 4)成立,从而a n ≠0.又证:a 1≡1,a 2≡2(mod 3).设a 2k -1≡1,a 2k ≡2(mod 3)成立,则当a 2k -1∙a 2k 为偶数时a 2k +1≡5×2-3×1≡1(mod 3),当a 2k -1∙a 2k 为奇数时a 2k +1≡2-1≡1(mod 3),总之a 2k +1≡1(mod 3).当a 2k ∙a 2k +1为偶数时a 2k +2≡5×1-3×2≡2(mod 3),当a 2k ∙a 2k +1为奇数时a 2k +2≡1-2≡2(mod 3),总之,a 2k +2≡2(mod 3).于是a n ≢0(mod 3).故a n ≠0.二.如图,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在AB 边上,求证:S ∆PQR S ∆ABC >29.证明:作△ABC 及△PQR 的高CN 、RH .设△ABC 的周长为1.则PQ=13.则S ∆PQR S ∆ABC =PQ ·RH AB ·CN =PQ AB ·AR AC ,但AB <12,于是PQ AB >23,AP ≤AB -PQ <12-13=16,∴ AR=13-AP >16,AC <12,故AR AC >13,从而S ∆PQR S ∆ABC >29.三.在坐标平面上,是否存在一个含有无穷多直线l 1,l 2,……,l n ,…的直线族,它满足条件:⑴ 点(1,1)∈l n ,(n=1,2,3,……); ⑵ k n +1=a n -b n ,其中k n +1是l n +1的斜率,a n 和b n 分别是l n 在x 轴和y 轴上的截距,(n=1,2,3,……); ⑶ k n k n +1≥0,(n=1,2,3,……). 并证明你的结论.证明:设a n =b n ≠0,即k n -1=-1,或a n =b n =0,即k n =1,就有k n +1=0,此时a n +1不存在,故k n ≠±1. 现设k n ≠0,1,则y=k n (x -1)+1,得b n =1-k n ,a n =1-1k n ,∴ k n +1=k n -1k n .此时k n k n +1=k n 2-1.∴ k n >1或k n <-1.从而k 1>1或k 1<-1.⑴ 当k 1>1时,由于0<1k 1<1,故k 1>k 2=k 1-1k 1>0,若k 2>1,则又有k 1>k 2>k 3>0,依此类推,知当k m >1时,有k 1>k 2>k 3>∙…>k m >k m +1>0,且0<1k 1<1k 2<…<1k m<1,k m +1=k m -1k m <k m -1k 1=k m -1-1k m -1-1k 1<k m -1-2k 1<…<k 1-mk 1.由于k 1-m k 1随m 的增大而线性减小,故必存在一个m 值,m=m 0,使k 1-m 0k 1≤1,从而必存在一个m 值m=m 1≤m 0,使k m 1-1≥1,而1>k m 1=k m 1-1-1k m 1-1>0,此时k m 1·k m 1+1<0.即此时不存在这样的直线族.⑵ 当k 1<-1时,同样有-1<1k 1<0,得k 1<k 2=k 1-1k 1<0.若k 2<-1,又有k 1<k 2<k 3<0,依此类推,知当N ACBPQ R Hk m <-1时,有k 1<k 2<k 3<∙…<k m <k m +1<0,且0>1k 1>1k 2>…>1k m>-1,k m +1=k m -1k m >k m -1k 1=k m -1-1k m -1-1k 1>k m -1-2k 1>…>k 1-mk 1.由于k 1-m k m 随m 的增大而线性增大,故必存在一个m 值,m=m 0,使k 1-m 0k 1≥-1,从而必存在一个m值,m=m 1(m 1≤m 0),使k m 1-1≤-1,而-1<k m 1=k m 1-1k m 1-1<0,此时k m 1·k m 1+1<0. 即此时不存在这样的直线族.综上可知这样的直线族不存在.厦门市参加2010年福建省高中数学竞赛 暨2010年全国高中数学联赛福建赛区竞赛的通知贵校教务处转数学教研组:根据闽科协发【2010】39号文件《关于举办2010年全国高中数学联赛福建赛区竞赛的通知》,以及省数学会《关于2010年福建省高中数学竞赛暨2010年全国高中数学联赛福建赛区竞赛的通知》,根据我市情况,有关竞赛工作通知如下:一、赛制、竞赛时间和命题范围竞赛分预赛和复赛两个阶段。
2020年全国高中数学联赛试题及详细解析
2020年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2020年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A ) 163 (B) 83 (C) 1633 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2020年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2020-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .【答案】-4≤a ≤-1.【解析】A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .【答案】93【解析】a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .【答案】2+48【解析】如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛加试(A卷)试题(含答案)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分 设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。
2020年全国高中数学联赛试题及详细解析
2020年全国高中数学联赛试题及详细解析2020年全国高中数学联赛试题及详细解析说明:1.评阅试卷时,请依据本评分标准。
选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
2.如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次。
一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A、B、C、D四个结论,其中有且仅有一个是正确的。
请将正确答案的代表字母填在题后的括号内。
每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。
1.使关于 x 的不等式 x - 3 + 6 - x ≥ k 有解的实数 k 的最大值是()。
A。
6 - 3B。
3C。
6 + 3D。
62.空间四点 A、B、C、D 满足 |AB| = 3,|BC| = 7,|CD| = 11,|DA| = 9,则 AC·BD 的取值()。
A。
只有一个B。
有两个C。
有四个D。
有无穷多个6.记集合 T = {1.2.3.4.5.6},M = {ai | ai ∈ T。
i = 1.2.3.4.},将 M 中的元素按从大到小的顺序排列,则第 2020 个数是()。
A。
2 + 3 + 4 +。
+ 5563B。
2 + 3 + 4 +。
+ xxxxxxxC。
2 + 3 + 4 +。
+ xxxxxxxx7D。
2 + 3 + 4 +。
+二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。
7.将关于 x 的多项式 f(x) = 1 - x + x^2 - x^3 +。
- x^2319 + x^20 表为关于 y 的多项式 g(y) = a + a1y + a2y^2 +。
+ a19y^19 + a20y^20,其中 y = x - 4,则 a + a1 +。
2022年全国高中数学联赛试题及解析 苏教版2
二零零二年全国高中数学联赛试卷一试题(2021年10月13日上午8:00—9:40)一.选择题(本小题总分值36分,每题6分):1.函数f (x )=log 12(x 2-2x -3)的单调递增区间是A .(-∞,-1)B .(-∞,1)C .(1,+∞)D .(3,+∞)2.假设实数x ,y 满足(x +5)2+(y -12)2=142,那么x 2+y 2的最小值为 A .2 B .1 C . 3 D . 23.函数f (x )=x 1-2x -x2A .是偶函数但不是奇函数B .是奇函数但不是偶函数C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数4.直线x 4+y 3=1与椭圆x 216+y 29=1相交于A 、B 两点,该椭圆上点P ,使得ΔPAB面积等于3.这样的点P 共有A .1个B .2个C .3个D .4个5.两个实数集合A={a 1,a 2,a 3,…,a 100},与B={b 1,b 2,…,b 50},假设从A 到B 的映射f 使得B 中每个元素都有原象,且f (a 1)≤f (a 2)≤…≤f (a 100),那么这样的映射共有A .C 50100B .C 4899 C .C 49100D .C 49996.由曲线x 2=4y ,x 2=-4y ,x=4,x=-4围成的图形绕y 轴旋转一周所得的旋转体的体积为V 1;满足x 2+y 2≤16,x 2+(y -2)2≥4,x 2+(y +2)2≥4的点绕y 轴旋转一周所得的旋转体的体积为V 2,那么 A .V 1=12V 2 B .V 1=23V 2 C .V 1=V 2 D .V 1=2V 2二.填空题(此题总分值54分,每题9分)7.复数Z 1、Z 2满足|Z 1|=2,|Z 2|=3,假设它们所对应的⎪⎪⎪⎪⎪⎪Z 1+Z 2Z 1-Z 2= ; 向量的夹角为60︒,那么8.将二项式⎝⎛⎭⎪⎫x +124x n 的展开式按x 的降幂排列,假设前三项的系数成等差数列,那么该展开式中x 的幂指数是整数的项共有 个;9.如图,点P 1、P 2、…,P 10分别是四面体顶点或棱的中点,那么在同一平面上的四点组(P 1,P i ,P j ,P k )(1<i <j <k ≤10)有 个;10.f (x )是定义在R 上的函数,f (1)=1且对任意x ∈R 都有 f (x +5)≤f (x )+5,f (x +1)≥f (x )+1,.假设g (x )=f (x )+1-x ,那么g (2021)= ; 11.假设log 4(x +2y )+log 4(x -2y )=1,那么|x |-|y |的最小值是 ;12.使不等式sin 2x +a cos x +a 2≥1+cos x 对于一切x ∈R 恒成立的负数a 的取值范围是 ; 三.解答题(此题总分值60分,每题20分):13.点A (0,2)和抛物线y 2=x +4上两点B ,C ,使得AB ⊥BC ,求点C 的纵坐标的取值范围.P 3414.如图,有一列曲线P 0,P 1,P 2,…,P 0是面积为1的等边三角形,P k +1是对P k 进行如下操作得到的:将P k 的每条边三等分,以每边中间局部的线段为边向形外作等边三角形,再将中间局部的线段去掉(k=0,1,2,…).记S n 为曲线Pn 所围成图形的面积.⑴ 求数列{Sn }的通项公式;⑵ 求lim n →∞S n .15.设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R ,a ≠0)满足条件:⑴ 当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;⑵ 当x ∈(0,2)时,f (x )≤⎝ ⎛⎭⎪⎫x +122; ⑶ f (x )在R 上的最小值为0.求最大的m (m >1),使得存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x .二试题(本卷共三个大题,共150分,每题50分)一.在ΔABC 中,∠BAC=60 ,AB >AC ,点O 为ΔABC 的外心,两条高BE 、CF 的交于点H ,点M 、N 分别在线段BH 与HF 上,且满足BM=CN .求MH +HNOH的值. 二.实数a ,b ,c 和正数λ使得f (x )=x 3+ax 2+bx +c 有三个实根x 1,x 2,x 3,且满足⑴ x 2-x 1=λ;⑵ x 3>12(x 1+x 2).求2a 3+27c -9ab λ3的最大值. 三.在世界杯足球赛前,F 国的教练员为了考察A 1、A 2、A 3、A 4、A 5、A 6、A 7这七名队员,准备让他们在三场训练比赛(每场比赛90分钟)中都上场,假设在比赛的任何时刻,这些队员都有且只有一人在场上,并且A 1、A 2、A 3、A 4每人上场的总时间(以分钟为单位)均被7整除,A 5、A 6、A 7每人上场的总时间(以分钟为单位)均被13整除.如果每场换人的次数不限,那么,按每名队员上场的总时间计,共有多少种不同的情况?2021年全国高中数学联赛解答一试题(2021年10月13日上午8:00—9:40)一.选择题(本小题总分值36分,每题6分):1.函数f (x )=log 12(x 2-2x -3)的单调递增区间是A .(-∞,-1)B .(-∞,1)C .(1,+∞)D .(3,+∞)解:由x 2-2x -3>0,得x <-1或x >3. 在x ∈(-∞,-1)时,u= x 2-2x -3单调减,f (x )单调增;在x ∈(3,+∞)时,u= x 2-2x -3单调增,f (x )单调减.应选A2.假设实数x ,y 满足(x +5)2+(y -12)2=142,那么x 2+y 2的最小值为 A .2 B .1 C . 3 D . 2解:令x +5=14cos θ,y -12=14sin θ,那么x 2+y 2=196+28(5cos θ-12sin θ)+169=365+364sin(θ+φ)≥1.选B .(亦可用几何意义解:圆上点到原点距离平方的最小值)3.函数f (x )=x 1-2x -x2A .是偶函数但不是奇函数B .是奇函数但不是偶函数C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数解:f (x )定义域为(-∞,0)∪(0,+∞);f (x )-f (-x )= x 1-2x -x2--x 1-2-x +-x 2=x -x ·2x1-2x -x=0.即f (x )是偶函数.选A .4.直线x 4+y 3=1与椭圆x 216+y 29=1相交于A 、B 两点,该椭圆上点P ,使得ΔPAB面积等于3.这样的点P 共有A .1个B .2个C .3个D .4个解:直线与椭圆的交线长=5.直线方程3x +4y -12=0.设点P (4cos θ,3sin θ). 点P 与直线的距离d=12|cos θ+sin θ-1|5,当0≤θ≤π2时,d ≤125(2-1),S ABC ≤6(2-1)<3.即此时没有三角形面积=3;当π2<θ<2π时,d ≤125(2+1),S ABC ≤6(2+1).即此时有2个三角形面积=3.选B . 5.两个实数集合A={a 1,a 2,a 3,…,a 100},与B={b 1,b 2,…,b 50},假设从A 到B 的映射f 使得B 中每个元素都有原象,且f (a 1)≤f (a 2)≤…≤f (a 100),那么这样的映射共有 A .C 50100 B .C 4899 C .C 49100 D .C 4999解:不妨设b 1≤b 2≤…≤b 50,在a 1,a 2,…,a 100的每两个数间有1个空档,共99个空档,其中任选49个空档插入1条竖杠, 把a 1,a 2,…,a 100分成50段,从前向后的第i 段中的数映射到b i ,即满足要求.共有C 4999种插法,选D .6.由曲线x 2=4y ,x 2=-4y ,x=4,x=-4围成的图形绕y 轴旋转一周所得的旋转体的体积为V 1;满足x 2+y 2≤16,x 2+(y -2)2≥4,x 2+(y +2)2≥4的点绕y 轴旋转一周所得的旋转体的体积为V 2,那么 A .V 1=12V 2 B .V 1=23V 2 C .V 1=V 2D .V 1=2V 2解:作平面y=h (0≤h ≤4).与图形⑴交于一个圆环,圆环面积=π(42-x 2)=π(16-4h );与图⑵交得一个圆环,面积=π(16-h 2)-π(4-(h -2)2)=π(16-h 2-(-h 2+4h ))=π(16-4h ). 说明该平面与两个旋转体截得的面积相等.由祖暅原理知,V 1=V 2,选C . 二.填空题(此题总分值54分,每题9分)7.复数Z 1、Z 2满足|Z 1|=2,|Z 2|=3,假设它们所对应的向量的夹角为60︒,那么⎪⎪⎪⎪⎪⎪Z 1+Z 2Z 1-Z 2= ;解:由余弦定理知|Z 1+Z 2|=22+32+2·3=19;|Z 1-Z 2|=22+32-2·3=7, ∴⎪⎪⎪⎪⎪⎪Z 1+Z 2Z 1-Z 2=197=1337. 8.将二项式⎝⎛⎭⎪⎫x +124x n的展开式按x 的降幂排列,假设前三项的系数成等差数列,那么该展开式中x 的幂指数是整数的项共有 个;解:前三项系数为1,12n ,18n (n -1),于是得n=1+18n (n -1),解得,n=8,和n=1(舍去).当n=8时,T r +1=C r8(12)r x 12(8-r )-14= C r 8(12)r x16-3r4,当r=0,4,8时x 的指数为整数,∴共有3个.9.如图,点P 1,P 2,…,P 10分别是四面体顶点或棱的中点,那么在同一平面上的四点组(P 1,P i ,P j ,P k )(1<i <j <k ≤10)有 个;解:同在某一侧面上:除P 1外另外5点中任取3点与P 1共4点组成一个四点组,有3 C 35=30组,每条侧棱上三点与对棱中点:3组.∴共有33组. 10.f (x )是定义在R 上的函数,f (1)=1且对任意x ∈R 都有f (x +5)≤f (x )+5,f (x +1)≥f (x )+1,.假设g (x )=f (x )+1-x ,那么g (2021)= ;解:由后式,f (x +5)≥f (x +4)+1≥f (x +3)+2≥f (x +2)+3≥f (x +1)+4≥f (x )+5.比较前式得f (x +1)=f (x )+1.∴ f (x )=x 对一切x ∈N *成立,∴ 对于x ∈N *,g (x )=f (x )+1-x=x +1-x=1 ∴ g (2021)=1.11.假设log 4(x +2y )+log 4(x -2y )=1,那么|x |-|y |的最小值是 ;解:x >-2y ,x >2y ,x 2-4y 2=4.由对称性,只考虑x >0,y >0的情况.令x=2sec θ,y=tan θ,(0<θ<π2),u=x -y=2-sin θcos θ表示点(0,2)与点(-cos θ,sin θ)连线的斜率,当直线与单位圆相切时,u 最小为3.即所求最小值为3.(或用判别式法解)12.使不等式sin 2x +a cos x +a 2≥1+cos x 对于一切x ∈R 恒成立的负数a 的取值范围是 ;解:即(cos x -a -12)2≤a 2+(a -12)2,假设(1-a -12)2≤a 2+(a -12)2,那么a 2+a -2≥0.∴ a ≤-2或a ≥1,但a <0,故a ≤-2. 三.解答题(此题总分值60分,每题20分):13.点A (0,2)和抛物线y 2=x +4上两点B ,C ,使得AB ⊥BC ,求点C 的纵坐标的取值范围.解:设B (y 02-4,y 0),C (y 12-4,y 1).那么P 34k AB =y 0-2y 20-4=1y 0+2.k BC =y 1-y 0y 21-y 20=1y 1+y 0.由k AB ·k BC =-1,得(y 1+y 0)(y 0+2)=-1. ∴ y 02+(y 1+2)y 0+(2y 1+1)=0.∴ △=(y 1+2)2-4(2y 1+1)=y 12-4y 1≥0,∴ y 1≤0,y 1≥4. 当y 1=0时,得B (-3,-1),当y 1=4时,得B (5,-3)均满足要求,故点C 的纵坐标的取值范围是(-∞,0]∪[4,+∞).14.如图,有一列曲线P 0,P 1,P 2,…,P 0是面积为1的等边三角形,P k +1是对P k 进行如下操作得到的:将P k 的每条边三等分,以每边中间局部的线段为边向形外作等边三角形,再将中间局部的线段去掉(k=0,1,2,…).记S n 为曲线P n 所围成图形的面积.⑴ 求数列{S n }的通项公式;⑵ 求lim n →∞S n .解:⑴ 对P 0操作后,每条边变为4条边,共有4×3条边;对P 1操作,也是每条边变为4条边,故P 2共有42×3条边,即P k 有3×4k条边.S 0=1,S 1=S 0+3×132=1+13,S 2=S 1+4×3×134=1+13+433;S 3=1+13+433+4235;依此类推,得S k =1+13+433+…+4k -132-1=1+13·1-(49)k1-49=1+35[1-(49)k ]= 85-35(49)k .用数学归纳法易证上式正确. ⑵ lim n →∞S n =85. 15.设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R ,a ≠0)满足条件: ⑴ 当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;⑵ 当x ∈(0,2)时,f (x )≤⎝ ⎛⎭⎪⎫x +122; ⑶ f (x )在R 上的最小值为0.求最大的m (m >1),使得存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x .解:由f (x -4)=f (2-x ),知f (x )关于x=-1对称.于是-b2a =-1.⇒b=2a .此时,f (x )有最小值0,∴ a -b +c=0.⇒c=a .f (x )=ax 2+2ax +a .由⑴ f (1)=4a ≥1.由⑵ 4a ≤1.∴ a=c=14,b=12.f (x )= 14(x +1)2.假设对于x ∈[1,m ],f (x +t )-x ≤0,⇒f (1+t )-1=14(t +2)2-1≤0,得-4≤t ≤0.f (m +t )-m ≤0,⇒m 2+2(t -1)m +(t +1)2≤0.解得-(t -1)-2-t ≤m ≤-(t -1)+2-t . ∴m ≤1-t +2-t ≤9.而当t=-4时,f (x -4)-x=14(x 2-10x +9)= 14(x -1)(x -9)在x ∈[1,9]时,恒有f (x -4)-x ≤0成立.∴ m 的最大值为9.二试题(本卷共三个大题,共150分,每题50分)一.在ΔABC 中,∠BAC=60︒,AB >AC ,点O 为ΔABC 的外心,两条高BE 、CF 的交于点H ,点M 、N 分别在线段BH 与HF 上,且满足BM=CN .求MH +HNOH的值. 解:记∠ACB=α,连OB 、OC ,那么∠BOC=∠BHC=120︒, ∴ B 、O 、H 、C 四点共圆.设此圆的半径为R ', 那么2R '=BC sin120︒ =BCsin60︒=2R .HM +NH=(BH -BM )+(CN -CH )=BH -CH .在ΔBCH 中,∠CBH=90︒-α.∠HCB=90︒-(120︒-α)=α-30︒,∴HM +NH=BH -CH=2R (sin(α-30︒)-sin(90︒-α))=2R (sin αcos30︒-cos αsin30︒-cos α)=2 3 R sin(α-60︒).在ΔOCH 中,OH=2R sin ∠HCO=2R sin(α-30︒-30︒)=2R sin(α-60︒).∴ MH +HN OH= 3 .二.实数a ,b ,c 和正数λ使得f (x )=x 3+ax 2+bx +c 有三个实根x 1,x 2,x 3,且满足 ⑴ x 2-x 1=λ; ⑵ x 3>12(x 1+x 2).求2a 3+27c -9ab λ3的最大值. 解:设x 1=m -12λ,x 2=m +12λ,x 3=m +k (k >12λ).a=-(x 1+x 2+x 3)=-(3m +k ); b=x 1x 2+x 1x 3+x 2x 3=3m 2+2mk -14λ2; c=-x 1x 2x 3=-m 3-m 2k +14λ2m +14λ2k .那么2a 3+27c -9ab=-3(m +k )3+27(-m 3-m 2k +14λ2m +14λ2k )+9(3m +k )(3m 2+2mk -14λ2)=-2k 3+92λ2k .令k λ=t ,那么1λ3(2a 3+27c -9ab )=-2t 3+92t .取g (t )=-2t 3+92t . 那么g'(t )=-6t 2+92,g"(t )=-12t .令g'(t )=0,得t=±32,而当t=32时g"(t )<0. ∴ 当t=32时,g (t )取得最大值g (32)=-2(32)3+92(32)=332. 假设取λ=1,此时得,k=32.令a=0,得m=-36,代入b 、c 的表达式得b=-12,c=318此时得f (x )=x 3-12x +318满足题意.三.在世界杯足球赛前,F 国的教练员为了考察A 1、A 2、A 3、A 4、A 5、A 6、A 7这七名队员,准备让他们在三场训练比赛(每场比赛90分钟)中都上场,假设在比赛的任何时刻,这些队员都有且只有一人在场上,并且A 1、A 2、A 3、A 4每人上场的总时间(以分钟为单位)均被7整除,A 5、A 6、A 7每人上场的总时间(以分钟为单位)均被13整除.如果每场换人的次数不限,那么,按每名队员上场的总时间计,共有多少种不同的情况?解:设各人上场时间分别为7t 1,7t 2,7t 3,7t 4,13t 5,13t 6,13t 7,(t i 为正整数). 得方程 7(t 1+t 2+t 3+t 4)+13(t 5+t 6+t 7)=90×3.令t 1+t 2+t 3+t 4=x ,t 5+t 6+t 7=y ,得方程7x +13y=270.即求此方程满足4≤x ≤38,3≤y ≤20的整数解. 即6y ≡4(mod 7),3y ≡2(mod 7),y ≡3(mod 7) ∴ y=3,10,17,相应的x=33,20,7.t 5+t 6+t 7=3的解只有1种,t 5+t 6+t 7=10的解有C 29种,t 5+t 6+t 7=17的解有C 216种; t 1+t 2+t 3+t 4=33的解有C 332种,t 1+t 2+t 3+t 4=20的解有C 319种,t 1+t 2+t 3+t 4=7的解有C 36种.∴ 共有1·C 332+ C 29·C 319+ C 216·C 36=42244种.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000年全国高中数学联合竞赛试卷(10月15日上午8:00?9:40)一、选择题(本题满分36分,每小题6分)1.设全集是实数,若A={x|≤0},B={x|10=10x},则A∩?R B是()(A){2}(B){?1}(C){x|x≤2}(D)?2.设sin?>0,cos?<0,且sin>cos,则的取值范围是()(A)(2k?+,2k?+),k?Z(B)(+,+),k?Z(C)(2k?+,2k?+?),k?Z(D)(2k?+,2k?+)∪(2k?+,2k?+?),k?Z3.已知点A为双曲线x2?y2=1的左顶点,点B和点C在双曲线的右分支上,△ABC是等边三角形,则△ABC的面积是()(A)(B)(C)3(D)64.给定正数p,q,a,b,c,其中p?q,若p,a,q是等比数列,p,b,c,q是等差数列,则一元二次方程bx2?2ax+c=0()(A)无实根(B)有两个相等实根(C)有两个同号相异实根(D)有两个异号实根5.平面上整点(纵、横坐标都是整数的点)到直线y=x+的距离中的最小值是()(A)(B)(C)(D)6.设ω=cos+i sin,则以?,?3,?7,?9为根的方程是()(A)x4+x3+x2+x+1=0(B)x4?x3+x2?x+1=0(C)x4?x3?x2+x+1=0(D)x4+x3+x2?x?1=0二.填空题(本题满分54分,每小题9分)1.arcsin(sin2000?)=__________.2.设a n是(3?)n的展开式中x项的系数(n=2,3,4,…),则(++…+))=________.3.等比数列a+log23,a+log43,a+log83的公比是____________.4.在椭圆+=1(a>b>0)中,记左焦点为F,右顶点为A,短轴上方的端点为B.若该椭圆的离心率是,则∠ABF=_________.5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a,则这个球的体积是________.6.如果:(1)a,b,c,d都属于{1,2,3,4};(2)a?b,b?c,c?d,d?a;(3)a是a,b,c,d中的最小值,那么,可以组成的不同的四位数的个数是_________三、解答题(本题满分60分,每小题20分)1.设S n=1+2+3+…+n,n?N*,求f(n)=的最大值.2.若函数f(x)=-x2+在区间[a,b]上的最小值为2a,最大值为2b,求[a,b].3.已知C0:x2+y2=1和C1:+=1(a>b>0).试问:当且仅当a,b满足什么条件时,对C1上任意一点P,均存在以P为顶点,与C0外切,与C1内接的平行四边形?并证明你的结论.2000年全国高中数学联赛二试题(10月15日上午10∶00-12∶00)一.(本题满分50分)如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE=∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等.二.(本题满分50分) 设数列{a n }和{b n }满足a 0=1,a 1=4,a 2=49,且n=0,1,2,…… 证明a n (n=0,1,2,…)是完全平方数. 三.(本题满分50分) 有n 个人,已知他们中的任意两人至多通电话一次,他们中的任意n -2个人之间通电话的次数相等,都是3k 次,其中k 是自然数,求n 的所有可能值.2000年全国高中数学联合竞赛试题解答第一试一.选择题(本题满分36分,每小题6分)1.设全集是实数,若A={x |≤0},B={x |10=10x },则A ∩?R B 是()(A ){2}(B ){?1}(C ){x |x ≤2}(D )?解:A={2},B={2,-1},故选D .2.设sin ?>0,cos ?<0,且sin >cos ,则的取值范围是()(A )(2k ?+,2k ?+),k ?Z (B )(+,+),k ?Z(C )(2k ?+,2k ?+?),k ?Z (D )(2k ?+,2k ?+)∪(2k ?+,2k ?+?),k ?Z解:满足sin ?>0,cos ?<0的α的范围是(2k ?+,2k ?+π),于是的取值范围是(+,+),满足sin >cos 的的取值范围为(2k ?+,2k ?+).故所求范围是(2k ?+,2k ?+)∪(2k ?+,2k ?+?),k ?Z .选D .3.已知点A 为双曲线x 2?y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是()(A )(B )(C )3(D )6 解:A (-1,0),AB 方程:y=(x +1),代入双曲线方程,解得B (2,), ∴S=3.选C .4.给定正数p ,q ,a ,b ,c ,其中p ?q ,若p ,a ,q 是等比数列,p ,b ,c ,q 是等差数列,则一元二次方程bx 2?2ax +c=0()(A )无实根(B )有两个相等实根(C )有两个同号相异实根(D )有两个异号实根 解:a 2=pq ,b +c=p +q .b=,c=;△=a 2-bc=pq -(2p +q )(p +2q )=-(p -q )2<0.选A .5.平面上整点(纵、横坐标都是整数的点)到直线y=x +的距离中的最小值AB C D E F MN是()(A)(B)(C)(D)解:直线即25x-15y+12=0.平面上点(x,y)到直线的距离==.∵5x-3y+2为整数,故|5(5x-3y+2)+2|≥2.且当x=y=-1时即可取到2.选B.6.设ω=cos+i sin,则以?,?3,?7,?9为根的方程是()(A)x4+x3+x2+x+1=0(B)x4?x3+x2?x+1=0(C)x4?x3?x2+x+1=0(D)x4+x3+x2?x?1=0解:ω5+1=0,故?,?3,?7,?9都是方程x5+1=0的根.x5+1=(x+1)(x4-x3+x2-x+1)=0.选B.二.填空题(本题满分54分,每小题9分)1.arcsin(sin2000?)=__________.解:2000°=180°×12-160°.故填-20°或-.2.设a n是(3?)n的展开式中x项的系数(n=2,3,4,…),则(++…+))=________.解:a n=3n-2C.∴==,故填18.3.等比数列a+log23,a+log43,a+log83的公比是____________.解:q=====.填.4.在椭圆+=1(a>b>0)中,记左焦点为F,右顶点为A,短轴上方的端点为B.若该椭圆的离心率是,则∠ABF=_________.解:c=a,∴|AF|=a.|BF|=a,|AB|2=|AO|2+|OB|2=a2.Array故有|AF|2=|AB|2+|BF|2.即∠ABF=90°.填90°.或由b2=a2-c2=a2=ac,得解.5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a,则这个球的体积是________.解:取球心O与任一棱的距离即为所求.如图,AE=BE=a,AG=a,AO=a,BG=a,AB∶AO=BG∶OH.OH==a.V=πr3=πa3.填πa3..6.如果:(1)a,b,c,d都属于{1,2,3,4};(2)a?b,b?c,c?d,d?a;(3)a是a,b,c,d中的最小值,那么,可以组成的不同的四位数的个数是_________解:a、c可以相等,b、d也可以相等.⑴当a、c相等,b、d也相等时,有C=6种;⑵当a、c相等,b、d不相等时,有A+A=8种;⑶当a、c不相等,b、d相等时,有CC+C=8种;⑷当a、c不相等,b、d也不相等时,有A=6种;共28种.填28.三、解答题(本题满分60分,每小题20分)1.设S n =1+2+3+…+n ,n ?N *,求f (n )=的最大值.解:S n =n (n +1),f (n )==≤.(n=8时取得最大值).2.若函数f (x )=-x 2+在区间[a ,b ]上的最小值为2a ,最大值为2b ,求[a ,b ].解:⑴若a ≤b <0,则最大值为f (b )=-b 2+=2b .最小值为f (a )=-a 2+=2a .即a ,b 是方程x 2+4x -13=0的两个根,而此方程两根异号.故不可能.⑵若a <0<b ,当x=0时,f (x )取最大值,故2b=,得b=.当x=a 或x=b 时f (x )取最小值,①f (a )=-a 2+=2a 时.a=-2±,但a <0,故取a=-2-.由于|a |>|b |,从而f (a )是最小值.②f (b )=-b 2+==2a >0.与a <0矛盾.故舍.⑶0≤a <b .此时,最大值为f (a )=2b ,最小值为f (b )=2a .∴-b 2+=2a .-a 2+=2b .相减得a +b=4.解得a=1,b=3.∴[a ,b ]=[1,3]或[-2-,].3.已知C 0:x 2+y 2=1和C 1:+=1(a >b >0).试问:当且仅当a ,b 满足什么条件时,对C 1上任意一点P ,均存在以P 为顶点,与C 0外切,与C 1内接的平行四边形?并证明你的结论.解:设PQRS 是与C 0外切且与C 1内接的平行四边形.易知圆的外切平行四边形是菱形.即PQRS 是菱形.于是OP ⊥OQ .设P (r 1cos θ,r 1sin θ),Q (r 2cos(θ+90°),r 2sin(θ+90°),则在直角三角形POQ 中有r 12+r 22=r 12r 22(利用△POQ 的面积).即+=1.但+=1,即=+, 同理,=+,相加得+=1.反之,若+=1成立,则对于椭圆上任一点P (r 1cos θ,r 1sin θ),取椭圆上点Q (r 2cos(θ+90°),r 2sin(θ+90°),则=+,,=+,,于是+=+=1,此时PQ 与C 0相切.即存在满足条件的平行四边形.故证.第二试一.(本题满分50分)如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE=∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等.证明:连MN ,则由FM ⊥AM ,FN ⊥AN 知A 、M 、F 、N 四点共圆,且该圆的直径为AF .又?AMN=?AFN ,但?FAN=?MAD ,故?MAD +?AMN=?FAN +?AFN=90?.∴MN ⊥AD ,且由正弦定理知,MN=AF sin A . ∴S AMDN =AD ·MN=AD ·AF sin A . 连BD ,由?ADB=?ACF ,?DAB=?CAF ,得⊿ABD ∽⊿AFC .∴AD ∶AB=AC ∶AF ,即AD ·AF=AB ·AC .A B C D E M N F∴S AMDN=AD·AF sin A=AB·AC sin A=S ABC.二.(本题满分50分)设数列{a n}和{b n}满足a0=1,a1=4,a2=49,且n=0,1,2,……证明a n(n=0,1,2,…)是完全平方数.证明⑴×7:7a n+1=49a n+42b n-21,⑵×6:6b n+1=48a n+42b n-24.两式相减得,6b n+1-7a n+1=-a n-3,即6b n=7a n-a n-1-3.代入⑴:a n+1=14a n-a n-1-6.故a n+1-=14(a n-)-(a n-1-).其特征方程为x2-14x+1=0,特征方程的解为x=7±4.故a n=α(7+4)n+β(7-4)n+,现a0=1,a1=4,a2=49.解得α=β=.∴a n=(7+4)n+(7-4)n+=(2+)2n+(2-)2n+=[(2+)n+(2-)n]2.由于[(2+)n+(2-)n]是整数,故知a n是整数的平方.即为完全平方数.三.(本题满分50分)有n个人,已知他们中的任意两人至多通电话一次,他们中的任意n-2个人之间通电话的次数相等,都是3k次,其中k是自然数,求n的所有可能值.解:由条件知,统计各n-2人组的通话次数都是3k次,共有C=C个n-2人组,若某两人通话1次,而此二人共参加了C=C个n-2人组,即每次通话都被重复计算了C次.即总通话次数应为·3k次.由于(n-1,n-2)=1,故n-2|n?3k.若n-2|n,故n-2|2,易得n=4,(n=3舍去)此时k=0.由n-2|3k,n=3m+2,(m为自然数,且m≤k),此时·3k=·3k=[3m+4+]·3k-m,即3m-1|6.∴m=0,1.当m=0时,n=3(舍去),当m=1时,n=5.又:n=4时,每两个人通话次数一样,可为1次(任何两人都通话1次);当n=5时,任何两人都通话1次.均满足要求.∴n=0,5.。