Fourier变换练习题(全,有答案)

合集下载

积分变换习题解答1-2

积分变换习题解答1-2

1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰ (令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰(换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t t F f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1s s s t f t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ 由此,当0t α=>时,可得()()2sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d ri F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰()b 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d rF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰()()Im sin d rF f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰ 亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰ ()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰ 但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πt t t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222aa t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :()()()()j 1δδδδe d 222ta a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t t f t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin5cos5322f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F . 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F ()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F 其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011e d e d e d TTTn t n t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n nωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑。

积分变换习题解答

积分变换习题解答

⎧ 0, −∞ < t < −1 ⎪−1, −1 < t < 0 ⎪ (3) f ( t ) = ⎨ 0 < t <1 ⎪ 1, ⎪ ⎩ 0, 1 < t < +∞

(1)函数 f (t ) = ⎨
⎧1 − t 2 , | t |< 1 满足傅氏积分定理的条件,傅氏积分公式为 | t |> 1 ⎩ 0,
| t |< 1 | t |= 1 。 | t |> 1
习题二
1. 求矩形脉冲函数 f (t ) = ⎨
F (ω ) = ¶ ⎡ ⎣ f ( t )⎤ ⎦=
⎧ A, 0 ≤ t ≤ τ 的傅氏变换。 其他 ⎩ 0,
+∞ τ − jωt − jω t = f t e dt ( ) ∫ −∞ ∫ 0 Ae dt
⎧sin t , | t |≤ π , (3) f (t ) = ⎨ 证明 ⎩ 0, | t |> π ,

+∞
0
⎧π sin ωπ sin ωt ⎪ sin t , | t |≤ π dω = ⎨ 2 2 1− ω ⎪ | t |> π ⎩ 0,
e dt = 2 ∫ e
0 +∞ −βt
解 (1) F (t ) = ¶ ⎡ ⎣ f ( t )⎤ ⎦=
−∞
1 2π
+∞ −∞
∫ ∫
−∞
+∞ −∞
+∞
+∞
−∞
f (τ ) e− jωτ dτ e jωt dω =
1 2π
∫ ∫
−∞
+∞
+∞
−∞
f (τ ) (cos ωτ − jsin ωτ ) cos ωtdτ dω

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

工程数学-积分变换(第四版)-高等教育出版社-课后答案(1)

工程数学-积分变换(第四版)-高等教育出版社-课后答案(1)

再由 Fourier 变换公式得
f (t ) =
1 +∞ 1 +∞ 1 +∞ ω 2 + 2 jω t F ω e d ω = F ω cos ω t d ω = cos ω t dω ( ) ( ) 2 π ∫ −∞ π∫0 π ∫ 0 ω4 + 4 +∞ ω 2 + 2 π −t ∫ 0 ω 4 + 4 cos ω tdω = 2 e cos t
f (t) =
2 +∞ ⎡ +∞ f (τ ) sin ωτ dτ ⎤ sin ω tdω ⎢ ∫0 ⎥ ⎦ π ∫0 ⎣
=
2 +∞ ⎡ +∞ − β t sin ω tdω e sin ωτ dτ ⎤ ∫ ∫ ⎢ ⎥ 0 0 ⎣ ⎦ π
− βτ 2 +∞ ⎡ e ( β sin ωτ − ω cos ω t ) +∞ ⎤ = ∫ ⎢ ⎥ sin ω tdω π 0 ⎣ β 2 + ω2 0 ⎦
=
=
由于 a ( ω ) = a ( −ω ) , b ( ω ) = − b ( −ω ) , 所以
f (t) =
1 +∞ 1 +∞ a ( ω ) cos ω t dω + ∫ b ( ω ) sin ω tdω ∫ 2 −∞ 2 −∞
+∞ +∞ 0 0
= ∫ a ( ω ) cos ω t dω + ∫ b ( ω ) sin ω t dω 2.求下列函数的 Fourier 积分:
2 2 ⎧ ⎪1 − t , t ≤ 1 1)函数 f ( t ) = ⎨ 解: 解:1 为连续的偶函数,其 Fourier 变换为 2 0, 1 t > ⎪ ⎩

快速傅里叶变换FFT试题

快速傅里叶变换FFT试题

第一章快速傅里叶变换(FFT )4.1 填空题(1)如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 点。

解:64+128-1=191点; 256(2)如果一台通用机算计的速度为:平均每次复乘需100s μ,每次复加需20s μ,今用来计算N=1024点的DFT )]([n x 。

问直接运算需( )时间,用FFT 运算需要( )时间。

解:①直接运算:需复数乘法2N 次,复数加法)(1-N N 次。

直接运算所用计算时间1T 为s s N N N T 80864.12512580864020110021==⨯-+⨯=μ)(② 基2FFT 运算:需复数乘法N N2log 2次,复数加法N N 2log 次。

用FFT 计算1024点DTF 所需计算时间2T 为s s N N N NT 7168.071680020log 100log 2222==⨯+⨯=μ。

(3)快速傅里叶变换是基于对离散傅里叶变换 和利用旋转因子k Nj e π2-的来减少计算量,其特点是 _______、_________和__________。

解:长度逐次变短;周期性;蝶形计算、原位计算、码位倒置 (4)N 点的FFT 的运算量为复乘 、复加 。

解:N NL N mF 2log 22==;N N NL aF 2log ==4.2 选择题1.在基2DIT —FFT 运算中通过不断地将长序列的DFT 分解成短序列的DFT ,最后达到2点DFT 来降低运算量。

若有一个64点的序列进行基2DIT —FFT 运算,需要分解 次,方能完成运算。

A.32 B.6 C.16 D. 8 解:B2.在基2 DIT —FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为 。

《高等数学教学资料》fourier变换的性质复习

《高等数学教学资料》fourier变换的性质复习

03
Fourier变换的应用
信号处理
80%
信号的频谱分析
通过Fourier变换,可以将信号分 解成不同频率的成分,从而更好 地理解信号的特性。
100%
信号去噪
在信号处理中,Fourier变换可以 帮助我们识别和去除噪声,提高 信号的清晰度。
80%
信号压缩
通过识别信号中的冗余成分, Fourier变换可以实现信号压缩, 减少存储和传输所需的资源。
卷积的逆Fourier变换
总结词
卷积的逆Fourier变换是将两个函数在频 域中的乘积转换为时域表示的过程。
VS
详细描述
卷积的逆Fourier变换是将两个函数在频 域中的乘积转换为时域表示的过程。这个 过程可以通过将两个函数的Fourier变换 相乘,然后进行逆Fourier变换来实现。 在时域中,两个函数的乘积可以通过卷积 来表示,因此卷积的逆Fourier变换可以 用来计算两个函数的乘积在时域中的表示 。
02
Fourier变换的卷积性质
卷积定理
总结词
卷积定理是Fourier变换中的一个重要性质,它表明两个函数的卷 积的Fourier变换等于这两个函数Fourier变换的乘积。
详细描述
卷积定理是Fourier分析中的一个基本定理,它表明两个函数的卷 积的Fourier变换等于这两个函数Fourier变换的乘积。这个定理在 信号处理、图像处理、量子力学等领域有广泛的应用。
叠和计算量大。
习题答案与解析
01
进阶习题3解析
02
进阶习题4答案
03
进阶习题4解析
全面分析了Fourier变换在图像处 理中的优缺点和应用时的注意事 项。
Fourier变换在数值分析中主要用 于求解微分方程、积分方程等数 学问题,提高计算效率和精度。

复变函数 傅氏变换 习题解答复变函数 傅氏变换 习题解答

复变函数 傅氏变换 习题解答复变函数 傅氏变换 习题解答


(1)函数 f (t ) = ⎨
⎧1 − t 2 , | t |< 1 满足傅氏积分定理的条件,傅氏积分公式为 | t |> 1 ⎩ 0,
本文件是从网上收集,严禁用于商业用途!
an
| t |< 1 | t |> 1
证 f (t ) 是偶函数
| t |= 1 。
⎧ 0, −∞ < t < −1 ⎪−1, −1 < t < 0 ⎪ (3) f ( t ) = ⎨ 0 < t <1 ⎪ 1, ⎪ ⎩ 0, 1 < t < +∞
+∞ 1 +∞ jωt a ω e d ω = ( ) ∫0 a (ω ) cos ωtdω 2 ∫−∞
a(ω ) 是 ω 的偶函数。 (注也可由 1 题推证 2 题)
3.在题 2 中,设 f ( t ) = ⎨
⎧1, | t |≤ 1 ,试算出 a(ω ) ,并推证 ⎩0, | t |> 1
⎧π ⎪ 2 , | t |< 1 ⎪ +∞ sin ω cos ωt ⎪π d ω = ⎨ , | t |= 1 ∫0 ω ⎪4 ⎪ 0, | t |> 1 ⎪ ⎩
傅氏变换习题解答 习题一
1.试证:若 f (t ) 满足傅氏积分定理的条件,则有
f (t ) = ∫
其中
+∞
0
a (ω ) cos ωtd ω + ∫ b(ω ) sin ωtd ω
0
+∞
a (ω ) = b(ω ) =
证 f (t ) =
π∫ π∫
1
1
+∞
−∞ +∞
f (τ ) cos ωτ dτ , f (τ ) sin ωτ dτ

复变函数与积分变换:7-Fourier变换习题课

复变函数与积分变换:7-Fourier变换习题课

0
1
0
2 2 4 4 4 cos
td .

2
0 4
2 costd
4
e|t| cos t .
2
13
机动 目录 上页 下页 返回 结束
例4 已知某函数的傅氏变换为
F ( ) sin ,
求该函数.

f
(t)
1
2
sin eitd
1
0
sin
cos
td
1
2
0
sin(1
t )d
25
机动 目录 上页 下页 返回 结束
4. 综合运用
例7 计算函数f (t) tu(t)et sin 0t的Fourier
变 换.
解 法一 由F [u(t )et ] 1 ,
i
利用位移性质
F [u(t )et sin 0t]
1 F [u(t )etei0t ] 1 F [u(t )etei0t ],
2i
2i
26
机动 目录 上页 下页 返回 结束
1
1
1
1
2i i( 0 ) 2i i( 0 )
2 0
0 (
i
)2
,
再由微分性质
F
[tu(t )et
sin 0t]
i
d
d
02
0 (
i )2
20 (
[
2 0

i ) i)2 ]2
27
机动 目录 上页 下页 返回 结束
法二
F
[tu(t )et
(C )F [2 (t )] 1
(D)F [sgn(t )] 2
i

傅里叶变换练习题

傅里叶变换练习题

证:因为 、 在 上可积, , ,
设 ,

由系数公式得

当 时,

于是由贝塞尔等式得

总练习题15
1试求三角多项式
的傅里叶级数展开式.
解:因为 是以 为周期的光滑函数,所以可展为傅里叶级数,
由系数公式得

当 时,


故在 , 的傅里叶级数就是其本身.
2设 为 上可积函数, 为 的
傅里叶系数,试证明,当 时,
推论1设 在 上可积,则
, .
推论2设 在 上可积,则


定理2设以 为周期的函数 在 上可积,则

此称为 的傅里叶级数的部分和的积分表达式.
二、收敛性定理的证明
定理3 (收敛性定理)设以 为周期的函数 在 上按段光滑,则

定理4如果 在 上有有限导数,或有有限的两个单侧导数,则

定理5如果 在 按段单调,则

由贝塞尔等式得 ,
故 .
(3)取 ,由§1习题1 (2)得

由贝塞尔等式得 ,
故 .
4证明:若 均为 上可积函数,且他们的傅里叶级数在 上分别一致收敛于 和 ,则

其中 为 的傅里叶系数, 为 的傅里叶系数.
证:由题设知 ,

于是



所以 .
5证明若 及其导函数 均在 上可积, ,
,且成立贝塞尔等式,则
由系数公式得

当 时,
所以
, 为所求.
2设 是以 为周期的可积函数,证明对任何实数 ,有


证:因为 , , 都是以 为周期的可积函数,所以令 有

数学分析习题及答案 (47)

数学分析习题及答案 (47)

习题 16.4 Fourier 变换和Fourier 积分1.求下列定义在),(+∞-∞的函数的Fourier 变换:⑴⎩⎨⎧<<=;,0,0,)(其它δx A x f ⑵ f x a x ()e ||=-, a >0;⑶ f x a x ()e =-2, a >0; ⑷ ⎩⎨⎧<≥=-;0,0,0,e )(2x x x f x ⑸ ⎩⎨⎧>≤=;||,0,||,cos )(0δδωx x x A x f 00≠ω是常数,0ωπδ=。

解 (1)()()i x f f x e dx ωω+∞--∞=⎰%0i x Ae dx δω-=⎰=)1(ωδωi e i A--。

(2)()()i x ff x e dx ωω+∞--∞=⎰%0()()0a i x a i x e dx e dx ωω+∞-+--∞=+⎰⎰ 11a i a i ωω=++-=222ω+a a。

(3)()()i x f f x e dx ωω+∞--∞=⎰%2ax i x e dx ω+∞---∞==⎰2cos ax e xdx ω+∞--∞⎰22t e+∞-=⎰ (利用例15.2.8的结果) 2-==aea42ωπ-。

(4)()()i x ff x e dx ωω+∞--∞=⎰%(2)0i x e dx ω+∞-+==⎰ωi +21。

(5)()()i x ff x e dx ωω+∞--∞=⎰%=0cos i x A xe dx δωδω--⎰ 0cos cos A x xdx δδωω-=⎰(虚部为奇函数,积分为0)00[cos()cos()]2A x x dx δδωωωω-=-++⎰ =0000sin()sin()()()A ωωδωωδωωωω⎡⎤-++⎢⎥-+⎣⎦。

2.求f x ax ()e =-(),0[+∞∈x ,a >0)的正弦变换和余弦变换。

解 正弦变换:()()sin f f x xdx ωω+∞=⎰%0sin ax e xdx ω+∞-==⎰22ωω+a ,余弦变换:()()cos f f x xdx ωω+∞=⎰%0cos ax e xdx ω+∞-==⎰22ω+a a。

实验五快速Fourier变换FFT及的应用

实验五快速Fourier变换FFT及的应用

实验五 快速Fourier 变换(FFT)及应用一、 实验目的1.验证频域采样定理。

2.在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉MATLAB 中的有关函数。

3.应用FFT 对典型信号进行频谱分析。

4. 了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中能够正确应用FFT 。

5. 应用FFT 实现序列的线性卷积。

二、 实验内容1. 验证频域采样定理。

利用MATLAB 产生一个长度为N 的三角波序列)(n x ,并完成以下要求:(1) 计算N=30时的64点DFT ,并图示);()(k X n x 和(2) 对)(k X 在[0,231,,1,0),2()(1 ==k k X k X ;(3) 求出)(1k X 的32点IDFT ,即得到)]([)(11k X IDFT n x =;(4) 绘制出321))((n x 的波形,观察321))((n x 和)(n x 的关系,并加以说明。

解:MATLAB 程序清单如下:M=64; % 指定DFT 点数N=30; % 指定序列长度n=0:N-1;xn=2*[0:N/2,N/2-1:-1:1]/N; % 产生幅度为1的N 点三角波序列Xk=fft(xn,M); % 计算Xk =DFT[x(n)];Xk1=Xk(1:2:M); % 对Xk 隔点抽取得到Xk1xn1=ifft(Xk1); % 对Xk1作IDFT 得到xn1n1=0:2*M;xc=xn1(mod(n1,M/2)+1); % 对xn1以M/2为周期进行延拓subplot(2,2,1);stem(n,xn,'.');grid;title([num2str(M/2) '点三角波序列x(n)']);subplot(2,2,2);k=0:M-1;stem(k,abs(Xk),'.');grid;axis([0,M,0,max(Xk)]);title(['三角波序列x(n)的' num2str(M) '点DFT:X(k)']);subplot(2,2,4);k1=0:M/2-1;stem(k1,abs(Xk1),'.');grid;axis([0,M/2,0,max(Xk)]);title(['隔点抽取X(k)得到' num2str(M/2) '点DFT:X_1(k)']);subplot(2,2,3);stem(n1,xc,'.');grid;axis([0,2*M,0,max(xn1)]);title('序列x_1(n)的周期延拓');由程序运行结果可以看出,在频域[0,2)(n x 的长度时,将产生时域混叠,不能由)(1k X 来恢复出原序列)(n x 。

积分变换(Fourier)课件与习题

积分变换(Fourier)课件与习题

的工程中使用的周期函数都可以用一系列的三角函数的
线性组合来逼近.---- Fourier级数
方波
4个正弦波的逼近
100个正弦波的逼近
4
研究周期函数实际上只须研究其中的一个周 期内的情况即可, 通常研究在闭区间[T/2,T/2]内 函数变化的情况.
T T fT (t )为T 周期函数,在 , 上满足 2 2 Dirichlet条件: fT (t )连续或仅有有限个第一类间断点; fT (t )仅有有限个极值点 则fT (t )可展开为Fourier级数,且在连续点t处成立: a0 fT (t ) an cos nt bn sin nt 2 n1

18
一般地, 对于周期T
1 T2 j n t cn T fT (t )e dt T 2 1 1 j n t e dt T 1 1 1 1 j n t j n j n e e e Tj n Tj n 1 2 sin n 2 sinc( n ) (n 0,1,2, ) T n T
cos nt
e
int
e 2
int
, sin nt
e
int
e 2i
int
6
级数化为: a0 e int e int e int e int an bn 2 n 1 2 2i a0 a n ibn int a n ibn int e e 2 n 1 2 2
1 从 而f (t ) f ( )cos (t )d d 2 1 可得 f (t ) f ( )cos (t )d d , 0 这就是f (t )的Fourier积分公式的三角形式。

积分变换课后答案

积分变换课后答案

1-11. 试证:若()f t 满足Fourier 积分定理中的条件,则有()()()d d 0cos sin f t a t b t ωωωωωω+∞+∞=+⎰⎰其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:利用Fourier 积分的复数形式,有()()j j e e d π12t tf t f ωωτω+∞+∞--∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰()()()j j d 1cos sin 2a b t t ωωωωω+∞-∞⎡⎤=-+⎣⎦⎰ 由于()()()(),,a a b b ωωωω=-=--所以()()()d d 11cos sin 22f t a t b t ωωωωωω+∞+∞-∞-∞=+⎰⎰ ()()d d 0cos sin a t b t ωωωωωω+∞+∞=+⎰⎰2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2) ()0,0;e sin 2,0tt f t t t -⎧<⎪=⎨≥⎪⎩ 3) ()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩分析:由Fourier 积分的复数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞+∞⎧====-⎨-∞⎩⎰⎰F122330sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f (t )的Fourier 积分为j 311()()e d ()cos d 02ππ4(sin cos )cos d 0πtf t F F t t ωωωωωωωωωωωω+∞+∞==-∞+∞-=⎰⎰⎰ 2)所给函数为连续函数,其Fourier 变换为()[]j j ω()()e d e sin 2e d 0tt t F f t f t t t t ωωτ---+∞===-∞⎰⎰F2j 2j j (12j j )(12j j )e e 1e e d [e e ]d 02j 2j 0t t t t t t t t ωωω----+--+++∞+∞-=⋅⋅=-⎰⎰ (12j j )(12j j )01e e 2j 12j j 12j j t t ωωωω+∞-+--++⎡⎤=+⎢⎥-+-++⎣⎦ ()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+=⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数)f (t )的Fourier 变换为()j 1()e d 2πt f t F ωωω+∞=-∞⎰ ()()224252j 1cos jsin d 2π256t t ωωωωωωω⎡⎤--+∞⎣⎦=⋅--∞-+⎰ ()()()2224242245cos 2sin 5sin 2cos 11d d π256π2565cos 2sin 2d π0256t t t t t t ωωωωωωωωωωωωωωωωωωωωω-+--+∞+∞=+-∞-+-∞-+-++∞=-+⎰⎰⎰这里用到奇偶函数的积分性质.3)所给函数有间断点-1,0,1且f (-t )= - f (t )是奇函数,其Fourier 变换为()[]j ()()e d 2j ()sin d 0tF f t f t t f t t t ωωω-+∞+∞===--∞⎰⎰F12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数)f (t )的Fourier 积分为()()j j ()e d sin d π0π021cos sin d π0tf t F F t t ωωωωωωωωωω+∞+∞=+∞-=⎰⎰⎰1=2其中t ≠-1,0,1(在间断点0t 处,右边f (t )应以()()00002f t f t ++-代替).3.求下列函数的Fourier 变换,并推证下列积分结果: 1)()e(0),tf t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰ 2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰ 3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t t t ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为连续的偶函数,其Fourier 变换为()()j e e d 2e cos d 0t t tF f t t t t βωβωω---+∞+∞⎡⎤===⎣⎦-∞⎰⎰F()2222e cos sin 22t t t t t ββωωωββωβω-=+∞=-+==++ 再由Fourier 变换得()()j 22112e d cos d 2ππ0tf t F t t ωβωωωβω+∞+∞==-∞+⎰⎰ 即 22cos πd e 02tt βωωβωβ-+∞=+⎰2)函数()e cos t f t t -=为连续的偶函数,其Fourier 变换为()j j ()e d e cos e d t t t F f t t t t ωωω---+∞+∞==-∞-∞⎰⎰j j j e e e e d 2t t t tt ω---+∞+-∞⎰ (1j j )(1j j )(1j j )(1j j )001e d e d e d e d 200tt t t t t t t ωωωω-+----+--+++∞+∞⎧⎫=+++⎨⎬-∞-∞⎩⎭⎰⎰⎰⎰ (1j j )(1j j )(1j j )(1j j )001e e e e 21j j 1j j 1j j 01j j 0t t t t ωωωωωωωω+--++-+++-⎧⎫+∞+∞=+++⎨⎬+--∞---∞-+-+-⎩⎭2411111221j j 1j j 1j j 1j j 4ωωωωωω⎧⎫-+=+++=⎨⎬+----+-+-+⎩⎭ 再由Fourier 变换公式得()()2j 41112()e d cos d cos d 2ππ0π04tf t F F t t ωωωωωωωωωω+∞+∞+∞+===-∞+⎰⎰⎰ 即 242πcos d e cos 042tt t ωωωω-+∞+=+⎰ 3)给出的函数为奇函数,其Fourier 变换为()()()ππj j ππed sin ed sin cos jsin d ttF f t t t t t t t t ωωωωω+∞---∞--===-⎰⎰⎰()()ππ002j sin sin d j cos 1cos 1d t t t t t t ωωω⎡⎤=-=+--⎣⎦⎰⎰ ()()2sin 1πsin 1πsin sin 2jsin j j 1010111t t ωωωπωπωπωωωωω⎛⎫+---⎛⎫=-=-= ⎪⎪+-+--⎝⎭⎝⎭ ()()()-1j 2112jsin πe d cos jsin d 2π2π1tF F t t ωωωωωωωωω+∞+∞-∞-∞⎡⎤==+⎣⎦-⎰⎰F20sin ,π2sin πsin d π10,πt t t t ωωωω+∞⎧≤⎪=-=⎨->⎪⎩⎰ 故2πsin ,πsin πsin 2d 10,πt t t t ωωωω+∞⎧≤⎪=⎨-⎪>⎩⎰4.求函数()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有()()002sin d sin d πf t t f ωωτττω+∞+∞⎡⎤=⎢⎥⎣⎦⎰⎰002sin d sin d πe t t βτωωτω+∞+-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()220sin cos 2sin d π0e t t βτβωωωωωβτω+-∞⎡⎤-+∞=⎢⎥+⎣⎦⎰ 2202sin d .πt ωωωβω+∞=+⎰ 根据Fourier 余弦积分公式,用分部积分法,有()()002cos d cos d πf t t f ωωτττω+∞+∞⎡⎤=⎢⎥⎣⎦⎰⎰ 002cos d cos d πe tt βτωωτω+∞+-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()220sin cos 2cos d π0e t t βτβωωωωωβτω+-∞⎡⎤-+∞=⎢⎥+⎣⎦⎰ 2202cos d .πt ωωωβω+∞=+⎰ 1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰—(令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰ (换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t tF f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰ (换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰ 所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1ss s tf t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ由此,当0t α=>时,可得()()20sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦ 其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰ ()b1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d r F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im sin d r F f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦ 反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d iF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰ 当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πtt t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier 变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222a a t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :—()()()()j 1δδδδe d 222t a a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F 由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t tf t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin532f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ5δ5δ522f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F .14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则 ()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j ee d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e eed cose d cos 22t t tt F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t T f t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011ed e d e d TTTn tn t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n n ωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑1-31.若1122()[()],()[()],F f t F f t ωω== F F ,αβ是常数,证明(线性性质):1212()()()()f t f t F F αβαωβω+=+⎡⎤⎣⎦F -11212()()()()F F f t f t αωβωαβ+=+⎡⎤⎣⎦F分析:根据Fourier 变换的定义很容易证明. 证明:根据Fourier 变换与逆变换的公式分别有1212()()()()tf t f t f t f t t ωαβαβ+∞--∞+=+⎡⎤⎡⎤⎣⎦⎣⎦⎰F j e d12()()tt f t t f t t ωωαβ+∞+∞---∞-∞=+⎰⎰j j ed e d12()()F F αωβω=+-112121()()()()2tF F F F ωαωβωαωβωω+∞-∞+=+⎡⎤⎡⎤⎣⎦⎣⎦⎰Fj e d π1211()()22t tF F ωωαωωβωω+∞+∞-∞-∞⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰j j e d e d ππ12()()f t f t αβ=+6.若()[()]F f t ω= F ,证明(翻转性质):()[()]F f t ω-=- F 分析:根据Fourier 变换的定义,再进行变量代换即可证明. 证明:()[()]t f t f t t ω+∞--∞-=-⎰F j e d (令t u -=)()()u f u u ω+∞---∞=⎰j e d(换u 为t )()()tf t t ω+∞---∞=⎰j ed()F ω=-9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,利用对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]t f t f t t ω+∞--∞=⎰F j e d 11t t ω--=⎰j e d1cos t t ω=⎰d 1sin tt ωω=⎰d由对称性质:()[()]f t F ω= F ,则()[()]2,F t f ω=-F π有()sin [()]2t F t f t ω⎡⎤==-⎢⎥⎣⎦F F π (),1sin 0,1t f t ωωω⎧<⎪⎡⎤=-=⎨⎢⎥>⎣⎦⎪⎩F π π 12.利用能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值: 1)21cos xx x +∞-∞-⎰d ; 2)42sin x x x +∞-∞⎰d ;3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x x x +∞+∞-∞-∞-=⎰⎰d d(令2xt =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 21sin 2t t ω+∞-∞⎡⎤=⎢⎥⎣⎦⎰F d π 12112ω-=⎰πd π=π 2)()22422sin 1cos sin x x xx x x x+∞+∞-∞-∞-=⎰⎰d d 22sin sin cos x x x x x x x +∞+∞-∞-∞⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭⎰⎰d d 21sin 2t t t +∞-∞⎛⎫=- ⎪⎝⎭⎰πd22=πππ-=3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中221111tt t t ω+∞--∞⎡⎤=⎢⎥++⎣⎦⎰F j e d 20cos 21t t t ω+∞=+⎰d 22ωω--==πe πe 从而()2221121x x ωω+∞+∞--∞-∞=+⎰⎰d πe d π2201ωω+∞-=⎰πe d π20122ω-+∞=⋅=-ππe 4)()()2222221111x x x x x x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d arctan 2x+∞-∞=-π2222=+-=ππππ1-41.证明下列各式: 2)()1f t ()()()()()23123f t f t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212d dd;d d d f t f t f tf t f t f t tt t⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰分析:根据卷积的定义证明. 证明: 2) ()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰()()()132d f f u f t u du τττ+∞+∞-∞-∞⎡⎤=--⎢⎥⎣⎦⎰⎰ ()()()132d d f f u f t u u τττ+∞+∞-∞-∞=--⎰⎰()()()123d d f f t u f u uτττ+∞+∞-∞-∞⎡⎤=--⎢⎥⎣⎦⎰⎰ ()()()123d f t u f t u f u u +∞-∞⎡⎤=--⎣⎦⎰()()()123f t f t f t ⎡⎤=⎣⎦6)()()()()1212d d d d d f t f t f f t tt τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰, ()()()()1212d d d d d f t f t f t f t t τττ+∞-∞⎡⎤⎡⎤=-⋅⎢⎥⎣⎦⎣⎦⎰ ()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10) ()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不能随意调换()1f t 和()2f t 的位置.解:由()()1e ,0e 0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩, 所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠的区间,采用解不等式组的方法.因为()()210,0;0,0f t f t ττττ>≠->-≠.即必须满足 00t ττ>⎧⎨->⎩, 即0t ττ>⎧⎨<⎩, 因此 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰()0sin ed t t ατττ--=⎰e sin e d t t αατττ-=⎰(分部积分法)()2e sin cos e 10ttατααττα-⎡⎤-=⎢⎥+⎣⎦ ()22e sin cos 1e11tαταατταα-⎡⎤-=+⎢⎥++⎣⎦ 2sin cos e 1tααττα--+=+ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦F F ,证明:()()()()11221*2πF f t t F f ωω⎡⎤⋅=⎣⎦F证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰ ()()j 211e d d 2πut F u f t t u ω+∞+∞--∞-∞⎡⎤=-⋅⋅⎢⎥⎣⎦⎰⎰ ()()j 211e d d 2πut F u f t t u ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰ ()()j 211e d d 2πut F u f t u t ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰—()()j 121e d d 2πut f t F u u t ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰ ()()j j 121e e d d 2πst tf t F s s t ω+∞+∞--∞-∞⎡⎤=⋅⎢⎥⎣⎦⎰⎰ ()()()()j 1212e d t f t f t t f t f t ω+∞--∞⎡⎤=⋅⋅=⋅⎣⎦⎰F5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F ,又 ()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-. 由位移性质有()()()()()0000111πδπδ2j j j f t ωωωωωωωω⎛⎫⎡⎤=-+-+- ⎪⎣⎦ ⎪-+⎝⎭F()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的定义,有()()j 00e sin e sin e d t t tt u t t u t t ββωωω+∞----∞⎡⎤⋅=⋅⎣⎦⎰F ()j 00sin ed tt t βωω+∞-+=⎰()()()j 000220ej sin cos 0j tt t βωβωωωωβωω-+⎡⎤-+-+∞⎣⎦=++()22j ωβωω=++5)利用位移性质及()u t 的Fourier 变换,有()()0j 0e t u t t u t ω-⎡⎤⎡⎤-=⎣⎦⎣⎦F F ()0j 1e πδj t ωωω-⎛⎫=+⎪⎝⎭再由象函数的位移性质,有()()()()000j j 0001e e πδj t tu t t ωωωωωωω--⎡⎤⎡⎤-=+-⎢⎥⎣⎦-⎢⎥⎣⎦F 7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由定义知()()j e d S R ωτωττ+∞--∞=⎰2j 1e e d 4a τωττ+∞---∞=⎰ 02j 2j 011e e d e e d 44a a τωττωτττ+∞----∞=+⎰⎰ ()()()2j 2j 001e 1e 42j 42j a a a a ωτωτωω--++∞=+--∞-+2211142j 2j 4aa a a ωωω⎛⎫=+= ⎪-++⎝⎭ 9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()()()e,e0,t t t f t u t t ατατττττ-+-+⎧>-⎪+=+=⎨<-⎪⎩当0τ>时,()()0f t f t τ+≠的区间为()0,+∞,所以()()()()d e ed t t R f t f t t t αταττ+∞+∞-+--∞=+=⎰⎰22011eed ee e 22tt t αταατααταα+∞-----+∞===--⎰当0τ<时,()()0f t f t τ+≠的区间为(),τ-+∞,所以()()()d R f t f t t ττ+∞-∞=+⎰()e ed t t t ατατ+∞-+--=⎰2eed tt ατατ+∞---=⎰21e e2t ατατα--+∞-=-21e e 2ατατα-=1e 2ατα= 因此,()1e2R αττα-=,现在可以求得()f t 的能量谱密度,即 ()()j ed S R ωτωττ+∞--∞=⎰j 1e e d 2ατωττα+∞---∞=⎰()()0j j 01e d e d 2αωταωτττα+∞--+-∞⎡⎤=+⎢⎥⎣⎦⎰⎰ ()()()j j 0111e e 2j j 0αωταωτααωαω--+⎡⎤+∞=+⎢⎥--∞-+⎣⎦1112j j ααωαω⎡⎤=+⎢⎥-+⎣⎦221αω=+ 1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 分析:求解微分、积分方程的步骤:1)对微分、积分方程取Fourier 变换得象函数的代数方程; 2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解).解:设()(),x t X ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,得 ()()j 1.X X ωωω+= 即()1.1X j ωω=+其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩ 4.求解下列积分方程: 1)()()()222210;y a b t b t aτττ+∞-∞=<<+-+⎰d2)()222t t y τττ+∞----∞=⎰e d πe.解:1)利用卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a+的卷积,即()221y t t a+.设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,有()222211y t t a t b ⎡⎤⎡⎤=⎢⎥*+⎢⎥⎣⎦⎣+⎦F F即()222211y t t a t b ⎡⎤⎡⎤⎡⎤⋅=⎣⎦⎢+⎥⎢⎥⎣⎦⎣⎦+F F F 易知:22cos 2tt βωωβωβ+∞-=+⎰πd e ,有 ()222211t tY t t t a t bωωω+∞+∞---∞-∞⋅=++⎰⎰j j e d e d 即()222200cos cos 22t t Y t t t a t bωωω+∞+∞⋅=++⎰⎰d d 所以()()22b b a a a b Y b aωωωω----==πee πe由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F ,()()-1b a a y t e b ω--⎥=⎡⎤⎢⎣⎦F()-1-b a a b a b b a ω--=⋅-⎡⎤⎢⎥⎣⎦F πe π()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,同理可得()22e 2πe t t y t --⎡⎤⎡⎤=⎢⎥⎣⎦⎥⎦F F利用钟形脉冲函数的Fourier 变换224e eπt A A ωβββ--⎡⎤=⎣⎦F 及由Fourier 变换的定义可求得:222e tβββω-⎡⎤=⎣⎦+F ,从而 ()22e 2πe t t y t --⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎣⎦⎣⎦⎥⎦F F F即()()2222222121Y ωωωωω--==++πe πe()22222ωωω--=-πeπj e从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F , 其中,记()22ef t ω-⎡⎤=⎣⎦F ,则()222πet f t -=,上式中第二项可利用微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e,则()()2222-12222t f t t ωω--⎡⎤⎛⎫''== ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭F πd j e e d 2222t-=πe 因此()2222222t t y t --=⋅-πeπeππ222221t t -⎛⎫=- ⎪⎭e π.5.求下列微分方程的解()x t :()()()()d ax t b x f t ch t τττ+∞-∞'+-=⎰其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程两边取Fourier 变换,可得()()()()j a X bX F cH ωωωωω+= 即()()(),j cH X a bF ωωωω=+从而()()()()-1.12tcH X a bF x t ωωωωωω+∞-∞⎡⎤==⎣⎦+⎰Fj πe d j 2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的方法来验证结果.1)()sin 2tf t =.分析:用Laplace 变换的定义解题.解: j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L ()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>. 2)()2e t f t -=.解:()()d d Re()e e eett sts tt t s s >-2222012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s sss+∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >.4)()sin cos f t t t =. 解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L01sin 2e d 2stt t +∞-=⎰22121244s s =⋅=++. 7)()2cos f t t =.解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L ()()2j 2j 001111cos 2e d e e d 2224s t s t st t t t s s +∞+∞--+-⎡⎤=+=++⎣⎦⎰⎰ ()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换:1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()24002d 3d d e e e stststf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L()∣∣24240231134.e e e e st st s ss s s----=-+=-+2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π02e d 3e d cos e d stst stf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L ()()()∣∣j j πj -j π22ππ0223e e 31e e d 122j j e e e s t s tt tsst st t s s s s --++∞+∞---⎛⎫+⎛⎫ ⎪=-+=-++ ⎪ ⎪--+⎝⎭⎝⎭⎰()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭ ⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()()()0δcos sin ed δcose d sin e d stst st f t t t u t t t t t t t t+∞+∞+∞---⎡⎤=-=-⎣⎦⎰⎰⎰L()()()∣∣∣j j j 00011cos e e d 12j 2j j j e e ees tj s tttst st t t t s s--++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰ ()222111111Re()2j j j 11s s s s s s ⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++.解:由[]2132!1232132m m m t s s s s st t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L .2)()1e t f t t =-. 解 :[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:()22-1e e 2e e t t t tt t t ⎡⎤⎡⎤=-+⎣⎦⎣⎦L L ()()()232322145.-1-1-1s s s s s s -+=-+=-1 5)()cos f t t at =. 解: 由微分性质有:[][]()2222222d d cos cos d d s s a t at at s s s a s a -⎛⎫=-=-= ⎪+⎝⎭+L L 6) ()5sin23cos2f t t t =-解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 []522222103sin 23cos 253444s t t s s s --=-=+++L 8)()4e cos4t f t t -=. 解: 由[]2cos 416t s +s=L 及位移性质有 42cos 4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的微分性质):()()()()()1,Re nn nF s t f t s c ⎡⎤=->⎣⎦L特别地,()()tf t F s '⎡⎤=-⎣⎦L ,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并利用此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224ett s s ωωω-===++22+3+3L,()()()()()32222343d 2sin 2d 444e ts s t st s s s -⎡⎤⎡⎤-++⎢⎥⎣⎦⎡⎤=-=-=⎢⎥⎣⎦⎡⎤⎡⎤+⎢⎥++⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦222+3+3+3L2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t t tt t t s s s --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L ,()()()02322222312132sin 2d 3434e t t s s t t t s s s s -'⎛⎫++ ⎪⎡⎤=-=⎢⎥ ⎪⎣⎦⎡⎤⎡⎤ ⎪++++⎣⎦⎝⎭⎣⎦⎰L3)()1ln1s F s s +=-,求()f t . 解:()1ln,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L()()()()()()'211111ee ttF s tf t tf t s s s -=-=-=-=-=--+-2L L L故 ()()-12sinh tF s f t t⎡⎤==⎣⎦L. 4.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L并利用此结论计算下列各式:1)()sin ktf t t=,求()F s . 解: ()2222sin kkkt s s kωωω===++L , 222sin 1d d 1s skt k s s t s k k s k ∞∞⎛⎫⎛⎫== ⎪ ⎪+⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎰⎰L πarctan arctan 2ss s k k∞==- 2)()3e sin 2t tf t t-=,求()F s .解:()()322e sin 234t t s -=++L ,()32e sin 22π3d arctan 2234t s t s s t s -∞⎡⎤+==-⎢⎥++⎣⎦⎰L 2-31.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦L L ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且()()()()j 1122j 1d 2πj F q F s q q f t f t ββ+∞-∞⎡⎤=-⎣⋅⎦⎰L其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也满足Laplace 变换存在定理的条件且()()()()1212e e ct ct f t f t f t f t M M ⋅=⋅≤⋅22e ,0ct M t =≤<+∞ 表明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换()()()120e d st F sf t f t t +∞-=⎰在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,并且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L ,则()1f t 的Laplace 反演积分公式为()()11j j 1e d 2πj qt q f F q t ββ+∞-∞=⎰ 从而()()()()12120e d stf t f t f t f t t +∞-⎡⎤⎣⋅=⎦⎰L()()j 12j e d 1e d 2πj q s t tF q q f t t ββ+∞+--∞∞⎡⎤=⎢⎥⎣⎦⎰⎰(交换积分次序)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰ ()()j 12j 1d 2πjF q F s q q ββ+∞-∞=-⎰ 2.求下列函数的Laplace 逆变换(象原函数);并用另一种方法加以验证. 1)()221F s s a=+. 2)()()()sF s s a s b =--.3)()()()2s cF s s a s b +=++.10)()()()2214sF s ss =++.解: 1)12211sin at s a a -⎡⎤=⎢⎥+⎣⎦L. 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭, ()()()11e e .at bt s a b s a s b a b-⎡⎤=-⎢⎥---⎣⎦L3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+, 故()()()()1222e at bts c c a b c a c e t b a s a s b b a a b ---⎡⎤⎡⎤+---⎢⎥⎢⎥=++-++--⎢⎥⎢⎥⎣⎦⎣⎦L10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有 ()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s -+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点,所以()()()()()2112211e 2j 2j Res k s sts k F s F s s s f t --==⎡⎤⎡⎤⎡⎤⎢⎥===⎣⎦⎣⎦⎢⎥⎣-⎦+∑LL()()2222j j e e 2j 2d d lim lim d d j st s s t s s s s s →→-⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎦⎣-⎣⎦+⎥ ()()()()()()2j 22244j22j 22j e e e e 2j 2j 2j 2l j im lim s s st st st st s s t t s s s s →→-⎡⎤⎡⎤⎢⎥⎢⎥=++---++⎢⎥⎢⎣⎦⎣-⎦-⎥ 2j 2j 2j 2j 8j 8j e e e e 1625616256t t t t t t --=---+ 2j 2j 2j 2j e e 1e e sin 2cos 282162j 168t t t t t t t t --+-=-+=-6)令()()()22212ln ,ln 1s F s F s s s s -'==-, ()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)mt n t (,m n 为正整数). 解:mt ()()()0d 1C d nttnknm mk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()()001C d 1d C nnt tkkk n km km k k n knn k k tt ττττ-++-===-=-⋅∑∑⎰⎰ ()()()11001C 1C 11m k n k nnkk k m n k n nk k t t t m k m k ++-++==⋅=-⋅=-++++∑∑()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出mt n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠.解 :sin kt ()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()()011cos cos 2d 224tt kt k t t k k ττ=-+--⎰()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+. 7) t sinh t解 :t sinh sinh t t = t ()0sinh d tt τττ=⋅-⎰()()0011e d e d 22t t t t ττττττ-=---⎰⎰ ()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττττ---⎡⎤=-+-=-++-=-⎢⎥⎣⎦⎰⎰ 9)()u t a - ()()0f t a ≥ .解:()u t a - ()()()()00,d d ,tt a t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰.10) ()δt a - ()()0f t a ≥. 解: 当t a <,()δt a - ()0f t =. 当t a ≥,()δt a - ()()()0δd tf t a f t τττ=-⋅-⎰()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.2.设()()f t F s ⎡⎤=⎣⎦L ,利用卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L 证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦L L L ,。

Fourier变换练习题(全,有答案)(可编辑修改word版)

Fourier变换练习题(全,有答案)(可编辑修改word版)

0
eateit dt
0
R
0
= lim e(ai)t dt lim e(ai)t dt
R
=
lim
R
0
e(ai )t (a i)
R 0
R R
lim e(ai)t R a i
0 R
1 a i
1 a i
2a a2 2
;
F1[F ()]
1 2
F ()eitd=
1 2
2a a2 2
sin
td
2
0
1 0
1d
cos
sin td
2
0
1
cos
1 0
1 0
cos d
sin td
2
0
1
cos
sin
1 sintd 0
2
0
1
cos
sin
sin
td
2
sin
2
cos
sin td
0
3
0,
(2)
f
(t
)
1,
1,
0,
2
1 2i (cos sin )(cost i sin t)d
2
2 sin sin t cos sin t d
0
2
解法二:由于 f(t)为奇函数,故由课本 P12 页的(1.12)式可知,
f
(t)
2
0
0
f
(
) sin d
sin
td
2
0
1 0
sin d
(1)
f
(t
)
t, 0,
| t | 1

[Fourier series傅里叶级数]例题01

[Fourier series傅里叶级数]例题01

Hence the Fourier cosine series is given by 1 cos 2nx. 2−1 4 n n=1

1 2 4 cos nx = − 2−1 n π π even n
Assume the Fourier cosine series converges pointwise to | sin x| on (−π, π ), then we have that | sin x| = Set x = 0, we get that 2 4 − π π
0
π 2
Page 4 of 9
Jacky Chong which means Y2 = X2 − (X2 , Z1 )Z1 7 = (cos x − cos 2x). 2 Computing the norm of Y2 yields Y2 then it follows Z2 =
2 2 π
Problem 3
k−1 k −1 i=1 (Xk , Zi )Zi , Xk − i=1 (Xk , Zi )Zi ) k−1 Xk − i=1 (Xk , Zi )Zi 2
= 1.
(b) Observe cos x + cos 2x
2 2
π
=
0 π
| cos x + cos 2x|2 dx cos2 x + 2 cos x cos 2x + cos2 2x dx
k−1 i=1 (Xk , Zi )(Zi , Zl ) k−1 Xk − i=1 (Xk , Zi )Zi k−1 (Xk , Zl ) − i=1 (Xk , Zi )δil k −1 Xk − i=1 (Xk , Zi )Zi
1 0

傅里叶变换练习题

傅里叶变换练习题
定理3 (收敛性定理)设以 为周期的函数 在 上按段光滑,则

定理4如果 在 上有有限导数,或有有限的两个单侧导数,则

定理5如果 在 按段单调,则

二 习题解答
1设 以 为周期且具有二阶连续的导函数,证明 的傅里叶级数在 上一致收敛于 .
证:由题目设知 与 是以 为周期的函数,且光滑,
故 ,

且 .
5.47.某信号的频谱密度函数为 则 ()
A. B。2
C. D。2
6.52.已知信号 的傅氏变换为 则 的傅氏变换为()
A. B。
C. D。
7.98. 周期信号的傅立叶变换为()
A. B。2 C。
8.3。符号函数 的频谱函数F(jω)=________________。
六、有一幅度为1,脉冲宽度为2ms的周期矩形脉冲,其周期为8ms,如图所示,求频谱并画出频谱图频谱图。(10分)
当 时,

于是

由贝塞尔不等式得 收敛,又 收敛,
从而 收敛,
故 在 上一致收敛.
2设 为 上可积函数,证明:若 的傅里叶级数在 上一致收敛于 ,则成立贝塞尔(Parseval)等式

这里 为 的傅里叶系数.
证:设 ,
因为 的傅里叶级数在 上一致收敛于 ,
所以 ,

于是 .而

所以 时,

故 .
3由于贝塞尔等式对于在 上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.
证:因为 为 上光滑函数,所以 为 上的连续函数,故可积.
由系数公式得

当 时,

故结论成立.
10证明:若三角级数 中的系数 满足关系 , 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.

傅氏变换习题解答

傅氏变换习题解答

⎰ +∞ f (t ) = ⎰(ω )sin (ωt )d ω( ) ⎰(ω ) (ω ) ω傅氏变换习题解答习题一1.试证:假设 f (t ) 满足傅氏积分定理的条件,那么有+∞ +∞ f (t ) = ⎰0a (ω) cos ωtd ω + ⎰0b (ω) s in ωtd ω其中a (ω) = 1 ⎰+∞f (τ ) co s ωτ d τ ,π -∞ b (ω) = 1 ⎰+∞f (τ ) s in ωτ d τπ -∞证 f (t ) = 1 ⎰+∞ ⎰+∞ f (τ )e - j ωτ d τ e j ωtd ω = 1 ⎰+∞ ⎰+∞ f (τ )(cos ωτ - jsin ωτ ) cos ωtd τ d ω2π -∞ -∞ 2π -∞ -∞+ 1 ⎰+∞ ⎰+∞f (τ )(cos ωτ - j s in ωτ ) j s in ωtd τ d ω = ⎰+∞ 1 ⎰+∞ f (τ )c os ωτ d τ cos ωtd ω2π -∞ -∞0 π -∞ +⎰+∞ 1 ⎰+∞f (τ )sin ωτ d τ si n ωtd ω = ⎰+∞ a (ω) cos ωtd ω + ⎰+∞ b (ω) s in ωtd ω -∞ π -∞0 0+∞因-∞f (τ )sin ωτ cos ωtd τ d ω为ω的奇函数, ⎰-∞f (τ )cos ωτ cos ωtd τ d ω为ω的偶函数。

2.试证:假设 f (t ) 满足傅氏积分定理的条件,当 f (t ) 为奇函数时,那么有+∞b 0其中b (ω ) = 2 ⎰+∞f (τ )sin (ωτ ) d τπ 0当 f (t ) 为偶函数时,那么有+∞f t = a cos t d 0其中a (ω ) = 2 ⎰+∞f (τ )cos (ωτ ) d τπ 0证 设 f (t ) 是奇函数f (t ) = 1 ⎰+∞ ⎰+∞ f (τ )e - j ωτ d τ e j ωt d ω = 1 ⎰+∞ ⎰+∞f (τ )(cos ωτ - jsin ωτ ) d τ e j ωt d ω2π -∞ -∞ 2π -∞ -∞= 1 ⎰+∞ ⎰+∞ f (τ )sin ωτ d τe j ωt d ω = 1 ⎰+∞b (ω )e j ωt d ω 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分变换练习题 第一章 Fourier 变换________系_______专业 班级 姓名______ ____学号_______§1 Fourier 积分 §2 Fourier 变换一、选择题1.设0()()f t t t δ=-,则[()]f t =F [ ] (A )1 (B )2π (C )0j t eω (D )0j t eω-000[()]()i t i t i t t t f t t t e dt e e ωωωδ∞---=-∞⎛⎫=-== ⎪⎝⎭⎰F 二、填空题1.设0a >,,0(),0at at e t f t e t -⎧<=⎨>⎩,则函数()f t 的Fourier 积分表达式为2202cos atdt a ωπω∞+⎰ 000()()00()()2201()[()]()==lim lim 112=lim lim ;()112[()]()=22i t at i t at i t R a i t a i tR R R R a i t a i t R R R i tF f t f t e dt e e dt e e dt e dt e dt e e a a i a i a i a i a F F e d ωωωωωωωωωωωωωωωωωππ∞∞-----∞-∞-+-→∞→∞--+-→∞→∞-∞--∞==+++=+=-+-+-+=⎰⎰⎰⎰⎰⎰F F 22220(cos sin )2cos =a t i t d a a t d a ωωωωωωπω∞-∞∞⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎰⎰ 2.设[()]()f t δω=F ,则()f t =12π1111[()]()=222i ti t e d e ωωωδωδωωπππ∞-=-∞⎛⎫== ⎪⎝⎭⎰F 3.设2()sin f t t =,则[()]f t =F ()[(2)(2)]2ππδωδωδω-++-2221cos2[()]()=sin 211()()[(2)(2)]242i t i t i t i t it it i tt f t f t e dt te dt e dt e dt e e e dt ωωωωωππδωδωδω∞∞∞----∞-∞-∞∞∞----∞-∞⎛⎫-== ⎪ ⎪ ⎪ ⎪=-+=-++- ⎪⎝⎭⎰⎰⎰⎰⎰F4.设()δt 为单位脉冲函数,则2()cos ()3πδ+∞-∞+=⎰t t dt 14221()cos ()cos ()334t t dt ππδ+∞-∞⎛⎫+== ⎪⎝⎭⎰ 三、解答题1.求下列定积分: (可用《高等数学》的方法做)1(1)sin azebzdz ⎰ 1(2)cos azebzdz ⎰1()111()0000222222101(cos sin )((cos sin )1)()cos sin 1sin cos (cos sin )(co a ib z a ib az az ibz a ib za a a a a azaxe e e bz i bz dz e e dz e dz a iba ibe b i b a ib ae b be b ae b be b b i a b a b a b I e bz i bz dz e +++-+====+++-+--+-==++++=+=⎰⎰⎰⎰在原积分中,由于被积函数解析,则1111s sin ),cos Re ;sin Im ax ibx azaz bx i bx dx e e dx e bzdz I e bzdz I+===⎰⎰⎰⎰从而 2.求矩形脉冲函数,0()0,A t f t τ≤≤⎧=⎨⎩其他的Fourier 变换。

(1)[()]()=Ai i ti tA e f t f t edt Aedt i τωωωω∞----∞-==⎰⎰F3.求下列函数的Fourier 积分: ,||1(1)()0,||1t t f t t ≤⎧=⎨>⎩,解法一:1112221()()=1112sin (cos )112sin ()()(cos )2212sin (cos )(cos sin )22sin sin cos sin i ti t i ti i i ti t F f t edt te dti ti i ie e e if t F e d e d it i t d t tωωωωωωωωωωωωωωωωωωωωωωωππωωωωωωωπωωωωωωωπ∞---∞----∞∞-∞-∞∞-∞=++-==-=-==-=-+-=⎰⎰⎰⎰⎰;2d ωω∞⎰解法二:由于f(t)为奇函数,故由课本P12页的(1.12)式可知,100001110000010022()()sin sin sin sin 2121cos sin cos cos sin 21sin 21sin cos sin cos f t f d td d td d td d td td τωττωωτωττωωππτωτωωτωτωττωωπωπωωτωωωωωπωωπωω∞∞∞∞∞∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤--=⋅=-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤--⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰02sin 2sin cos sin td td ωωωωωωωπω∞∞-=⎰⎰110,1,1,10,(2)()1,01,0,1.()()()=()(cos sin )2()sin 2cos 2(cos 1)2sin 112(cos ()()=22i ti tt t f t t t f t F f t edt f t t i t dt i f t tdti ti i tdt i f t F e dt ωωωωωωωωωωωωωππ∞∞∞--∞-∞∞-∞-∞<<-⎧⎪--<<⎪=⎨<<⎪⎪<<+∞⎩=-=--=-===⎰⎰⎰⎰⎰解法一:为奇函数,从而1)(cos 1)(cos sin )2(1cos )sin i t e dtit i t tdt dtωωωωωωωπωπω∞-∞∞∞-∞--+-==⎰⎰⎰解法二:同上题,根据余弦逆变换公式可得:10000100022()()sin sin sin sin 2cos 21cos sin sin f t f d tdt d tdttdt tdt τωττωωττωππωτωωωπωπω∞∞∞∞∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤--==⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰4.求函数sin ,||()0,||t t f t t ππ≤⎧=⎨>⎩的Fourier 积分,并计算下列积分:2sin ,||sin sin 210,||t t t d t ππωπωωωπ+∞⎧≤⎪=⎨-⎪>⎩⎰解:同上题,0000000022()()sin sin sin sin sin 11sin(1)sin(1)[cos(1)cos(1)]sin sin 111sin(1)sin(1)11f t f d tdt d tdtd tdt tdt ππππτωττωτωττωππωτωτωτωττωωππωωωπωππωω∞∞∞∞∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤+-=-+--=--⎢⎥⎢⎥+-⎢⎥⎣⎦⎣⎦+-⎡⎤=--⎢+-⎣⎰⎰⎰⎰⎰⎰⎰220002sin sin 2sin sin sin 11t ttdt dt dt ωπωωπωωπωπω∞∞∞=-=⎥--⎦⎰⎰⎰(0)(0)0.2f f t πππ±++±-=±=当时,从而2sin ,||sin sin 210,||t t t d t ππωπωωωπ+∞⎧≤⎪=⎨-⎪>⎩⎰5.设a 为实数,求积分j 21a e d ωωω+∞-∞+⎰的值。

(分别讨论a 为正实数和负实数的情形) 222201()12Res[(),]2lim ;102Res[(),]2lim .11ia iaz iaza z i ia ia iaz iaz a z i a R z z i z e e d i R z e i i e z ia e e e d d i R z e i i e z i ωωσσωωπππωωσπππωσ+∞--∞→--=-+∞+∞--∞-∞→>==+===++<====+++⎰⎰⎰当时,在上半平面只有一个奇点,从而当时,解法二:参考课本146页Fourier 变换表中的21,即222[]Re()0c tce c c ω-=<+, 取c=-1,从而-22[]1te ω=+,则积分 j 122j 211[]211221taa t a t aa ae e ed e d eωωωπωωωπω--+∞--∞==+∞--∞===++⇒=+⎰⎰积分变换练习题 第一章 Fourier 变换________系_______专业 班级 姓名______ ____学号_______§3 Fourier 变换的性质 §4 卷积与相关函数一、选择题1.设[()]()f t F ω=F ,则[(2)()]t f t -=F [ ] (A )()2()F F ωω'- (B )()2()F F ωω'-- (C )()2()iF F ωω'- (D )()2()iF F ωω'-- (利用Fourier 变换的线性性质和象函数的导数公式)2.设[()]()f t F ω=F ,则[(1)]f t -=F [ ] (A )()j F eωω- (B )()j F eωω-- (C )()j F eωω (D )()j F eωω-1(1)()[(1)](1)()()()()t s i t i s i i s i f t f t e dt f s e ds e f s e ds e F ωωωωωω-=+∞-∞----∞+∞+∞-----∞⎛⎫-=-=- ⎪⎪⎪==-⎝⎭⎰⎰⎰ 二、填空题1.设23[()]1f t ω=+F ,则()f t =-32te-2--22--[]1333[]()212ttte e ef t ωω⎛⎫= ⎪+ ⎪ ⎪=⇒= ⎪+⎝⎭由1三5解法二中的分析可知:,从而2.设()()tf t e u t -=⋅,则[()]f t =F 。

()()Fourier ['()][()]()()()()()()()()()[][()()][()][()]()[][t tt t tt t tt t u t d f t i f t g t e u t e d dg t e d e t g t e t dt dg t g t e t g t e t dt dg t i g dt δττωδττδττδδδδω-∞---∞----∞--===⋅==-+=-+=-+=-+=⎰⎰⎰已知单位阶跃函数,及变换的微分性质:令,则,即,又由(1)(1)0()]()[()]1[()]=()1111111t i tt i t i tt t e t e dt e t g t t e dt i i i e i i ωωωδδδωωωωω+∞---+∞-+-∞-∞-+=⎛⎫⎪⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪==+++ ⎪ ⎪=⋅= ⎪++⎝⎭⎰⎰,从而三、解答题1.若()[()]F f t ω=F ,且0a <,证明:1[()]()f at F a aω=-F 11[()]()=()()()s s at i i s i taa ds f at f at edt f s ef s e ds F a a a aωωωω∞-∞∞=-⋅-⋅--∞+∞-∞==-=-⎰⎰⎰2.若()[()]F f t ω=F ,证明:()[()]dF jtf t d ωω=-F 11[()]()111[()]()()()22211()()()()()22i ti ti ti ti t dF itf t d d d d F F e d F e F e d d d d F ite d it F e d it f t ωωωωωωωωωωωωωωπωππωωωωωππ-∞∞∞--∞-∞-∞∞∞-∞-∞=-==-=-=-=-⎰⎰⎰⎰即证:3.已知某函数的Fourier 变换为sin ()F ωωω=,求该函数()f t 。

相关文档
最新文档