分数及整数裂项计算
第五章 裂项综合(讲义)
第五章 裂项综合(讲义)➢ 知识点睛1. 整数裂项对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。
如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。
而裂项法就是一种行之有效的巧算和简算方法。
通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。
现举例说明:例如:109433221⨯+⋅⋅⋅+⨯+⨯+⨯()3121032121⨯⨯⨯-⨯⨯=⨯()1232341233⨯=⨯⨯-⨯⨯⨯()1343452343⨯=⨯⨯-⨯⨯⨯……那么,原式()31109811109321432210321⨯⨯⨯-⨯⨯+⋅⋅⋅+⨯⨯-⨯⨯+⨯⨯-⨯⨯= ()3121011109⨯⨯⨯-⨯⨯= 330= 因此可以得知:()()()112231123n n n n n ⨯+⨯++⨯+=⨯⨯+⨯+L 2. 分数裂项(1) “裂差”型运算对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- (2) “裂和”型运算 常见的裂和型运算主要有以下两种形式:11a b a b a b a b a b b a+=+=+⨯⨯⨯➢ 精讲精练【板块一】整数裂项初步经典例题1观察下列规律,在括号内填入适当的数,使下述三个式子“左边相加=右边相加”。
(1)()()[]2103213121⨯⨯-⨯⨯⨯=⨯ (2)()()[]32323132⨯⨯-⨯⨯⨯=⨯ (3)()()[]43433143⨯⨯-⨯⨯⨯=⨯算一算:87766554433221⨯+⨯+⨯+⨯+⨯+⨯+⨯练一练计算:122334989999100⨯+⨯+⨯++⨯+⨯L经典例题2计算:(1)344556677889910101111121213⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(2)355717191921⨯+⨯++⨯+⨯L(3)7169706864534231⨯+⨯++⨯+⨯+⨯+⨯Λ练一练计算:25+588113235⨯⨯+⨯++⨯L【板块二】分数裂项综合经典例题3(1)11111223341920++++⨯⨯⨯⨯L(2)11111111612203042567290+++++++(3)15111929415571891092612203042567290110+++++++++练一练 11111011111212135960++++⨯⨯⨯⨯L经典例题4(1)3245671 255771111161622222929 ++++++⨯⨯⨯⨯⨯⨯(2)11111 4464880120 ++++⨯(3)264264264264264 488121216124128128132 +++++⨯⨯⨯⨯⨯L【板块三】整数裂项进阶经典例题5(1)观察下列规律,在括号内填入适当的数。
分数裂项求和方法总结
分数裂项求和方法总结一、简单分数裂项法:1.若分数的分母为n,则可将该分数表示为n等分之和,即如下形式:\(\frac{a}{n}=\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{ 1}{n}\)这种情况下,裂项个数为分母的值。
2.若分数的分母为n,且分子a能被n整除,则可以将该分数表示为n等分之和,裂项个数为分子的值,即如下形式:\(\frac{a}{n}=\frac{a}{n}+\frac{a}{n}+...+\frac{a}{n}\)二、特殊分数裂项法:1.若分母为n(n≥2),分子为1,则可用连续的n-1个分数之和表示,如:\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n(n+1)}\)若此时n=2,则该分数可表示为:\(\frac{1}{2}=\frac{1}{3}+\frac{1}{6}\)2.若分母为n(n≥3),分子为1,则可用连续的n-1个分数之和表示,如:\(\frac{1}{n}=\frac{1}{(n+1)(n+2)}+\frac{1}{n+1}\)若此时n=3,则该分数可表示为:\(\frac{1}{3}=\frac{1}{12}+\frac{1}{4}\)三、通用分数裂项法:1.若分数的分子是一个较大的整数a,分母是一个较小的整数b,则可以通过转换分母的形式,将该分数表示为分解后的两个分数之和,如:\(\frac{a}{b}=\frac{a+b}{b}+\frac{-b}{b}\)如将 \(\frac{7}{3}\) 进行裂项,可得:\(\frac{7}{3}=\frac{7+3}{3}+\frac{-3}{3}=\frac{10}{3}+\frac{-1}{3}\)2.若分数的分子是一个较大的整数a,分母是一个较小的整数b的平方,则可以通过转换分母的形式,将该分数表示为分解后的两个分数之和,如:\(\frac{a}{b^2}=\frac{a}{b^2}+\frac{a}{b^2}+...+\frac{a}{b^2}\)裂项的个数为分子的值。
小学奥数裂项公式汇总
裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
奥数知识点计算问题奥数分数裂项与整数裂项问题
奥数知识点计算问题奥数分数裂项与整数裂项问题奥数知识点 > 计算问题 > 分数裂项与整数裂项奥数知识点行程问题数论问题几何问题计数问题应用题计算问题数学计算公式繁分数的计算分数裂项与整数裂项换元法凑整找规律循环小数化分数比较与估算拆分通项归纳定义新运算奥数杂题奥数天天练奥数练习题编辑推荐数学智力题 | 数学小神探 | 脑经急转弯 | 数学趣味题 | 开心谜语 |•2010-06-28?整数裂项例题讲解2•2010-06-28?整数裂项例题讲解1•2010-06-28?数列求和最常用的方法•2010-06-28?裂项求和的易错点是什么?•2010-06-28?什么是裂项法求和?•2010-06-28?分数列项练习题及答案3•2010-06-28?分数列项练习题及答案2•2010-06-28?分数列项练习题及答案•2010-04-26?小升初奥数专题训练:计算问题•2010-04-26?小升初奥数专题训练:计算问题答案•2009-09-21?计算之裂项习题3•2009-09-21?计算之裂项习题2•2009-09-21?计算之裂项习题1•2009-09-18?分数裂项与整数裂项例题2•2009-09-18?分数裂项与整数裂项例题1•2009-09-18?分数裂项与整数裂项概念•2016-10-27?小学数学分数裂项与整数裂项知识点汇总•2016-08-17?小学六年级数学裂和型运算知识点讲解•2016-08-17?小学六年级数学裂差型运算知识点讲解•2016-06-23?小学六年级计算知识点:分数裂项•2016-06-08?六年级数学计算训练:繁分数•2016-06-08?六年级数学计算训练:连锁约分•2011-08-03?分数列项练习题及答案•2011-08-03?分数列项练习题及答案(2)•2011-08-03?分数列项练习题及答案(3)•2011-08-03?什么是裂项法求和?•2011-08-03?裂项求和的易错点是什么?•2011-08-03?数列求和最常用的方法•2011-08-03?整数裂项例题讲解(1)•2011-08-03?整数裂项例题讲解(2)•2011-08-03?整数裂项例题讲解(3)•2011-08-03?整数裂项例题讲解(4)•2011-08-03?整数裂项例题讲解(5)•2011-08-03?整数裂项例题讲解(6)•2011-08-03?整数裂项例题讲解(7)•2011-08-03?整数裂项例题讲解(8)•2011-08-03?整数裂项例题讲解(9)•2011-08-03?六年级分项与裂项:裂差求和(1)•2011-08-03?分项与裂项(2)•2011-08-03?分项与裂项:裂差求和(3)•2011-08-03?奥数题及答案分数裂项与整数裂项•2011-08-03?计数问题:分数、整数裂项(5)•2011-06-17?计算问题:分数裂项与整数裂项的练习题•2011-06-17?计算问题:分数裂项与整数裂项的例题讲解•2010-12-27?六年级计数问题:分数、整数裂项5•2010-12-14?六年级奥数题及答案(分数裂项与整数裂项)•2010-12-08?六年级分项与裂项:裂差求和3•2010-12-07?六年级分项与裂项2•2010-12-07?六年级分项与裂项:裂差求和1•2010-06-28?整数裂项例题讲解9•2010-06-28?整数裂项例题讲解8•2010-06-28?整数裂项例题讲解7•2010-06-28?整数裂项例题讲解6•2010-06-28?整数裂项例题讲解5•2010-06-28?整数裂项例题讲解4•2010-06-28?整数裂项例题讲解3。
分数整数裂项
分数整数裂项
分数整数裂项法是一种将整数乘积化成两个乘积差的形式的方法。
这种方法需要将整数分拆成两个或多个数字单位的和或差,以便进行计算。
例如,对于算式1×2+2×3+3×4+……+n×(n+1),我们可以将其分拆为多个项,如1×2,2×3,3×4等,然后将这些项乘以相应的系数,得到最终结果。
需要注意的是,在进行分数整数裂项计算时,要瞻前顾后,前后抵消,才能得到正确的结果。
例如,在上述算式中,我们需要将1×2这一项乘以(2+1),再减去(1-1)×1×2;2×3这一项,也需要化成[2x3x(3+1)-(2-1)x2x3],这样就可以刚好可以前后项互相抵消。
总的来说,分数整数裂项法是一种非常实用的计算方法,可以用于解决很多数学问题。
但是,在进行计算时,需要小心系数和项数的变化,以免出现错误。
(完整版)五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版
(1) 能熟练运算常规裂和型题目;(2) 复杂整数裂项运算;(3) 分子隐蔽的裂和型运算。
一、 复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N 。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、 “裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
考试要求知识结构整数裂项与分数裂和(1) 复杂整数裂项的特点及灵活运用(2) 分子隐蔽的裂和型运算。
一、整数裂项【例 1】 计算:1324354699101⨯+⨯+⨯+⨯++⨯L【巩固】计算:355779979999101⨯+⨯+⨯++⨯+⨯L【例 2】 计算101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯L【例 3】 计算1×1+2×2+3×3+……+99×99+100×100例题精讲重难点【巩固】333444797979⨯⨯+⨯⨯++⨯⨯L【例 4】 计算:111222333999999100100100⨯⨯+⨯⨯+⨯⨯++⨯⨯+⨯⨯L【例 5】 ()()()()1121231234123100+++++++++++++++L L【巩固】()()()33636936300++++++++++L L二、分数裂和【例 6】 填空: ()+=2165, ()+=31127, ()+=41209()+=513011,()+=614213, ()+=715615【巩固】计算:90197217561542133011209127651+-+-+-+-【例 7】 5667788991056677889910+++++-+-+⨯⨯⨯⨯⨯【巩固】 36579111357612203042++++++【例 8】计算:132579101119 3457820212435 ++++++++=【巩固】12379111725 3571220283042 +++++++【例 9】111112010263827 2330314151119120123124 +++++++++【巩固】3549637791105311 6122030425688⎡⎤⎛⎫-+-+--÷ ⎪⎢⎥⎝⎭⎣⎦【例 10】22222222 122318191920 122318191920 ++++ ++⋯⋯++⨯⨯⨯⨯【巩固】333222333322223332223322322621262143214321321321212111+⋯+++⋯++-⋯+++++++-+++++++-1、 14477104952⨯+⨯+⨯++⨯L =_________2、 计算:57911131517191612203042567290-+-+-+-+3、 11798175451220153012++++++ 课堂检测4、 222222221223200420052005200612232004200520052006++++++++⨯⨯⨯⨯L5、 2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭L1、 1122335050⨯+⨯+⨯++⨯L2、 2464689698100⨯⨯+⨯⨯++⨯⨯L家庭作业3、12379112131 3571220284056 +++++++4、12389 (1)(2)(3)(8)(9)234910 -⨯-⨯-⨯⨯-⨯-L5、12123123412350 2232342350 ++++++++++⨯⨯⨯⨯++++++LLL学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:教学反馈。
五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版
(1) 能熟练运算常规裂和型题目;(2) 复杂整数裂项运算;(3) 分子隐蔽的裂和型运算。
一、 复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N 。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、 “裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
考试要求知识结构整数裂项与分数裂和(1) 复杂整数裂项的特点及灵活运用(2) 分子隐蔽的裂和型运算。
一、整数裂项【例 1】 计算:1324354699101⨯+⨯+⨯+⨯++⨯【巩固】计算:355779979999101⨯+⨯+⨯++⨯+⨯【例 2】 计算101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯例题精讲重难点【巩固】333444797979⨯⨯+⨯⨯++⨯⨯【例 4】 计算:111222333999999100100100⨯⨯+⨯⨯+⨯⨯++⨯⨯+⨯⨯【例 5】 ()()()()1121231234123100+++++++++++++++【巩固】()()()33636936300++++++++++【例 6】 填空: ()+=2165, ()+=31127, ()+=41209()+=513011,()+=614213, ()+=715615【巩固】计算:90197217561542133011209127651+-+-+-+-【例 7】 5667788991056677889910+++++-+-+⨯⨯⨯⨯⨯【巩固】 36579111357612203042++++++132579101119【巩固】12379111725 3571220283042 +++++++【例 9】111112010263827 2330314151119120123124 +++++++++【巩固】3549637791105311 6122030425688⎡⎤⎛⎫-+-+--÷ ⎪⎢⎥⎝⎭⎣⎦【例 10】22222222 122318191920 122318191920 ++++ ++⋯⋯++⨯⨯⨯⨯【巩固】222222222222226214321321211+⋯++-⋯++++-++++-1、 14477104952⨯+⨯+⨯++⨯=_________2、 计算:57911131517191612203042567290-+-+-+-+3、 11798175451220153012++++++4、 222222221223200420052005200612232004200520052006++++++++⨯⨯⨯⨯ 课堂检测5、 2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭1、 1122335050⨯+⨯+⨯++⨯2、 2464689698100⨯⨯+⨯⨯++⨯⨯3、 123791121313571220284056+++++++4、 12389(1)(2)(3)(8)(9)234910-⨯-⨯-⨯⨯-⨯-家庭作业5、121231234123502232342350++++++++++⨯⨯⨯⨯++++++教学反馈。
小升初数学分数裂项简便方法
小升初数学分数裂项简便方法数学分数裂项是指将一个分数写成若干个分数的和的形式。
这在小升初数学中经常会出现,因此学会使用简便方法进行分数裂项操作可以提高解题的效率。
下面将为大家介绍一种简便的分数裂项方法。
首先我们来看一个例子:将分数$\frac{5}{8}$写成若干个分数的和的形式。
我们可以通过观察分子和分母的数值大小关系来进行分数裂项。
既然5小于8,那么我们可以将$\frac{5}{8}$拆分为一个整数和一个真分数:$\frac{5}{8} = 1 + \frac{-3}{8}$这里,我们将分数$\frac{5}{8}$拆分为了一个整数1和一个真分数$\frac{-3}{8}$。
接下来,我们进一步对真分数$\frac{-3}{8}$进行分数裂项。
我们能够观察到-3也小于8,因此我们可以将真分数$\frac{-3}{8}$表示为一个整数和一个真分数的和:$\frac{-3}{8} = 0 + \frac{-3}{8}$至此,我们将分数$\frac{5}{8}$成功地裂项成了一个整数1和两个真分数$\frac{-3}{8}$的和。
接下来,我们来解决一个稍微复杂一些的分数裂项问题:将分数$\frac{17}{9}$写成若干个分数的和的形式。
由于分子17大于分母9,我们可以立刻将分数$\frac{17}{9}$拆分为一个整数和一个真分数:$\frac{17}{9} = 1 + \frac{8}{9}$观察分数$\frac{8}{9}$,可以发现分子8也大于分母9,所以我们再次将分数$\frac{8}{9}$拆分为一个整数和一个真分数的和:$\frac{8}{9} = 1 + \frac{-1}{9}$至此,我们得到了分数$\frac{17}{9}$的分数裂项形式为:$\frac{17}{9} = 1 + 1 + \frac{-1}{9}$可以看出,我们将分数$\frac{17}{9}$裂项成了两个整数1和一个真分数$\frac{-1}{9}$的和。
小学奥数裂项公式汇总资料
裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
2018五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版
考试要求(1)能熟练运算常规裂和型题目;(2)复杂整数裂项运算;(3)分子隐蔽的裂和型运算。
知识结构一、复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
整数裂项与分数裂和重难点(1)复杂整数裂项的特点及灵活运用(2)分子隐蔽的裂和型运算。
例题精讲一、整数裂项【例1】计算:1324354699101⨯+⨯+⨯+⨯++⨯ 欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】计算:355779979999101⨯+⨯+⨯++⨯+⨯ 【例2】计算101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯【例3】计算1×1+2×2+3×3+……+99×99+100×100【巩固】333444797979⨯⨯+⨯⨯++⨯⨯ 【例4】计算:111222333999999100100100⨯⨯+⨯⨯+⨯⨯++⨯⨯+⨯⨯ 【例5】()()()()1121231234123100+++++++++++++++ 【巩固】()()()33636936300++++++++++二、分数裂和【例6】填空:()+=2165,()+=31127,()+=41209()+=513011,()+=614213,()+=715615【巩固】计算:90197217561542133011209127651+-+-+-+-欢迎关注:奥数轻松学余老师薇芯:69039270【例7】5667788991056677889910+++++-+-+⨯⨯⨯⨯⨯【巩固】36579111357612203042++++++【例8】计算:132579101119 3457820212435 ++++++++=【巩固】12379111725 3571220283042 +++++++【例9】111112010263827 2330314151119120123124 +++++++++欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】3549637791105311 6122030425688⎡⎤⎛⎫-+-+--÷ ⎢⎥⎝⎭⎣⎦【例10】22222222 122318191920 122318191920 ++++ ++⋯⋯++⨯⨯⨯⨯【巩固】333222333322223332223322322621262143214321321321212111+⋯+++⋯++-⋯+++++++-+++++++-课堂检测1、14477104952⨯+⨯+⨯++⨯ =_________2、计算:57911131517191612203042567290-+-+-+-+3、11798175451220153012++++++4、222222221223200420052005200612232004200520052006++++++++⨯⨯⨯⨯5、2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭家庭作业1、1122335050⨯+⨯+⨯++⨯2、2464689698100⨯⨯+⨯⨯++⨯⨯3、123791121313571220284056+++++++4、12389 (1)(2)(3)(8)(9)234910 -⨯-⨯-⨯⨯-⨯-5、12123123412350 2232342350 ++++++++++⨯⨯⨯⨯++++++教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。
分数裂项相消法公式
分数裂项相消法公式一、分数裂项相消法的基本类型及公式。
(一)分母为两个连续自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + 1)),可以裂项为(1)/(n)-(1)/(n + 1)。
- 例如:(1)/(2×3)=(1)/(2)-(1)/(3),(1)/(3×4)=(1)/(3)-(1)/(4)等。
2. 证明。
- (1)/(n)-(1)/(n + 1)=(n+1 - n)/(n(n + 1))=(1)/(n(n + 1))。
(二)分母为两个相差d(d为常数)的自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + d)),可以裂项为(1)/(d)((1)/(n)-(1)/(n + d))。
- 例如:当d = 2时,(1)/(3×5)=(1)/(2)((1)/(3)-(1)/(5))。
2. 证明。
- (1)/(d)((1)/(n)-(1)/(n + d))=(1)/(d)×(n + d - n)/(n(n + d))=(1)/(n(n + d))。
(三)分母为三个连续自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + 1)(n+2)),可以裂项为(1)/(2)[(1)/(n(n + 1))-(1)/((n + 1)(n+2))]。
- 例如:(1)/(1×2×3)=(1)/(2)((1)/(1×2)-(1)/(2×3))。
2. 证明。
- (1)/(2)[(1)/(n(n + 1))-(1)/((n + 1)(n + 2))]=(1)/(2)×((n + 2)-n)/(n(n +1)(n+2))=(1)/(n(n + 1)(n+2))。
二、分数裂项相消法的应用示例。
(一)求和。
1. 例1:求S=(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++分数裂项计算教学目标知识点拨1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
【例 1】 111111223344556++++=⨯⨯⨯⨯⨯ 。
【考点】分数裂项 【难度】2星 【题型】计算【关键词】美国长岛,小学数学竞赛 【解析】 原式111111115122356166⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 提醒学生注意要乘以(分母差)分之一,如改为:111113355779+++⨯⨯⨯⨯,计算过程就要变为: 111111113355779192⎛⎫+++=-⨯ ⎪⨯⨯⨯⨯⎝⎭. 【答案】56【巩固】 111 (101111125960)+++⨯⨯⨯ 【考点】分数裂项 【难度】2星 【题型】计算例题精讲【解析】 原式111111111()()......()101111125960106012=-+-++-=-= 【答案】112【巩固】 2222109985443++++=⨯⨯⨯⨯ 【考点】分数裂项 【难度】2星 【题型】计算 【解析】 原式111111112910894534⎛⎫=⨯-+-++-+- ⎪⎝⎭112310⎛⎫=⨯- ⎪⎝⎭715= 【答案】715【例 2】 111111212312100++++++++++ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题。
此类问题需要从最简单的项开始入手,通过公式的运算寻找规律。
从第一项开始,对分母进行等差数列求和运算公式的代入有112(11)11122==+⨯⨯,112(12)212232==+⨯+⨯,……, 原式22221200992(1)1122334100101101101101=++++=⨯-==⨯⨯⨯⨯ 【答案】991101【例 3】 111113355799101++++=⨯⨯⨯⨯ 【考点】分数裂项 【难度】2星 【题型】计算【解析】 111111111150(113355799101233599101101++++=⨯-+-++-=⨯⨯⨯⨯…) 【答案】50101【巩固】 计算:1111251335572325⎛⎫⨯++++= ⎪⨯⨯⨯⨯⎝⎭ 【考点】分数裂项 【难度】2星 【题型】计算【关键词】迎春杯,初赛,六年级 【解析】 原式11111125123352325⎛⎫=⨯⨯-+-++- ⎪⎝⎭11251225⎛⎫=⨯⨯- ⎪⎝⎭2524225=⨯12= 【答案】12 【巩固】 2512512512512514881212162000200420042008+++++⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】2星 【题型】计算【关键词】台湾,小学数学竞赛,初赛【解析】 原式2511111116122334500501501502⎛⎫=⨯+++++ ⎪⨯⨯⨯⨯⨯⎝⎭251111111111622334501502⎛⎫=⨯-+-+-++- ⎪⎝⎭2515015012115165023232=⨯== 【答案】211532【巩固】 计算:3245671255771111161622222929++++++=⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式1111111111111255771111161622222929=-+-+-+-+-+-+12= 【答案】12【例 4】 计算:11111111()1288244880120168224288+++++++⨯= 【考点】分数裂项 【难度】2星 【题型】计算 【关键词】101中学【解析】 原式11111282446681618=++++⨯⨯⨯⨯⨯() 1111111128224461618=⨯-+-++-⨯() 1164218=-⨯() 4289= 【答案】4289【巩固】 11111111612203042567290+++++++=_______ 【考点】分数裂项 【难度】2星 【题型】计算【关键词】走美杯,初赛,六年级【解析】 根据裂项性质进行拆分为: 11111111612203042567290+++++++ 1111111123344556677889910112==2105=+++++++⨯⨯⨯⨯⨯⨯⨯⨯- 【答案】25【巩固】 11111113610152128++++++= 【考点】分数裂项 【难度】6星 【题型】计算【关键词】走美杯,6年级,决赛【解析】 原式111111212312341234567=+++++++++++++++++ 2221233478=++++⨯⨯⨯ 111111122233478⎛⎫=+-+-++- ⎪⎝⎭ 1218⎛⎫=⨯- ⎪⎝⎭74= 【答案】74【巩固】 计算:1111111112612203042567290--------= 【考点】分数裂项 【难度】3星 【题型】计算 【关键词】走美杯,6年级,决赛【解析】 原式111111111()223344556677889910=-+++++++⨯⨯⨯⨯⨯⨯⨯⨯ 1111111()22334910=--+-++- 111()2210=-- 110=【答案】110【巩固】 11111104088154238++++= 。
【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式11111255881111141417=++++⨯⨯⨯⨯⨯ 111111111113255881111141417⎛⎫=⨯-+-+-+-+- ⎪⎝⎭ 1115321734⎛⎫=⨯-= ⎪⎝⎭ 【答案】534【例 5】 计算:1111135357579200120032005++++⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算 【关键词】华杯赛,总决赛,二试【解析】 原式11111114133535572001200320032005⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎣⎦ 11110040034132003200512048045⎛⎫=⨯-= ⎪⨯⨯⎝⎭ 【答案】100400312048045【例 6】 7 4.50.161111181315356313 3.75 3.23⨯+⎛⎫⨯+++= ⎪⎝⎭-⨯ 【考点】分数裂项 【难度】3星 【题型】计算 【关键词】仁华学校【解析】 原式79161111118290113355779133 1.2540.83-⨯+⎛⎫=⨯+++ ⎪⨯⨯⨯⨯⎝⎭-⨯⨯⨯ 71111111461123357913123+⎛⎫=⨯⨯-+-+⋅⋅⋅+- ⎪⎝⎭- 4631824429=⨯⨯⨯23=36【答案】2336【例 7】 计算:11111123420261220420+++++ 【考点】分数裂项 【难度】3星 【题型】计算【关键词】小数报,初赛【解析】 原式()1111112320261220420⎛⎫=++++++++++ ⎪⎝⎭ 11111210122334452021=++++++⨯⨯⨯⨯⨯ 11111112101223342021=+-+-+-++- 12021012102121=+-= 【答案】2021021【巩固】 计算:11111200820092010201120121854108180270++++= 。
【考点】分数裂项 【难度】2星 【题型】计算 【关键词】学而思杯,6年级,1试【解析】 原式1111120082009201020112012366991212151518=+++++++++⨯⨯⨯⨯⨯ 1111111201059122356⎛⎫=⨯+⨯-+-++- ⎪⎝⎭ 51005054= 【答案】51005054【巩固】 计算:1122426153577++++= ____。
【考点】分数裂项 【难度】2星 【题型】计算 【关键词】学而思杯,6年级【答案】11【巩固】 计算:1111111315356399143195++++++ 【考点】分数裂项 【难度】3星 【题型】计算 【解析】 分析这个算式各项的分母,可以发现它们可以表示为:232113=-=⨯,2154135=-=⨯,……,21951411315=-=⨯, 所以原式11111111335577991111131315=++++++⨯⨯⨯⨯⨯⨯⨯ 11111111121323521315⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1112115⎛⎫=⨯- ⎪⎝⎭715= 【答案】715【巩固】 计算:15111929970198992612203097029900+++++++= . 【考点】分数裂项 【难度】3星 【题型】计算【关键词】四中【解析】 原式1111111126129900⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11199122399100⎛⎫=-+++ ⎪⨯⨯⨯⎝⎭1111199122399100⎛⎫=--+-++- ⎪⎝⎭ 1991100⎛⎫=-- ⎪⎝⎭ 198100= 【答案】198100【例 8】 111123234789+++⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 首先分析出()()()()()()()()11111111211211n n n n n n n n n n n n ⎡⎤+--==-⎢⎥-⨯⨯+-⨯⨯+-⨯⨯+⎢⎥⎣⎦ 原式11111111121223233467787889⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1112128935144⎛⎫=⨯- ⎪⨯⨯⎝⎭= 【答案】35144【巩固】 计算:1111232349899100+++⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式11111111()21223233434989999100=⨯-+-++⋅⋅⋅+-⨯⨯⨯⨯⨯⨯⨯ 111149494949()212991002990019800=⨯-=⨯=⨯⨯ 【答案】494919800【巩固】 计算:1111135246357202224++++⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式=1135⨯⨯+1357⨯⨯+…+1192123⨯⨯+1246⨯⨯+…+1202224⨯⨯ =14(113⨯-12123⨯)+14(124⨯-12224⨯) =40483+652112=28160340032+10465340032=38625340032【答案】38625340032【巩固】 4444 (135357939597959799)++++⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算 【解析】 11111111()()......()()133535579395959795979799=-+-++-+-⨯⨯⨯⨯⨯⨯⨯⨯ 11139799=-⨯⨯32009603= 【答案】32009603【巩固】 999897112323434599100101++++⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 99123⨯⨯=1001123-⨯⨯=100123⨯⨯-123⨯=100123⨯⨯-123⨯ 98234⨯⨯=1002234-⨯⨯=100234⨯⨯-2234⨯⨯=100234⨯⨯-134⨯ 97345⨯⨯=1003345-⨯⨯=100345⨯⨯-3345⨯⨯=100345⨯⨯-145⨯…… 199100101⨯⨯=1009999100101-⨯⨯=10099100101⨯⨯-9999100101⨯⨯=10099100101⨯⨯-1100101⨯ 原式100100100100111...(...)123234345991001012334100101=++++-+++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1111151100()()2422101002101101=⨯⨯---= 【答案】5124101【例 9】 11111123423453456678978910+++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式111111131232342343457898910⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭ 11131238910⎛⎫=⨯- ⎪⨯⨯⨯⨯⎝⎭1192160= 【答案】1192160【巩固】 333 (1234234517181920)+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式11111113[(...)]3123234234345171819181920=⨯⨯-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1131920111391231819201819206840⨯⨯-=-==⨯⨯⨯⨯⨯⨯ 【答案】11396840【例 10】 计算:57191232348910+++=⨯⨯⨯⨯⨯⨯ . 【考点】分数裂项 【难度】3星 【题型】计算 【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第n 个数恰好为n 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.原式32343161232348910+++=+++⨯⨯⨯⨯⨯⨯ 1111283212323489101232348910⎛⎫⎛⎫=⨯++++⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭111111111132212232334899102334910⎛⎫⎛⎫=⨯⨯-+-++-+⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 31111111122129102334910⎛⎫⎛⎫=⨯-+⨯-+-++- ⎪ ⎪⨯⨯⎝⎭⎝⎭ 3111122290210⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭ 7114605=-- 2315= 也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为23n +,所以()()()()()()2323121212n n n n n n n n n +=+⨯+⨯++⨯+⨯+⨯+,再将每一项的()()212n n +⨯+与()()312n n n ⨯+⨯+分别加在一起进行裂项.后面的过程与前面的方法相同. 【答案】2315【巩固】 计算:5717191155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯() 【考点】分数裂项 【难度】3星 【题型】计算 【关键词】迎春杯,初赛,五年级【解析】 本题的重点在于计算括号内的算式:571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.观察可知523=+,734=+,……即每一项的分子都等于分母中前两个乘数的和,所以571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯ 233491023434591011+++=+++⨯⨯⨯⨯⨯⨯ 111111342445351011911=++++++⨯⨯⨯⨯⨯⨯ 111111344510112435911⎛⎫⎛⎫=+++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 11111111111111111344510112243546810911⎛⎫⎛⎫=-+-++-+⨯-+-+-++-+- ⎪ ⎪⎝⎭⎝⎭ 11111113112210311⎛⎫⎛⎫=-+⨯-+- ⎪ ⎪⎝⎭⎝⎭8128332533⎛⎫=+⨯+ ⎪⎝⎭3155=所以原式31115565155=⨯=. (法二)上面的方法是最直观的转化方法,但不是唯一的转化方法.由于分子成等差数列,而等差数列的通项公式为a nd +,其中d 为公差.如果能把分子变成这样的形式,再将a 与nd 分开,每一项都变成两个分数,接下来就可以裂项了.571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯ 122132182192234345891091011+⨯+⨯+⨯+⨯=++++⨯⨯⨯⨯⨯⨯⨯⨯ 122132182192234234345345891089109101191011⨯⨯⨯⨯=++++++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1111222223434589109101134459101011⎛⎫⎛⎫=+++++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭11111111111112223343445910101134451011⎛⎫⎛⎫=⨯-+-++-+⨯-+-++- ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭1111122231011311⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⨯⨯⎝⎭⎝⎭ 11223413112220311422055=-+-=-=, 所以原式31115565155=⨯=.(法三)本题不对分子进行转化也是可以进行计算的:571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯ 51171117111911223342344528991029101011⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯-+⨯- ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭5175197119171191223223422452291021011⎛⎫⎛⎫⎛⎫=⨯+-⨯+-⨯++-⨯-⨯ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭ 51111191223344*********=⨯++++-⨯⨯⨯⨯⨯⨯ 51119311231022055=+--=所以原式31115565155=⨯=.(法四)对于这类变化较多的式子,最基本的方法就是通项归纳.先找每一项的通项公式:21(1)(2)n n a n n n +=++(2n =,3, (9)如果将分子21n +分成2n 和1,就是上面的法二;如果将分子分成n 和1n +,就是上面的法一.【答案】651【巩固】 计算:3451212452356346710111314++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 观察可知原式每一项的分母中如果补上分子中的数,就会是5个连续自然数的乘积,所以可以先将每一项的分子、分母都乘以分子中的数.即:原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 现在进行裂项的话无法全部相消,需要对分子进行分拆,考虑到每一项中分子、分母的对称性,可以用平方差公式:23154=⨯+,24264=⨯+,25374=⨯+……原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 154264374101441234523456345671011121314⨯+⨯+⨯+⨯+=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 111123434545611121344441234523456345671011121314⎛⎫=++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎛⎫+++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11111112233434451112121311111112342345234534561011121311121314⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎛⎫+-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭111112231213123411121314⎛⎫⎛⎫=⨯-+- ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 111112212132411121314=-+-⨯⨯⨯⨯⨯1771811121314+=-⨯⨯⨯11821114=-⨯⨯11758308616=-=【答案】75616【例 11】 12349223234234523410+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】4星 【题型】计算【解析】 原式12349223234234523410=+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 21314110122323423410----=++++⨯⨯⨯⨯⨯⨯ 111111112223232342349234910=-+-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1362879912349103628800=-=⨯⨯⨯⨯ 【答案】36287993628800【例 12】 123456121231234123451234561234567+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】4星 【题型】计算【解析】 原式131********121231234123451234561234567-----=+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 111111121212312312341234567=+-+-+-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 11112121234567=+-⨯⨯⨯⨯⨯⨯⨯⨯ 115040=-50395040=【答案】50395040【巩固】 计算:23993!4!100!+++= . 【考点】分数裂项 【难度】4星 【题型】计算【解析】 原式为阶乘的形式,较难进行分析,但是如果将其写成连乘积的形式,题目就豁然开朗了.原式23991231234123100=+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 314110011231234123100---=+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 11111112123123123412399123100=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1112123100=-⨯⨯⨯⨯⨯112100!=-【答案】112100!-【例 13】 234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式=213⨯+336⨯+4610⨯+51015⨯+…+5012251275⨯=(11-13)+(13-16)+(16-110)+(11225-11275)=12741275【答案】12741275【巩固】2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++【考点】分数裂项 【难度】3星 【题型】计算【解析】 2111(12)112=-⨯++,311(12)(123)12123=-+⨯+++++,……,10011(1299)(12100)129912100=-+++⨯+++++++++,所以原式1112100=-+++15049150505050=-=【答案】50495050【巩固】 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++() 【考点】分数裂项 【难度】2星 【题型】计算【解析】 原式234101()133********=-++++⨯⨯⨯⨯1111111113366104555⎛⎫=--+-+-++- ⎪⎝⎭11155⎛⎫=-- ⎪⎝⎭155=【答案】155【例 14】 22222211111131517191111131+++++=------ .【考点】分数裂项 【难度】3星 【题型】计算【关键词】仁华学校【解析】 这题是利用平方差公式进行裂项:22()()a b a b a b -=-⨯+,原式111111()()()()()()24466881010121214=+++++⨯⨯⨯⨯⨯⨯1111111111111()244668810101212142=-+-+-+-+-+-⨯ 1113()214214=-⨯= 【答案】314【巩固】 计算:222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯-=【考点】分数裂项 【难度】3星 【题型】计算【解析】 2111131(1)(1)22222-=-⨯+=⨯,2111241(1)(1)33333-=-⨯+=⨯,……所以,原式1324485022334949=⨯⨯⨯⨯⨯⨯1502524949=⨯=【答案】2549【巩固】 计算:222222223571512233478++++⨯⨯⨯⨯【考点】分数裂项 【难度】3星 【题型】计算 【解析】 原式22222222222222222132438712233478----=++++⨯⨯⨯⨯ 2222222111111112233478=-+-+-++- 2118=-6364=【答案】6364【巩固】 计算:222222222231517119931199513151711993119951++++++++++=----- .【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式2222222222111113151711993119951⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭222997244619941996⎛⎫=++++ ⎪⨯⨯⨯⎝⎭111111997244619941996⎛⎫=+-+-++- ⎪⎝⎭1199721996⎛⎫=+- ⎪⎝⎭9979971996= 【答案】9979971996【巩固】 计算:22222222222213243598100213141991++++++++=---- .【考点】分数裂项 【难度】3星 【题型】计算【解析】 2221310213+=-,2222420318+=-,22235344115+=-,……由于104233=,204288=,34421515=, 可见原式222244442222213141991=++++---- 1111298413243598100⎛⎫=⨯+⨯++++ ⎪⨯⨯⨯⨯⎝⎭111111111964123243598100⎛⎫=+⨯⨯-+-+-++- ⎪⎝⎭11119621299100⎛⎫=+⨯+-- ⎪⎝⎭199196329900=+-⨯47511984950= 【答案】47511984950【巩固】 计算:22221235013355799101++++=⨯⨯⨯⨯ .【考点】分数裂项 【难度】3星 【题型】计算【解析】 式子中每一项的分子与分母初看起来关系不大,但是如果将其中的分母根据平方差公式分别变为221-,241-,261-,……,21001-,可以发现如果分母都加上1,那么恰好都是分子的4倍,所以可以先将原式乘以4后进行计算,得出结果后除以4就得到原式的值了. 原式22222222124610042141611001⎛⎫=⨯++++ ⎪----⎝⎭222211111111142141611001⎛⎫=⨯++++++++ ⎪----⎝⎭ 1111150413355799101⎛⎫=⨯+++++ ⎪⨯⨯⨯⨯⎝⎭ 111111111501423355799101⎡⎤⎛⎫=⨯+⨯-+-+-++- ⎪⎢⎥⎝⎭⎣⎦ 11150142101⎡⎤⎛⎫=⨯+⨯- ⎪⎢⎥⎝⎭⎣⎦150504101=⨯6312101=【答案】6312101【例 15】 5667788991056677889910+++++-+-+⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 56677889910111111113()...()56677889910566791051010+++++-+-+=+-++++=+=⨯⨯⨯⨯⨯【答案】310【巩固】 36579111357612203042++++++【考点】分数裂项 【难度】3星 【题型】计算【关键词】第三届,祖冲之杯,人大附中【解析】 原式=36233445566736111111 (57233445566757233467)+++++++++++=++++++++⨯⨯⨯⨯⨯=4【答案】4【巩固】计算:1325791011193457820212435++++++++=【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式13257111111213457845373857=++++++++++++111115=++++=【答案】5【巩固】 123791117253571220283042+++++++【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式12311111121133573445475667=++++++++++++11112123131113366555777444⎛⎫⎛⎫⎛⎫⎛⎫=++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭334=【答案】334【巩固】 1111120102638272330314151119120123124+++++++++【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式11111111111111123303141317717430341431⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11111112337434=++++++127= 【答案】127【巩固】 35496377911053116122030425688⎡⎤⎛⎫-+-+--÷ ⎪⎢⎥⎝⎭⎣⎦【考点】分数裂项 【难度】3星 【题型】计算 【解析】 原式5791113153718612203042568⎡⎤⎛⎫=-+-+-⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦ 11111111782334788⎡⎤⎛⎫=+--+--⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦1111788288⎛⎫=-⨯⨯-⨯ ⎪⎝⎭211110=-=【答案】10【巩固】 计算:57911131517191612203042567290-+-+-+-+【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式23344556677889910123344556677889910++++++++=-+-+-+-+⨯⨯⨯⨯⨯⨯⨯⨯ 11111111111111111()()()()()()()()23344556677889910=-+++-+++-+++-+++11312105=-+=【答案】35【巩固】 11798175451220153012++++++【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式111111112111453445355646=+++++++++++111124523456=⨯+⨯+⨯+⨯3=【答案】3【例 16】 22222222122318191920122318191920++++++⋯⋯++⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式1232341918192021919...217362123431819201912020=++++++++++=+⨯+=【答案】193620【巩固】 11112007111(......)(......)120072200620062200712008120062200520061++++-+++⨯⨯⨯⨯⨯⨯⨯【考点】分数裂项 【难度】4星 【题型】计算【解析】 原式=2008111200711(...)(...)200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯=2008111200711(...)(...)200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯ =1200820082008120072007(...)(...)200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯ =11111111111[(...)(...)]20081200722006200711200620061⨯++++++-++++ =11111111111[(...)(...)]20081200722006200711200620061⨯++++++-++++ =1111()2008200720072015028⨯+=【答案】12015028【例 17】 计算:11111123459899515299+++++++=⨯⨯⨯【考点】分数裂项 【难度】5星 【题型】计算【解析】 原式11111111124983599515299⎛⎫⎛⎫⎛⎫=+++-+++++++⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 111111111224503549525498⎛⎫⎛⎫⎛⎫=+++-+++⨯+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111111124503549262749⎛⎫⎛⎫⎛⎫=+++-++++++⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 111111111122424352526284850⎛⎫⎛⎫⎛⎫=+++-+++⨯++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111111112424352513142450⎛⎫⎛⎫⎛⎫=+++-+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 111111111112241235111416245025⎛⎫⎛⎫⎛⎫=+++-+++⨯++++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 111111111112412351178125025⎛⎫⎛⎫⎛⎫=+++-+++++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1111111111224635810125025⎛⎫⎛⎫⎛⎫=++-++⨯+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111111246354565025⎛⎫⎛⎫⎛⎫=++-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11491502550=+-=【答案】4950【例 18】 计算:24612335357357911++++=⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】4星 【题型】计算【解析】 原式31517113133535735791113----=++++⨯⨯⨯⨯⨯⨯⨯⨯111111133535791133535791113⎛⎫⎛⎫=+++-+++⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭1135791113=-⨯⨯⨯⨯⨯135134135135=【答案】135134135135【例 19】 计算:28341112222221335571719135357171921⎛⎫++++-+++= ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭【考点】分数裂项 【难度】5星 【题型】计算 【解析】 3411992222244221353571719211335355717191921+++=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 892242213355717191921=++++-⨯⨯⨯⨯⨯ 所以原式889122224221335171913355717191921⎛⎫=+++-++++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭921512133379192113399399-=-==⨯⨯ 【答案】379399整数裂项基本公式(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+(2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+整数裂项知识点拨例题精讲【例 20】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。