平面问题分为平面应力和平面应变问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

201330131867张伟

若干平面问题汇总

平面问题分为平面应力和平面应变问题,平面应力问题的特征:尺寸方面,一个方向的尺寸远小于另外两个方向的尺寸;受力方面,外力平行于板面且不沿厚度方向变化。平面应变问题的特征:尺寸方面,一个方向的尺寸远大于另外两个方向的尺寸;受力方面,外力平行于横截面且不沿长度方向变化。

不同的材料有不同的弹性模量,泊松比,其本构关系也不同。

相容方程的推导可知物体必须变形满足几何方程,且各个应变分量是互相关联的。

应力相容方程建立在应变相容方程的基础上,常体力下的相容方程是应力相容方程的一种特例。

应力函数的相容方程是建立在平衡微分方程的基础上,该方程又叫双重调和方程。

由单纯的几何方程推导出来应变相容方程,然后加上物理方程,发展成了应力相容方程。

由单纯的平衡微分方程推导出了双重调和方程。

平面问题的解法有位移法,应力法,混合法。在体力为常量,用应力法求解平面问题的方法有逆解法和半逆解法。逆解法先设定Ф函数,求应力分量,验算是否满足边界条件,不满足就修改Ф函数,直到满足。半逆解法根据问题,实际状况,假定部分应力分量的函数形式,然后积分求出应力函数,回代求出全部应力分量,,验算是否满足边界条件,不满足就重新假定应力分量函数,直到满足。

圣维南原理:较小的面力的影响效应产生在接触范围域内,远离这个域,效应会降低到忽略不计。、

工程科研方法:有限元法,实验法,解析法。

相关文档
最新文档