线性代数3.矩阵及其运算
线性代数的矩阵运算
线性代数的矩阵运算矩阵是线性代数中一种重要的数学工具,矩阵运算是线性代数的核心内容之一。
通过矩阵运算,我们可以解决各种线性方程组,研究向量空间的性质,以及进行线性变换等。
本文将介绍线性代数中的矩阵运算,包括矩阵的加法、减法、乘法、转置以及求逆运算等。
1. 矩阵的加法和减法矩阵的加法和减法是相似的运算。
对于两个具有相同维度的矩阵A 和B,它们的加法运算定义为将相同位置的元素相加得到一个新的矩阵C,即C = A + B。
而矩阵的减法运算定义为将相同位置的元素相减得到一个新的矩阵D,即D = A - B。
例如,对于如下两个矩阵:A = [1 2 3]B = [4 5 6][7 8 9] [10 11 12]它们的加法运算结果为:C = A + B = [1+4 2+5 3+6] = [5 7 9][7+10 8+11 9+12] [17 19 21]而减法运算结果为:D = A - B = [1-4 2-5 3-6] = [-3 -3 -3][7-10 8-11 9-12] [-3 -3 -3]这样,我们可以通过矩阵的加法和减法运算来对矩阵进行融合、分解和控制等操作。
2. 矩阵的乘法矩阵的乘法是矩阵运算中的关键操作,它可以将两个矩阵相乘得到一个新的矩阵。
对于两个矩阵A和B,若A的列数等于B的行数,则它们可以进行乘法运算。
设A是一个m×n的矩阵,B是一个n×p的矩阵,它们的乘法运算定义为两个矩阵对应元素的乘积之和。
新的矩阵C的行数等于A的行数,列数等于B的列数。
记作C = A × B。
例如,对于如下两个矩阵:A = [1 2 3]B = [4 5][6 7 8] [9 10][11 12]它们的乘法运算结果为:C = A × B = [1×4+2×9+3×11 1×5+2×10+3×12][6×4+7×9+8×11 6×5+7×10+8×12]= [59 64][149 163]矩阵的乘法可以应用于很多实际的问题中,比如线性方程组的求解、向量空间的转换等。
线性代数-矩阵的运算
线性代数-矩阵的运算1、矩阵的加减法定义A = (a ij)mxn 、B = (b ij)mxn;是两个同型矩阵(⾏数和列数分别相等),则矩阵A、B和定义为:只有同型矩阵才能进⾏加法计算运算定律交换律:A + B = B + A结合律:(A + B)+ C = A + (B + C)A + O = A = O + A (O为零矩阵)A + (-A) = O (矩阵减法的定义)设:则:2、矩阵的数乘定义数k与矩阵A乘法定义为:记作:kA = (ka ij)mxn;矩阵的加法和数乘运算,称为矩阵的线性运算。
运算定律结合律:(kl)A = k(lA)分配律:k(A+B) = kA + kB;(k + l)A = kA + lA;1A = A;0A = O3、乘法运算定义设A = (aij)mxs、B=(bij)sxn AB的乘发定义为注意:只有当A矩阵的列数等于B矩阵的⾏数,矩阵乘积AB才有意义;且乘积C矩阵的⾏数等于A矩阵的⾏数、C矩阵的列数等于B矩阵的列数。
如:A是(2x3)矩阵,B是(3x4)矩阵,则AB为(2x4)矩阵,BA⽆意义。
运算定律矩阵乘法不满⾜交换律:⼀般AB不等于BA,如果AB = BA,即记作A、B可交换AB = 0 未必 A = O或者 B = O不满⾜消除律,即AB = AC 未必B = C矩阵乘法满⾜下⾯运算律:结合律:(AB)C = A(BC)左分配律:A(B+C) = AB+AC右分配律:(B+C)A = BA+CAk(AB) = (kA)B = A(kB)设A为mxs矩阵,则 I m A = A ,AI s = A(I为单位矩阵)AO=O OA=OA k A l = A k+l (A k)l = A kl (kl皆为⾮负整数)矩阵乘法中,单位矩阵与零矩阵,有类似于数字乘法1,0的作⽤。
4、矩阵的转置定义mxn的矩阵A,⾏列交换后得到nxm的矩阵,称为A的转置矩阵,记作A'。
《线性代数》教案
《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念、理论和方法,培养学生运用线性代数解决实际问题的能力。
2. 适用对象:本教案适用于大学本科生线性代数课程的教学。
3. 教学方式:采用讲授、讨论、练习相结合的方式进行教学。
二、教学内容1. 第一章:线性代数基本概念1.1 向量及其运算1.2 线性方程组1.3 矩阵及其运算1.4 行列式2. 第二章:线性空间与线性变换2.1 线性空间2.2 线性变换2.3 矩阵与线性变换2.4 特征值与特征向量3. 第三章:特征值与特征向量3.1 特征值与特征向量的定义3.2 矩阵的特征值与特征向量3.3 矩阵的对角化3.4 二次型4. 第四章:线性方程组的求解方法4.1 高斯消元法4.2 克莱姆法则4.3 矩阵的逆4.4 最小二乘法5. 第五章:线性代数在实际应用中的案例分析5.1 线性规划5.2 最小二乘法在数据分析中的应用5.3 线性代数在工程中的应用5.4 线性代数在计算机科学中的应用三、教学方法1. 讲授:通过讲解线性代数的基本概念、理论和方法,使学生掌握线性代数的基础知识。
2. 讨论:组织学生就线性代数中的重点、难点问题进行讨论,提高学生的思维能力和解决问题的能力。
3. 练习:布置适量的练习题,让学生通过自主练习巩固所学知识,提高解题能力。
四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等方面,占总评的30%。
2. 期中考试:考察学生对线性代数知识的掌握程度,占总评的40%。
3. 期末考试:全面测试学生的线性代数知识水平和应用能力,占总评的30%。
五、教学资源1. 教材:推荐使用《线性代数》(高等教育出版社,同济大学数学系编)。
2. 辅助教材:可参考《线性代数教程》(清华大学出版社,谢乃明编著)。
3. 网络资源:推荐学生浏览线性代数相关网站、论坛,拓展知识面。
4. 软件工具:推荐使用MATLAB、Mathematica等数学软件,辅助学习线性代数。
线性代数矩阵运算法则
线性代数矩阵运算法则线性代数是数学的一个重要分支,它研究的是向量空间和线性映射。
在线性代数中,矩阵是一种非常重要的数学工具,它可以用来表示线性变换和解线性方程组。
矩阵运算是线性代数中的重要内容,它包括矩阵的加法、减法、数乘、矩阵乘法等运算法则。
本文将详细介绍矩阵运算的各种法则,以及它们的应用。
1. 矩阵的加法。
设A和B是两个m×n的矩阵,它们的和记作C=A+B,其中C中的每个元素都等于A和B对应位置的元素之和。
即C的第i行第j 列的元素等于A的第i行第j列的元素加上B的第i行第j列的元素。
例如,如果。
A=[1 2 3。
4 5 6]B=[7 8 9。
10 11 12]则A+B=[8 10 12。
14 16 18]。
2. 矩阵的减法。
矩阵的减法与矩阵的加法类似,设A和B是两个m×n的矩阵,它们的差记作C=A-B,其中C中的每个元素都等于A和B对应位置的元素之差。
即C的第i行第j列的元素等于A的第i行第j列的元素减去B的第i行第j列的元素。
3. 矩阵的数乘。
设A是一个m×n的矩阵,k是一个实数,则kA记作B,其中B 中的每个元素都等于k乘以A对应位置的元素。
即B的第i行第j 列的元素等于k乘以A的第i行第j列的元素。
4. 矩阵的乘法。
设A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积记作C=AB,其中C是一个m×p的矩阵,C的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。
即C的第i行第j列的元素等于A的第i行的每个元素与B的第j列的对应元素的乘积之和。
矩阵的乘法是线性代数中最重要的运算之一,它在解线性方程组和表示线性变换等方面有着重要的应用。
5. 矩阵的转置。
设A是一个m×n的矩阵,则A的转置记作AT,AT是一个n×m的矩阵,AT的第i行第j列的元素等于A的第j行第i列的元素。
即AT的第i行第j列的元素等于A的第j行第i列的元素。
线性代数 矩阵及其运算
A22 ...
... ...
An 2 ...
A1n A2n ... Ann
称矩阵A的伴随矩阵,记为A*
精选版课件ppt
27
伴 随 矩 阵 有 如 下 重 要 性 质 : AA*A*A(detA)E
矩阵运算举例
例 例 1 8 设 A123T, B11 21 3, CAB ,
求 Cn
精选版课件ppt
例4
如:A 11
11
B
1 1
11
AB O
BA
2 2
22
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
精选版课件ppt
18
例5 设
A1 1
2 1
1 1,
求AB与BA
1 2 B1 1
2 3
解
3 0 3
1 3 AB2 6
BA0 3 0 1 7 1
定理2.1 若矩阵A的第i行是零行,则乘积 AB的第i行
a..i.1
... ...
a..is.n......
... bnjs
... ...
cij
精选版课件ppt
14
例2 计算
2 1
1 8 10
1 3
4 01 3
2 4
051 9
2 5 22 15
精选版课件ppt
15
例3. 非齐次线性方程组的矩阵表示
a11x1 a12x2 a1nxn b1
a21x1
关于矩阵乘法的注意事项: (1)矩阵 A 与矩阵 B 做乘法必须是左矩阵的列数与右
矩阵的行数相等; (2)矩阵的乘法中,必须注意矩阵相乘的顺序,AB是
A左乘B的乘积,BA是A右乘B的乘积;
矩阵的运算及其运算规则
矩阵的运算及其运算规则矩阵是线性代数中的基本概念,也是数学、计算机科学、物理、经济学等领域中广泛运用的工具之一。
矩阵的运算是矩阵代数的重要组成部分,并且矩阵的运算规则是进行代数运算、求解线性方程组、计算特征值和特征向量等的关键。
1.基本矩阵运算矩阵的四则运算:加法、减法、乘法和除法是矩阵运算的基础。
加减法均是对应元素相加减,必须两个矩阵形状相同才可加减。
例如A、B是两个3\*3矩阵,那么它们相加后我们可以表示为C=A+B,C的每个元素都等于A和B对应位置的元素之和。
矩阵的乘法是相乘并对乘积元素求和,而不是元素相乘。
A\*B中A的列数应该等于B的行数,乘积C则应该是A的行数和B的列数构成的矩阵。
例如A是一个3\*2 的矩阵,B是一个2\*4 的矩阵,则将A的每一行和B的每一列依次相乘求和,得到一个3\*4的结果矩阵C。
除法在矩阵中一般不存在,但是可以通过矩阵的逆来实现除法运算。
如果乘积A\*B=C,且B是可逆的,那么我们可以利用B的逆矩阵来得出矩阵A,即A=B^{-1}C。
2.转置和逆矩阵矩阵的转置是将矩阵的行和列交换位置得到的新矩阵。
如果矩阵A的形状是m\*n,则转置后的矩阵形状是n\*m。
例如A=\begin{bmatrix}1 & 2 \\ 3 & 4 \\ 5 & 6\end{bmatrix},则A的转置为A^T=\begin{bmatrix}1 & 3 & 5 \\ 2 & 4 & 6\end{bmatrix}。
矩阵的逆矩阵是一个矩阵,使得矩阵和它的逆矩阵的乘积为单位矩阵。
只有方阵才有逆矩阵,而且并不是所有的方阵都有逆矩阵。
如果一个矩阵A不能求逆,那么我们称它是奇异矩阵或不可逆矩阵。
如果一个矩阵A可以求逆,那么我们称它是非奇异矩阵或可逆矩阵。
逆矩阵的求解方法有伴随矩阵法、高斯-约旦消元法、矩阵分块法等。
3.矩阵的性质及运算规则矩阵的性质包括转置、对称、正交、幂等、奇异等性质。
《线性代数》教案
《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。
2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。
二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。
2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。
三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。
2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。
四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。
2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。
五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。
2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。
六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。
2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。
线性代数中的矩阵运算
线性代数中的矩阵运算矩阵运算,在线性代数中是一个十分重要的概念,我们通常用矩阵来表示线性映射,这些矩阵之间的加、减、乘等运算,是我们学习矩阵的基础。
本文将从矩阵的定义、矩阵的加减、矩阵的乘法、矩阵的转置和逆等方面详细介绍矩阵运算。
一、矩阵的定义矩阵是一个由m行、n列元素排列成的矩形表格,其中每个元素都是一个数字(标量),通常用 A = [aij]表示。
其中,i表示行号,j表示列号, aij表示第i行、第j列的元素,矩阵的大小写成m×n表示,其中m表示行数,n表示列数。
二、矩阵的加减对于两个具有相同大小的矩阵A和B,它们的和C可以通过将每个对应的元素相加得到,即Ci,j = ai,j + bi,j,也可以用向量的形式表示C = A+B。
矩阵的差同理,Ci,j = ai,j - bi,j,用向量的形式表示C = A - B。
加减运算的性质:1.交换律:A + B = B + A,A - B ≠ B - A;2.结合律:(A + B) + C = A + (B + C), (A - B) - C ≠ A - (B - C);3.分配律:a(A + B) = aA + aB,(a + b)A= aA + bA。
三、矩阵的乘法对于两个矩阵A和B,只有满足A的列数等于B的行数时,A和B才能相乘。
设A为m行n列的矩阵,B是一个n行p列的矩阵,它们相乘得到的结果C是一个m行p列的矩阵。
在矩阵乘法中,相乘的行列数相等的两个矩阵必须一一对应进行相乘,并将所有乘积相加。
矩阵乘法的表达式:Cij = ∑ akj ᠖ bj i,其中k=1,2,,....,nC = AB,A的第i行乘以B的第j列,它们的乘积之和就是C的第i行第j列元素。
用向量的形式表示C = A×B。
在矩阵乘法中,乘法不具备交换律,即AB ≠ BA。
(只有在A、B中至少有一个为单位矩阵时,AB=BA)矩阵乘法的性质:1.结合律:A(BC) = (AB)C;2.分配律:A(B+C) = AB + AC;3.结合律:(aA)B = A(aB) = a(AB);4.单位矩阵: AI = IA = A;5.逆矩阵:存在矩阵B满足AB=I,则称矩阵A可逆,矩阵B 就是矩阵A的逆矩阵(A的行列式必须不等于零)。
《线性代数》课件-第3章 矩阵
§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
线性代数:矩阵的运算
例:设
A
2 1
13, f ( x) x2 2x 2
则
f
( A)
2 1
12 2 3 2 1
1 3
2
1 0
0 1
11 7
3 2 1 2
4 1 1
1
求 C AB.
解:
A
aij
,
34
C
cij
.
33
B bij 43,
9
故
1 C AB 1
0
0 1 5
1 3 1
402
0 1 3 1
3 2 1 2
4 1 1
1
5 6 7 10 2 6.
2 17 10
10
注意 只有当第一个矩阵的列数等于第二个矩阵
令
a11
A
a21
am1
a12 a22
am 2
a1n a2n amn
x1
X
x2
xn
b1
B
b2
bm
根据矩阵乘法的定义,方程组可写成
矩阵形式
AX B
17
方阵的幂(power)
1.定义
若A是 n 阶矩阵,则 Ak 为A的 k 次幂,即 Ak AAA
k个
2.性质
s
aik bkj
k 1
i 1,2,m; j 1,2,,n,
并把此乘积记作 C AB.
7
设矩阵A (aij )ms , B (bij )sn ,则
a11
AB
ai1
a12
ai2
a1s
矩阵的运算与性质
矩阵的运算与性质矩阵是线性代数中的基本概念,广泛应用于各个学科领域。
本文将介绍矩阵的运算及其性质,探讨在不同情况下矩阵的特点和应用。
一、矩阵的定义与分类1. 矩阵的定义:矩阵是一个按照矩形排列的数表,由m行n列的数构成,通常用大写字母表示,如A、B等。
2. 矩阵的分类:根据行数和列数的不同,矩阵可以分为行矩阵、列矩阵、方阵、零矩阵等。
二、矩阵的基本运算1. 矩阵的加法:对应位置元素相加,要求两个矩阵的行数和列数相等。
2. 矩阵的数乘:一个矩阵的所有元素乘以一个常数。
3. 矩阵的乘法:矩阵乘法不满足交换律,要求左边矩阵的列数等于右边矩阵的行数。
4. 矩阵的转置:将矩阵的行和列互换得到的新矩阵,记作A^T。
三、矩阵的性质和特点1. 矩阵的单位矩阵:对角线上元素为1,其余元素为0的方阵。
2. 矩阵的逆矩阵:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。
3. 矩阵的行列式:方阵A经过运算得到的一个标量值,记作det(A)或|A|,用于判断矩阵是否可逆及求解线性方程组等。
4. 矩阵的秩:矩阵中线性无关的行或列的最大个数。
5. 矩阵的特征值与特征向量:对于方阵A,存在数值λ和非零向量x,使得A·x = λ·x,λ为A的特征值,x为对应的特征向量。
四、矩阵的应用1. 线性方程组的求解:通过矩阵的运算和性质,可以将线性方程组表示为矩阵的形式,从而求解出方程组的解。
2. 矩阵在图像处理中的应用:利用矩阵的运算,可以对图像进行变换、旋转、缩放等操作。
3. 矩阵在经济学中的应用:使用矩阵可以模拟经济系统,进行量化分析、预测等。
总结:矩阵作为线性代数中的基本概念,具有丰富的运算规则和性质。
通过矩阵的加法、数乘、乘法、转置等基本运算,可以推导出矩阵的逆矩阵、行列式、秩、特征值等重要概念。
矩阵在不同学科领域有着广泛的应用,如线性方程组求解、图像处理、经济学分析等。
高考数学中的线性代数中的矩阵运算
高考数学中的线性代数中的矩阵运算线性代数作为数学中的一个重要分支,经常在高考数学中出现。
矩阵运算则是线性代数中很重要的一个概念,它蕴含着很多的数学知识,也是高考数学中比较常考的知识点。
一、矩阵的定义和运算矩阵是由$m$行$n$列数排成的矩形数组,用$\boldsymbol{A}$表示,即$\boldsymbol{A}=(a_{ij})_{m\times n}$。
矩阵的元素$a_{ij}$表示第$i$行第$j$列的数,矩阵的个数为$m\times n$个。
当矩阵的行数和列数相等时,即$m=n$时,该矩阵被称为方阵;当矩阵的元素全都为零时,该矩阵被称为零矩阵。
在矩阵中,有加法和数乘的运算。
设$\boldsymbol{A}$和$\boldsymbol{B}$是两个$m\times n$的矩阵,$k$是一个实数,则有以下定义:1.加法:$\boldsymbol{A}+\boldsymbol{B}=(a_{ij}+b_{ij})_{m\times n}$2.数乘:$k\boldsymbol{A}=(ka_{ij})_{m\times n}$可以看到,加法和数乘的运算是把矩阵的每个元素进行了相应的运算,使得它们们组成的矩阵整体进行了相应的变形。
二、矩阵乘法和逆矩阵矩阵乘法是矩阵运算中比较重要的一个概念,它描述了两个矩阵的相乘过程。
设$\boldsymbol{A}$是$m\times n$的矩阵,$\boldsymbol{B}$是$n\times p$的矩阵,则$\boldsymbol{C}=\boldsymbol{A}\boldsymbol{B}$是$m\times p$的矩阵,其中$\boldsymbol{C}$的元素$c_{ij}$由下式决定:$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}=\sum_ {k=1}^{n}a_{ik}b_{kj}$$可以看到,矩阵乘法描述了两个矩阵相乘后每个元素的变换过程,其结果是一个新的矩阵。
矩阵及其运算详解
矩阵及其运算详解矩阵是线性代数中重要的概念之一,它不仅在数学理论中有广泛应用,也在各个领域的实际问题中发挥着重要作用。
本文将详细介绍矩阵的概念、性质以及常见的运算法则,以帮助读者深入了解和掌握矩阵相关的知识。
一、矩阵的定义和基本性质矩阵是一个按照矩形排列的数集,通常用方括号表示。
一个 m×n的矩阵包含 m 行和 n 列,并用 aij 表示第 i 行、第 j 列的元素。
例如,一个 2×3 的矩阵可以表示为:A = [ a11 a12 a13a21 a22 a23 ]其中,a11、a12 等分别表示矩阵中不同位置的元素。
对于一个 m×n 的矩阵 A,当且仅当存在 m×n 的矩阵 B,满足 A = B,我们称 B 是 A 的转置矩阵。
转置矩阵中的每个元素是原矩阵对应位置元素的转置。
二、矩阵的运算法则1. 矩阵的加法和减法矩阵的加法和减法规则使其成为一个线性空间。
对于同型矩阵 A 和B,它们的和 A + B 的结果是一个与 A、B 同型的矩阵,其每个元素等于对应位置元素的和。
减法规则类似,也是对应元素相减。
矩阵的数乘指的是将一个矩阵的每个元素乘以一个标量。
即对于矩阵 A 和一个实数 k,kA 的结果是一个与 A 同型的矩阵,其每个元素等于对应位置元素乘以 k。
3. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的一种运算。
对于矩阵 A 和 B,若A 的列数等于B 的行数,则可以进行乘法运算 AB。
结果矩阵C 是一个 m×p 的矩阵,其中的元素 cij 是通过计算矩阵 A 的第 i 行和矩阵 B的第 j 列对应位置元素的乘积,并将结果相加得到的。
4. 方阵和单位矩阵方阵是指行数和列数相等的矩阵,也称为正方形矩阵。
单位矩阵是一种特殊的方阵,它的主对角线上的元素全为1,其它位置元素均为0。
单位矩阵通常用 I 表示。
三、矩阵的性质和应用1. 矩阵的转置性质矩阵的转置运算具有以下性质:- (A^T)^T = A,即两次转置后得到原矩阵。
矩阵的概念和运算
矩阵的概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、经济学等各个领域中。
本文将介绍矩阵的基本概念和运算,以及其在实际问题中的应用。
一、矩阵的定义和表示矩阵是由m行n列的数量排列在一个矩形阵列中的数或者符号所组成的矩形数表。
一般用大写字母表示矩阵,例如A、B、C等。
矩阵可以表示为:A = [a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n其中a_ij表示矩阵A中第i行第j列的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法满足相同位置元素相加的规则,即相同位置的元素相加得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]A +B = [a_ij + b_ij] = C2. 矩阵的数乘矩阵的数乘指将一个数与矩阵中的每个元素相乘,得到新矩阵。
例如:A = [a_ij],k为实数kA = [ka_ij]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到新矩阵的运算。
矩阵的乘法满足“行乘列”规则,即第一个矩阵的行元素与第二个矩阵的列元素相乘并求和得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]AB = C,其中c_ij = ∑(a_ik * b_kj)4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到新矩阵。
若A为m行n 列的矩阵,其转置矩阵记作A^T,则A^T为n行m列的矩阵,且A的第i行第j列的元素等于A^T的第j行第i列的元素。
三、矩阵的应用1. 线性方程组矩阵可以用来表示线性方程组,通过矩阵的运算可以更方便地求解线性方程组的解。
例如:Ax = b其中A为系数矩阵,x为未知数向量,b为常数向量。
通过矩阵的运算,可以求解出未知数向量x。
2. 矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,用于描述矩阵在向量空间中的变换性质。
特征向量是指在矩阵变换下保持方向不变的非零向量,特征值是指对应于特征向量的标量。
矩阵及其运算
矩阵及其运算矩阵是线性代数中的一个重要概念,它在数学和工程领域中得到广泛应用。
本文将介绍矩阵的定义和基本操作,包括矩阵的加法、减法、乘法以及转置运算。
1. 矩阵的定义矩阵由m行n列的数排列成的矩形数表称为m×n矩阵,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个数称为元素,用a(i,j)表示矩阵中第i行第j列的元素。
例如,一个2×3的矩阵A可以定义为:A = [a(1,1) a(1,2) a(1,3)][a(2,1) a(2,2) a(2,3)]2. 矩阵的加法和减法对于两个同型矩阵A和B(即行列数相等),它们的和记为A + B,差记为A - B。
加法和减法的运算法则是对应元素相加或相减。
例如,对于两个2×3的矩阵A和B,它们的和A + B和差A - B可以表示为:A +B = [a(1,1) + b(1,1) a(1,2) + b(1,2) a(1,3) + b(1,3)][a(2,1) + b(2,1) a(2,2) + b(2,2) a(2,3) + b(2,3)]A -B = [a(1,1) - b(1,1) a(1,2) - b(1,2) a(1,3) - b(1,3)][a(2,1) - b(2,1) a(2,2) - b(2,2) a(2,3) - b(2,3)]3. 矩阵的乘法矩阵的乘法是定义在矩阵上的一种运算,对于矩阵A(m×p)和矩阵B(p×n),它们的乘积记为AB,结果是一个m×n的矩阵。
具体计算过程是,矩阵AB的第i行第j列的元素是矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
用数学公式表示为:AB(i,j) = ∑(A(i,k) * B(k,j)) (k从1到p)例如,对于一个2×3的矩阵A和一个3×2的矩阵B,它们的乘积AB可以表示为:AB = [a(1,1)*b(1,1) + a(1,2)*b(2,1) + a(1,3)*b(3,1) a(1,1)*b(1,2) +a(1,2)*b(2,2) + a(1,3)*b(3,2)][a(2,1)*b(1,1) + a(2,2)*b(2,1) + a(2,3)*b(3,1) a(2,1)*b(1,2) +a(2,2)*b(2,2) + a(2,3)*b(3,2)]4. 矩阵的转置一个矩阵的转置是将其行和列互换得到的新矩阵。
矩阵的运算及其运算规则
矩阵的运算及其运算规则矩阵是现代数学中的一种重要工具,它在线性代数、图论、物理学等领域中都有广泛的应用。
矩阵的运算是研究矩阵性质和解决实际问题的基础。
本文将介绍矩阵的运算及其运算规则。
(一)矩阵的加法矩阵的加法是指将两个相同大小的矩阵对应位置的元素相加。
假设有两个矩阵A和B,它们的大小都是m行n列,记作A = [aij]m×n,B = [bij]m×n,则矩阵A和B的加法C = A + B定义为C = [cij]m×n,其中cij = aij + bij。
例如,对于矩阵A = [1 2 3; 4 5 6]和矩阵B = [7 8 9; 10 11 12],它们的加法结果为C = [8 10 12; 14 16 18]。
矩阵的加法满足以下运算规则:1. 加法满足交换律,即A + B = B + A。
2. 加法满足结合律,即(A + B) + C = A + (B + C)。
3. 存在一个零矩阵0,使得A + 0 = A。
4. 对于任意矩阵A,存在一个相反矩阵-B,使得A + (-B) = 0。
(二)矩阵的数乘矩阵的数乘是指将一个矩阵的每个元素都乘以一个数。
假设有一个矩阵A和一个实数k,记作kA,则矩阵kA定义为kA = [kaij]m×n。
例如,对于矩阵A = [1 2 3; 4 5 6]和实数k = 2,它们的数乘结果为kA = [2 4 6; 8 10 12]。
矩阵的数乘满足以下运算规则:1. 数乘满足结合律,即k(lA) = (kl)A,其中k和l分别为实数。
2. 数乘满足分配律,即(k + l)A = kA + lA,其中k和l分别为实数。
3. 数乘满足分配律,即k(A + B) = kA + kB,其中k为实数,A和B 为矩阵。
(三)矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A和一个n行p列的矩阵B 相乘得到一个m行p列的矩阵C。
假设有两个矩阵A和B,它们的大小分别为m行n列和n行p列,记作A = [aij]m×n,B = [bij]n×p,则矩阵A和B的乘法C = AB定义为C = [cij]m×p,其中cij= ∑(ai1 * b1j)。
线性代数-3.矩阵方程及其求解方法
1 0 解 ( A B ) 0 0
1 1 1 1 2 3 1 1 0 1 0 0
n 1 0 1 2 n 1 1 0 0 1 n 2 1 0 0 0 1
r1 r2 , r2 r3 , rn1 rn
1 1 P P m 1 A E, 即 〔 A B 〕 初等行变换 〔 E X 〕 . 从而 1 1 P P 1 B X; m
2. XA B,A 可逆,求 X .
1 1 AP P m 1 E, 求解方法II: 类似I,有 1 1 BP P 1 X; m
1 3 设三阶方阵A,B满足A1 BA 6 A BA, A
3 B 2 . 1
1 4
, 求B. 1 7
例5 设 A, B 为同阶方阵且 AB A kBA,若已知矩阵 A,能用什么 方法求矩阵 B ?(其中 k 为常数)
矩阵方程及其求解方法
标准的矩阵方程有三种形式:
AX B,XA B,AXC B,
其中 A , C 均为可逆阵.
1. AX B,A 可逆,求 X .
求解方法I: 因为 A 可逆,故有 X=A-1B.
求解方法II: 由 A 可逆知 A P 1 P m,P i 为初等阵,
1 -1 i 1, 2, , m,故有A1 Pm P1 ,Pi-1 也为初等阵,
1 0 0 2 0 , 1 1 0 1 0
0 1
故
1 0 1 X 0 2 0 . 1 0 1
2 1 0 ,矩阵 B 满足 ABA* 2 BA * E,求 B. 例4 设 A 1 2 0 0 0 1
线性代数复习资料
第一部分、复习纲要1、行列式:掌握行列式的计算:①利用行列式的性质②按行(列)展开③利用已知特征值.2、矩阵及其运算:熟练掌握矩阵的运算(线性运算及矩阵乘法),会用伴随矩阵求逆阵,知道矩阵分块的运算律.3、矩阵的初等变换与线性方程组:熟练掌握用矩阵的初等行变换把矩阵化成行阶梯形和行最简形;掌握用初等变换求可逆矩阵的逆矩阵的方法(包括求B A 1-);熟练掌握用矩阵的初等变换求解线性方程组的方法;会讨论带参数的方程组的解的情况.4、向量组的线性相关性:熟悉一个向量能由一个向量组线性表示这一概念与线性方程组的联系;知道两向量组等价的概念;熟悉向量驵线性相关、线性无关的概念与齐次线性方程组的联系;会用初等变换求向量组的秩和最大无关组;掌握齐次方程组的秩与解空间的维数之间的关系,熟悉基础解系的求法;会求向量组生成的向量空间的维数,会求从旧基到新基的过渡矩阵及向量的一个基下的坐标.5、相似矩阵及二次型:了解内积、长度、正交、规范正交基、正交阵、特征值与特征向量的概念;掌握特征值与特征向量的求法,熟悉特征值的性质;知道矩阵相似、合同的概念及性质,熟悉二次型及其矩阵表示,掌握用正交变换把二次型化为标准型的方法;知道对称阵的性质、可对角化的条件,二次型的正定性及判别法等.第二部分、典型题型一、填空题1、设4阶矩阵A 的秩()2R A =,S 是齐次线性方程组0Ax =的解空间,则S 的维数为__2_____,A 的伴随矩阵*A 的秩是______0_______.2、 已知3阶方阵A 的特征值为1,2,-3,则A 的迹t r A =___0_____,det A =___-6_____,*|32|A A E ++=_____25________,3、n 阶矩阵A 可对角化的充分必要条件是_____A 有n 个线性无关的特征向量_________________.对称阵A 为正定的充分必要条件是________ A 合同于单位矩阵E__________.4、向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦它的秩是__3_______,一个最大无关组是_____321,,ααα_______________________.5、 实二次型22212312133924f x x x x x x x =++-+的秩r = ,正惯性指数p = ,它是 定的. 6、设1200250000250038A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则||A = 1 ,1A -= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2300580000120025 . 7、设n 元线性方程组Ax b =的系数矩阵A 的秩为r ,若此方程组有解,则当 r =n 时,方程组有惟一解;当 r <n 时方程组有无穷多解. 8、矩阵00A C B ⎛⎫=⎪⎝⎭的伴随矩阵*C =___⎪⎪⎭⎫⎝⎛A B 00___________. 9、向量123α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321β⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵T A αβ=,则6A =___A 510___________.10、设A 为n 阶矩阵(n ≥2),*A 为A 的伴随阵,则当()R A n =时,)(*A R = n ___;当()1R A n =-时,)(*A R = _1 _ ;当()1R A n <- 时,)(*A R = 0 .11、设3阶矩阵A 的特征值为2,1,3-,*2B E A =-(其中*A 是A 的伴随矩阵),则B 的行列式||B =__-385____.12、设12243311A t-⎛⎫⎪=- ⎪ ⎪-⎝⎭,并且A 的列向量组线性相关,则t = 3 . 13、已知4维列向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦所生成的向量空间为V ,则V的维数dim V = _3____.二、解答题1、设3112513420111533D ---=---,D 的(,)i j 元的代数余子式记作ij A ,求31323334322A A A A +-+. 2、计算n 阶行列式121212333nn n n x x x x x x D x x x ++=+4、设112201102P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,500010005-⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100A .5、设202010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 200010002⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100A .6、非齐次线性方程组123123212322,2,2.x x x x x x x x x λλ-++=-⎧⎪-+=⎨⎪+-=⎩当λ取何值时有解?并求出它的通解.7、非齐次线性方程组13123123,421,642 3.x x x x x x x x λλλ+=⎧⎪++=+⎨⎪++=+⎩当λ取何值时有解?并求出它的通解.8、设方阵A 满足:220A A E --=,证明A 及2A E +都可逆,并求1A -及1(2)A E -+9、设n 阶矩阵A 和B 满足AB A B =+,(i )证明A E -为可逆矩阵;(ii )若350120002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求B .10、已知向量11010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,2222a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,,33111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,416b β⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦, (a )问a ,b 取何值时,β不能由向量组123,,ααα线性表示?(b )问a ,b 取何值时,β能由向量组123,,ααα线性表示?并且写出其一般表示式.、D 、之和的值求第四行各元素余子式设行列式22350070222204033--=11、求向量组1133α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3112α⎛⎫ ⎪=- ⎪ ⎪⎝⎭,4213α⎛⎫ ⎪= ⎪ ⎪⎝⎭的一个最大无关组与秩,并把其余向量用最大无关组线性表示.12、已知二次型为 222123232334f x x x x x =+++(1)写出二次型f 的矩阵表达式;(2)求一个正交变换x Py =,把二次型f 化为标准形,并写出该标准形..、ax x x x b x x a x x x x x x x x b a 、通解并在有无穷多解时求其无解或有无穷多解有惟一解线性方程组为何值时问?.123,2)3(,122,0,,1343214324324321⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++.AP P P ,a a A 、Λ=Λ⎪⎪⎪⎭⎫ ⎝⎛=-1,,6002802214使并求可逆矩阵的值试求常数相似于对角阵若矩阵。
大学数学易考知识点线性代数中的矩阵运算规则
大学数学易考知识点线性代数中的矩阵运算规则在大学数学中,线性代数是一门重要且基础的课程。
而在线性代数的学习过程中,矩阵运算规则是一个非常关键的知识点。
学好线性代数中的矩阵运算规则,不仅可以帮助我们更好地理解和应用线性代数的概念,还对于接触更高级的数学课程以及在实际问题中的分析与计算有着重要的作用。
一、矩阵的定义和表示方法矩阵是一种非常重要且灵活的数学工具,它是由一些数按照矩形排列组成的矩形阵列。
在线性代数中,矩阵通常使用大写的字母来表示,例如矩阵A,B,C等。
矩阵的元素可以是实数或复数。
矩阵的行数和列数分别称为矩阵的阶数,用m * n表示,其中m表示行数,n表示列数。
矩阵的表示方法有多种,常见的有行向量的表示方法和列表示方法。
行向量表示方法即将矩阵的元素按照行的顺序排列在一起,用方括号[ ]表示;列表示方法即将矩阵的元素按照列的顺序排列在一起,用方括号( )表示。
例如一个3阶2列的矩阵A可以表示为:A = [a11 a12][a21 a22][a31 a32]二、矩阵的加法和减法矩阵的加法和减法是矩阵运算中的基本运算之一。
对于两个相同阶数的矩阵A和B,它们的和与差的定义如下:矩阵A和B的和记为A + B,其定义为将A和B的对应元素相加而得到的矩阵。
即(A + B)ij = Aij + Bij,其中1<=i<=m,1<=j<=n。
矩阵A和B的差记为A - B,其定义为将A和B的对应元素相减而得到的矩阵。
即(A - B)ij = Aij - Bij,其中1<=i<=m,1<=j<=n。
需要注意的是,进行矩阵的加法和减法运算时,要求两个矩阵的阶数相同,即它们的行数和列数都相等。
否则,加法和减法运算是没有定义的。
三、矩阵的数乘矩阵的数乘是矩阵运算中的另一个基本运算。
给定一个矩阵A和一个数α,其数乘运算的定义如下:矩阵A与数α的乘积记为αA,其定义为将A的每个元素乘以α而得到的矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 0 0
例如
0
0
0 0
0 0
0
0
注意:丌同型
0 0 0 0 . 的零矩阵是丌
相等的.
0 0 0 0
10
2.2 矩阵运算
一、矩阵的加法和减法
定义:设有两个 m×n 矩阵 A = (aij),B = (bij) ,那么矩阵 A 不 B 的加法和减法规定为:
a11 b11
A
B
a21
b21
a21b11
a22b21
a2sbs1
a21b12 a22b22 a2sbs2
a21b1n
a22b2n
a2sbsn
.
am1b11
am2b21
amsbs1
am1b12 am2b22 amsbs2
am1b1n
am2b2n
amsbsn
mn
17
例
? 2
1
4 2
2
22
3
aaaa1212111
aa1122 aa222
aaaa12123333aaaa1212111
bb1122 bb222
aaaa1212333322aaaa1212111
aa1122bb1122 aa222bb222
aa2212a3a3 1233
aa3311 aa3322 aa333 aa3311 bb3322 aa333 2aa3311 aa3322bb3322 a23a3 33
1
2
4 2
2 0
3 1
0
17
14 13
3
10
,
解法2
0
( AB)T
14
3
17
13
.
10
1 4 2 2 1 0 17
( AB)T
BT AT
7
2
0
0
3
a1n a2n ann
称为上三角阵
a11
方阵
A
a21
0
a22
0 O0
称为下三角阵
an1 an2 ann
上三角不下三角阵统称为三角阵
8
6、对称矩阵不反对称矩阵
定义 设A为n 阶方阵,如果满足 aij a ji i , j 1,2,,n
那末 A 称为对称(矩)阵.
12 6 1
2
3
2
4
6
1
1 2 3
20
对于n元线性方程组:
a11x1 a12 x2
a21x1
a22
x2
am1x1 am2 x2
a1n xn b1 a2n xn b2
amn xn bm
a11
记A
a21
a12
a22
a1n a2n
am1 am2 amn
a11 a12
即:
a21
a22
am1 am2
a1n x1 b1
a2n
x2
b2
amn xn bm
x1
x
x2
xn
b1
b
b2
bm
则此方程组可写成简洁的矩阵形式: Ax b
线性方程组的矩阵形式便于有关问题的研究.
21
例2.3
设A
1
0
10 ,B
9
7、同型矩阵不矩阵相等的概念
1. 两个矩阵的行数相等、列数相等时,称为同型矩阵.
1 2 14 3
例如
5
6
与
8
4 为同型矩阵.
3 7 3 9
2. 两个矩阵 A (aij ) 不 B (bij )为同型矩阵,并且对应元 素相等,即 aij bij (i 1, 2, , m; j 1, 2, , n) 则称矩阵 A 不 B 相等,记作 A = B .
则称方阵 A 与 B 是可交换的.
22
又比如:
2 4 2 4 0 0
3
6
22
1
2
22
0
0
22
结论:
(1) AB O 不能得出 A O或B O
(2)
AB AC
AO
不能得出
BC
23
矩阵乘法的运算规律
(1) 乘法结合律
( AB)C A(BC)
(2) 数乘和乘法的结合律 AB ( A)B (其中 是数)
对于n阶方阵A ,令
f ( A) am Am am1 Am1 a1 A a0En (am 0)
称上式为n阶方阵A的m次多项式. 25
例设
f (x)
x2
5
x
3
,对于A
2 3
,11
求 2 3
1 2
1
3
1
1
5
2 3
1
1
3
1 0
0
1
1 9
0
31
2
1
16
定义2.4
a11 a12 a1s b11 b12 b1n
a21
a22
a2s
b21
b22
b2n
am1
am2
ams
ms
bs1
bs 2
bsn sn
a11b11 a12b21 a1sbs1 a11b12 a12b22 a1sbs2 a11b1n a12b2n a1sbsn
3 2
10 15
5 5
3 0
0
3
6 2
6
4
.
26
四、矩阵的转置
定义:把矩阵 A 的行换成同序数的列得到的新矩阵,叫做
A的转置矩阵,记作AT .
1 4
比如
1
A
4
2 5
2
8
,
AT
2
5
;
2 8
B 18 6 ,
BT
18
6
.
n 阶方阵A为对称阵
AT A
n 阶方阵A为反对称阵
6
1 0
4.形如
0
2
0
0
0
0
的方阵称为对角阵.
n
可记作:
diag(1, 2 ,
, n )
方阵
A
0
0
0 0
全为同一个数 称为数量矩阵.
0
0
1 0
特别的,方阵
0
1
0
0
0
0
称为单位矩阵.
1
记作 En 或 E .
7
5、方阵
a11 a12
A
0 0
a22 O
0
a31 a32 a33 a31 a32 a33 a31 a32 a33
a11 a21
a12 a22
a13 a23
a11 a21
a12 a22
a13 a23
a31 a32 a33 a31 a32 a33
15
三、矩阵乘法 为便于研究线性方程组,我们引进矩阵乘法的定义.
例如: 3x1 2x2 x3 5. 可简记为:
am1
am2
amn
bm
2
二、矩阵的定义
由 m×n 个数排成的 m 行 n 列的数表:
a11 a12
a1n
a21 a22
a2n
am1 am2
amn
称为 m 行 n 列矩阵,简称 m×n 矩阵.
记作:
a11 a12
A
a21
a22
am1 am1
a1n
a2n
amn
简记为 A Amn (aij )mn (aij )
amn
行数丌一定等于列数 共有m×n个元素 本质上就是一个数表
(aij )mn
4
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
13 6 2
2 2
2 2
2 2
是一个 3 3 矩阵,
1 2
是一个 31 矩阵,
4
2 3 5 9 是一个1 4 矩阵,
4或4 是一个 11矩阵.
5
三、特殊的矩阵
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n
a2n
b2n
amn bmn
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
11
知识点比较
a11 a12 a13 a11 b12 a13 a11 a12 b12 a13 a21 a22 a23 a21 b22 a23 a21 a22 b22 a23 a31 a32 a33 a31 b32 a33 a31 a32 b32 a33
设 A、B是同型矩阵, , 是数 ()A ( A) ( )A A A (A B) A B
备注 矩阵相加不数乘矩阵合起来,统称为矩阵的线性运算.
14
知识点比较
a11 a12 a13 a11 a12 a13 a11 a12 a13 a21 a22 a23 a21 a22 a23 a21 a22 a23
例如
A
6
8
0
是对称矩阵.
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相等.
定义 设B为n阶方阵,如果满足 aij a ji i, j 1,2,, n
那末 B 称为反对称(矩)阵.
0 2 1
例如
B
2
0
3
是反对称矩阵.
1 3 0
说明 反对称阵的主对角线上的元素(简称主元)都为0
3
这 m×n 个数称为矩阵A的元素,简称为元. 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.