矩形第一课时课件
浙教版数学八年级下册 5.1 矩形 说课课件(共35张PPT)
教学问题 诊断分析
教学技术 支持条件
【设计意图】数学的学习不应该是单方面的教师授课制度,应该是学生在自 己的操作、实验、合作中完成的更有意义,因此这部分更加强调的是对一个 新的性质探索的路径,学生于此充分的感受活动,独立思考和小组配合以诞 生猜想和结论。
05
教学内容
教学目标
教学问题
教学技术
及其解析
教学问题 诊断分析
教学技术 支持条件
【设计意图】首先让学生描述一下生活中能够抽象到的矩形,注重对学生用 数学眼光观察现实世界的培养。再类比已学的几何图形研究视角,归纳几何 图形探究的视角可以从边,角,特殊的线和对称性进行研究,从而让矩形学 习的发生更加自然。
05
教学内容
及其解析
架构体系,启航
教学目标 及其解析
03
教学内容
教学目标
及其解析
及其解析
教学技术 支持条件
教学过程 及其设计
(1)具备的基础(知识、能力) 在知识层面上,八年级的下册学生已经经历第四章平行四边形的推理过程, 也感受过从普通四边形特殊化到平行四边形的过程,本章作为特殊平行四 边形的起始课,学生初步能用特殊化角的视角进行展开;从情感角度看, 作为此阶段的学生,基本的推理能力已经具备,也懂得一定自我探索和总 结的方法,因此需要将过程更多的交给学生.
05
教学内容
及其解析
概念生成,源起
教学目标 及其解析
教学问题 诊断分析
教学技术 支持条件
【设计意图】架设平行四边形的一种特殊化视角,介绍概念,通过定义强调 出矩形和平行四边形的包含关系,作为新概念课程,书写方式的规范性和几 何语言的表达也需要一定强调。
05
教学内容
《矩形的性质》课件
矩形的周长和面积计算
周长公式
矩形的周长是两倍长和两倍宽 的和。
面积公式
矩形的面积是长乘以宽。
实例演示
通过几个例子演示如何计算矩 形的周长和面积。
矩形的性质和推导
同位角和内角和
矩形中同位角互相相等,内角和为360度。
对角线关系
矩形的对角线相互垂直。中点连线长为矩形面积开根号两次。
《矩形的性质》PPT课件
欢迎来到《矩形的性质》课件!在这个课程中,我们将深入探讨矩形的定义、 特征、周长和面积计算、性质和推导、应用和联系。让我们一起开始吧!
矩形的定义和特征
1 矩形的定义
矩形是一种四边形,有四个内角为直角,且对边相等。
2 边长关系
矩形的相邻两边长度相等,对边长度也相等。
3 对角线性质
矩形与其他几何图形的联系
正方形和长方形
正方形是一种特殊的矩形,长方形是一种分类 的矩形。
平行四边形和菱形
平行四边形有一组对边平行,菱形在矩形的基 础上增加了对边相等的特性。
总结
1 矩形是一种特殊的四边形
它有许多有趣的性质和应用。
2 学习矩形有助于理解几何图形
并对工程、建筑和计算机图形学有所帮助。
矩形的面积性质
在周长一定的情况下,矩形的面积最大。
矩形的应用和实例
1
建筑设计中的矩形
许多建筑设计基于矩形的特点:平整、稳定、便于构造。
2
计算机图形学中的矩形
由于矩形方便处理,许多2D和3D计算机图形学软件使用矩形来表示图形。
3
矩形与数学方程的关系
许多数学方程中包含矩形,如直角坐标系和平面直角坐标系。
人教版初中八年级下册数学课件 《矩形》平行四边形(第1课时矩形的性质)
A
D
O
B
C
基础训练 1. 下面性质中,矩形不一定具有的是( D)
A.对角线相等
B.四个角都相等
C.是轴对称图形 D.对角线垂直
2. 过四边形的各个顶点分别作对角线的平行线,若这四条平行 线围成一个矩形,则原四边形一定是( D )
A.对角线相等的四边形 B.对角线互相平分且相等的四边形 C.对角线互垂直平分的四边形 D.对角线垂直的四边形
3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°.点D是 AB的中点,点E为边AC上一点,连接CD,DE,以DE为边在 DE的左侧作等边△DEF,连接BF. 判断△BCD的形状;
温馨提示:矩形的定义有两个要素:
A
D
①四边形是平行四边形
②有一个角是直角,二者缺一不可。
B
C
矩形是特殊的平行四边形,因此它具有平行四边形的所有性质, 但它也有自己独特的性质。
2.矩形的性质(从边、角、对角线三个方面总结)
(1).边:①两组对边分别平行 ② 两组对边分别相等
A
D
几何语言:∵四边形ABCD是矩形
3. 已知矩形的一条对角线与一边的夹角是40°,则两条对 角线所夹锐角的度数为( )D
A.50° B.60° C.70° D.80°
4. 矩形ABCD中,AB=2BC,E在CD上,AE=AB,则∠BAE等于
()
A
A.30° B.45° C.60° D.120°
例2. 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小 三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?
B
C
∴AB//CD,AD//BC
AB=CD,AD=BC
矩形(课件)
成果展示
1.已知:四边形ABCD是矩形 (1)在矩形ABCD中,AC,BD相交于O,AD=OA=4cm.
则AC=____8___ ㎝ AB= ___4__3__ ㎝ (2)若已知AC=10㎝,BC=6㎝,则矩形的周长= __2_8__ cm
矩形的面积=___4_8___ ㎝2 (3) 若已知 ∠DOC=120°,AD=6㎝,则AC= __1_2__ cm
18.2 矩形、菱形、正方形
矩 形(1)
生活中的矩形
同学们,发现最多的图形是什么?
互助研究 探究一 由图形的变化,结合你的预习,小组交流几个问题:
1 你能用文字语言描述什么样的图形叫矩形? 与平行四边形比较,各元素之间关系
2 哪些不变、哪些改变了? 改变后的结果呢?
概念
有一个角是直角的平行四边形叫做矩形(Rectangle)
∴ CD=—12 AB
互助研究 探究三
例1:如图,已知,矩形ABCD的两条对角线 相交于点O,∠AOB=1200 , AD=4cm , 求矩形对角线的长。
解:∵ 矩形ABCD ∴ AC=BD
∴ OA=OB ∵ ∠AOB=1200 ∴ ∠1= ∠2= 1800— 2 1200= 300 在Rt△ABD中,
成果展示 2. 已知: △ABC是Rt△ ,∠ABC=900,BD是斜边AC上的中线,
(1)若BD=1㎝则AC= 2 ㎝ (2)若∠C=30°,AB=3㎝,则AC= 6 ㎝,BD= 3 ㎝
成果展示
3.矩形ABCD的周长是56cm,对角线AC与BD相交于点O, △OAB与
△OBC的周长差是4cm,则矩形ABCD的对角线长是 20 cm .
如图,可以记作“矩形ABCD” 符号语言: ∵ □ ABCD ∠A =90°
《矩形的性质与判定》第1课时示范课教学课件【数学九年级上册北师大】
A
证明:∵四边形 ABCD 是矩形,
∴AC = DB(矩形的对角线相等),
D E
BE= 1 DB= 1 AC 22
B
C
定理:直角三角形斜边上
的中线等于斜边的一半.
典型例题
例1 如图,在矩形 ABCD 中,两条对角线相交于点 O, ∠AOD = 120°,AB = 2.5,求这个矩形对角线的长.
分析:由矩形的性质可得,AC=BD,
A
D
O 60°
B
C
矩形的定义:
矩
有一个角是直角的平行四边形叫做矩形.
形
的
定
义
及
矩形的性质:
性
➢ 矩形的对边相等,对角相等,对角线互相平分.
质
➢ 矩形的四个角都是直角.
➢ 矩形的对角线相等.
教科书 第13 -14页 习题1.4 第3、4题
敬请各位老师提出宝贵意见 !
AO=CO=1
2
AC
,BO=DO=
1 2
BD
,∠BAD=90°,
从而△AOD是等腰三角形;
又由∠AOD=120°,所以∠ADB=30°,
再由30°角所对的直角边是斜边的一半可
得BD=2AB=5.
A
2.5
D
120°30°
O
5
B
C
典型例题
例1 如图,在矩形 ABCD 中,两条对角线相交于点 O, ∠AOD = 120°,AB = 2.5,求这个矩形对角线的长.
每幅图片中的平行四边形都有直角.
思考
平行四边形
一个角是直角
矩形
你能给这样的图 形下个定义吗?
定 义 有一个角是直角的平行四边形叫做矩形.
人教版初二数学《矩形》课件
人教版初二数学《矩形》课件一、教学内容本节课我们将学习人教版八年级数学下册第十七章第一节《矩形》的内容。
具体包括:矩形的定义、性质、判定方法以及矩形在实际中的应用。
本章分为两大部分:第一部分是矩形的定义和性质,这部分主要讨论矩形的内涵及四个角的特点、四条边的关系;第二部分是矩形的判定,通过具体的例子让学生掌握判断矩形的方法。
二、教学目标1. 知识与技能:让学生理解并掌握矩形的定义、性质和判定方法,能运用矩形知识解决实际问题。
2. 过程与方法:通过实践情景引入、例题讲解、随堂练习,培养学生观察、分析、解决问题的能力。
3. 情感态度与价值观:激发学生对数学的学习兴趣,培养学生的团队协作精神。
三、教学难点与重点教学重点:矩形的定义、性质、判定方法。
教学难点:矩形的判定方法,尤其是对特殊矩形的识别。
四、教具与学具准备教具:多媒体课件、黑板、粉笔、直尺、圆规。
学具:直尺、圆规、量角器、练习本。
五、教学过程1. 实践情景引入(5分钟)通过展示生活中常见的矩形物品,如书本、窗户、桌面等,引导学生观察矩形的特征,引出矩形的定义。
2. 矩形的定义与性质(15分钟)介绍矩形的定义,分析矩形的性质,如四个角为直角、对边相等、对角线相等等。
3. 矩形的判定方法(15分钟)通过例题讲解,让学生掌握矩形的判定方法。
包括:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形等。
4. 例题讲解(10分钟)讲解两道例题,一道是判断矩形,另一道是利用矩形性质解决问题。
5. 随堂练习(10分钟)学生独立完成练习题,巩固所学知识。
6. 小组讨论与分享(5分钟)学生分小组讨论矩形在实际生活中的应用,分享学习心得。
六、板书设计1. 矩形的定义2. 矩形的性质3. 矩形的判定方法4. 例题解析5. 课堂练习七、作业设计1. 作业题目:判断下列图形中哪些是矩形,并说明理由。
答案:图形①、③、⑤是矩形。
2. 作业题目:利用矩形的性质,计算下列图形的面积。
1.2 矩形的性质与判定(第一课时)(共20张PPT)
矩形的定义及性质课件
矩形可以用于设计画布、画框 和展示板,提供稳定的支撑。
在平面设计和排版中,矩形常 被用于布局和组织内容。
在平面设计和排版中,矩形常 被用于布局和组织内容,提高
视觉效果。
其他应用场景
在包装和运输中,矩形纸箱和托 盘被广泛使用,便于堆叠和搬运
。
在科学实验中,矩形玻璃器皿常 被用于盛放液体或气体。
近代的矩形研究
近代数学家对矩形的深入 研究
随着数学的发展,人们对矩形的研究更加深 入。例如,矩形的一些重要性质被发现,如 矩形的对角线相等、矩形的面积等于长乘以 宽等。
近代的应用
在工业生产和建筑设计等领域中,矩形的应 用更加广泛。例如,在制造机器时,人们会 使用矩形的零件来确保机器的稳定性和精度
。
特殊情况下矩形的判定
总结词
在特殊情况下,如矩形的一条对角线被另一条对角线平分,则该四边形为矩形。
详细描述
如果一个四边形的一条对角线被另一条对角线平分,则该四边形的两条对角线长度相等,因此该四边 形为矩形。此外,如果一个四边形的两条对角线互相平分且相等,则该四边形也一定是矩形。
04
矩形在实际生活中的 应用
详细描述
轴对称性意味着矩形沿一条垂直或水平的直线对折后两部分能够完全重合,而中 心对称性则意味着矩形关于其中心点对称。这两种对称性在建筑设计、图案设计 等领域有着广泛的应用,使得矩形成为一种非常受欢迎的几何图形。
03
矩形的判定
根据定义判定矩形
总结词
根据矩形定义,矩形是四个角都是直 角的平行四边形。
总结词
矩形的对角线长度相等,这是由矩形的基本性质推导出的一 个重要结论。
详细描述
由于矩形的两组相对边分别平行且等长,根据勾股定理,矩 形的两条对角线长度相等。这一性质在解决几何问题时非常 有用,特别是在证明和计算与矩形相关的定理和公式时。
《矩形》PPT课件
O B J E C T I V E S
01
生活中常见的长方形
想一想,图中的长方形
与平行四边形之间有什么联系吗?
01
观察与思考
利用一个活动的平行四边形教具演示,想一想长方形与平行四边形之间存在的联系?
1.当α=0°(或180°)
2.当0°< α <90° (或90°< α <180°)
A
D
α
想一想教具在转动的过程中,
∴△AOB是等边三角形,
∴AO=OB=AB=3,
∴BD=2OB=6.
02
练一练
5、如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点 ′
上.
若 = 6, = 9,求BF的长.
【详解】
解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上
1
∴BC’ = 2AB = 3,CF = C'F
BC,则∠A=_____.
【答案】30°.
【详解】
解:如图,∵在Rt△ABC中,∠ACB=90°,CD是斜边上的中线,
∴BD=CD.
又∵CD=BC,
∴CD=BC=BD,
∴△BCD是等边三角形,
∴∠B=60°,
∴∠A=90°﹣∠B=30°.
PA RT 0 3
课后回顾
01
理解矩形的概念
02
理解矩形的性质
∴∠BAO =∠ABO=55°,
∴∠AOD =∠BAO+∠ABO = 55°+55°=110°.
故答案为:A
02
练一练
3.若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形
ABCD是(
18.2.1 第1课时 矩形的性质 课件 2021—2022学年人教版数学八年级下册
A.13
B.6
C.6.5 D.不能确定
3.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角( C )
A.20 ° B.40°
C.80 °
D.10°
D
5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中 点,若AB=6cm,BC=8cm,则EF=__2_._5__若DE=5,AE=8,则BE的长__6___.
5.【中考·朝阳】如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD ,垂足为点E,CE=5,且EO=2DE,则AD的长为( A )
A.5 6 B.6 5 C.10 D.6 3
课堂小结(2分钟) 矩形的定义:有一个角是___直__角_____的__平__行__四__边__形___是矩形
∴AE=DF.
自学指导2(3分钟) 问题1 阅读课本53页,根据矩形的性质,请你推导直角三角形的一个性质
已知:在Rt△ABC中,∠ABC=90°,BO是AC上的中线.
求证: BO = 1 AC ?
2
A
D
分析:延长BO至D, 使OD=BO,连接AD、DC.
O
先证四边形ABCD是平行四边形,
再证 ABCD是矩形
已∠知AB:C=四∠边BC形D=A∠BCCDD是A=矩∠形DA,B∠=A9B0C°=9,0°AC,=DB.
A
D
O
B
C
求证:AC=DB.
分析:证△ABC≌△DCB.
自主检测1(8分钟)
1. 矩形是轴对称图形吗?有几条对称轴?矩形的性质:
对称性: 轴对称图形 .
对称轴: 2条
.
A
D
2.如图,在矩形ABCD中,对角线AC,BD交于点O, 下列
1.2.2矩形的判定 课件(共19张PPT)
2.动手操作,拿一个活动的平行四边形教具,轻轻拉动一对不相邻的顶点(如图).
思考:①随着∠α的变化,两条对角线的长度是否发生变化? (发生了变化)
②当两条对角线的长度相等时,平行四边形有什么特征?
(对角线相等的平行四边形是矩形)
③矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个
框符不符合我的要求?”王子听后,找来一把三角尺,用三角尺量了量
门框的三个角,然后对国王说:“父王,我量了门框的三个角,它们都
是90度,因此,这个门框是矩形.”
(1)问:你认为王子说得对吗?请同学们分组讨论并给出老师答案.(让其中的
一组来讲)
(2)有三个角是直角的四边形是矩形吗?
自主探究 (10min)
中点, ∴ = =
,
∥ .
∴四边形 DECF 是平行四边形.
∵∠ACB=90°,∴四边形 DECF 是矩形,∴EF=CD=6cm.
典例精讲
例 6: 如图,在四边形 ABCD 中,AC,BD 相交于点 O,O 是 AC 的中点,AD∥BC.
(1)求证:四边形 ABCD是平行四边形;
四边形就是矩形?
(一个四边形至少有三个角是直角时,这个四边形就是矩形)
小组讨论(4min)
①如果仅有一根足够长的绳子,如何判定一个四边形是平行四边形?
(两组对边分别相等为平行四边形)
②如果仅有一根足够长的绳子,如何判定一个四边形是菱形?
(四边相等为菱形)
③如果仅有一根足够长的绳子,如何判定一个四边形是矩形?
测量…?
李芳同学用“边——直角、边——直角、边——直角、边”
这样四步,画出了一个四边形,她说这就是一个矩形,她的判断
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类比思考
探究性质
三位学生正在做投圈游戏,他们分别站在一个直角 三角形的三个顶点处,目标物放在斜边的中点处.三个 人的位置对每个人公平吗?请说明理由. A O C
B
运用性质
解决问题
例1 如图,矩形ABCD的两条对角线相交于点O, 且∠AOB=60°,AB=4 cm.求矩形对角线的长.
你还能得出哪些结论?
D
A O B
D C
你能分别证明这些猜想吗? 矩形是轴对称图形吗?如果是,指出它的对称轴, 并用轴对称性质解析矩形的性质.
类比思考
探究性质
如图,一张矩形纸片,沿着对角线剪去一半,你能 得到什么结论? A O B D A O
C
B
C
Rt△ABC中,BO是一条怎样的线段?它的长度与斜 边AC有什么关系?一般地,这个结论对所有直角三角形 都成立吗?
A
O B
D
C
运用性质
解决问题
例2 矩形ABCD中,P是AD上一动点,且PE⊥AC 于点E,PF⊥BD于点F.求证:PE+PF为定值.
A
E B
P
O F
D
C
课堂小结
矩形:有一个角是直角的平行四边形叫做矩形.
矩形
矩形的对边平行且相等; 矩形的四个角都是直角; 矩形的对角线相等且互相平分.
直角三角形斜边上的中线等于斜边的一半. 矩形是轴对称图形,连接对边中点的直线是它的两 条对称轴.
观察思考
形成概念
当独木桥前后运动时,四边形ABCD是什么形状? 当独木桥最后停下时,四边形ABCD有什么特殊的变化? 当独木桥静止时,四边形ABCD是什么图形?
有一个角是直角 A 的平行四边形叫做矩 形. 小学中学习过的 长方形是类比思考
探究性质
作为特殊的平行四边形,矩形具有平行四边形所有 的性质.此外,矩形还有哪些一般平行四边形没有的特 殊性质呢? A B O C