用SPSS对分类变量进行相关分析_光环大数据培训
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用SPSS对分类变量进行相关分析_光环大数据培训图形化解决方案——网络图
网络图适合多分类型变量之间的相关分析,是一种更为生动和直观地展示两个或多个分类型变量相关特征的图形。图形由节点和节点间的连线组成,每个节点对应一个分类取值,连线代表两个分类变量不同类型的组合。
根据图形,最细连线代表44人,最粗连线代表237人,可见Plus service (附加服务套餐)节点和未流失节点之间的连线最粗,选择附加服务套餐的用户相对而言比较忠实,而选择基本服务类型的用户保持情况不如选择附加服务的用户保持情况理想。
以上过程可采用Clementine的web节点实现。
数值型解决方案——交叉表分析
图形化方法并不能正确反映两分类变量之间的相关程度,因此精细的数值分析是必要的。两分类变量之间的相关分析通常采用交叉表分析,或称为列联表分析方法。包括两部分,第一,两分类变量交叉计算和对比频数,第二,在交叉表的基础上利用卡方检验衡量二者之间的关系。
1、交叉表频数对比分析的解读
由表可知,用户总体保持率72.6%,流失率27.4%,用户保持情况不太理想。
总体而言,样本量较小的情况下,四种套餐的占比分布情况不甚明了。
其中最突出的是,附加服务的客户忠诚度相对较高,保持率达到84.3%,高出总体保持率,流失率在四个套餐中最低,仅15.7%,低于总体流失率。可见,不同类型套餐用户的保持和流失存在差异。
因此说,客户流失与套餐类型是相关联的。
2、卡方检验解读
卡方检验原假设:行与列分类变量相互独立,没有相关关系。由卡方检验表看出,其sig值为0.000,小于小概率事件的界定值0.01,由小概率事件不发生可以知道,原假设即二者独立这个说法是不合理的,也就是说套餐类型和客户流失是有极显著的相关关系。
以上交叉表分析可利用 SPSS 实现。
为什么大家选择光环大数据!
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请大数据领域具有多年经验的讲师,提高教学的整体质量与教学水准。讲师团及时掌握时代的技术,将时新的技能融入教学中,让学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生较快的掌握技能知识,帮助莘莘学子实现就业梦想。
光环大数据启动了推进人工智能人才发展的“AI智客计划”。光环大数据专注国内大数据和人工智能培训,将在人工智能和大数据领域深度合作。未来三年,光环大数据将联合国内百所大学,通过“AI智客计划”,共同推动人工智能产业人才生态建设,培养和认证5-10万名AI大数据领域的人才。
参加“AI智客计划”,享2000元助学金!
【报名方式、详情咨询】
光环大数据网站报名:
手机报名链接:http:// /mobile/