二面角求法及经典题型归纳

合集下载

二面角大小的几种求法(归类总结分析)

二面角大小的几种求法(归类总结分析)

二面角大小的几种求法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。

求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。

I. 寻找有棱二面角的平面角的方法 ( 定义法、三垂线法、垂面法、射影面积法 ) 一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角。

例 空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B-PC-A 的大小。

解:过PC 上的点D 分别作DE ⊥AC 于E ,DF ⊥BC 于F ,连EF.∴∠EDF 为二面角B-PC-A 的平面角,设CD=a ,∵∠PCA=∠PCB=600, ∴CE=CF=2a ,DE=DF=a 3,又∵∠ACB=900,∴EF=,∴∠EDF=31328332222=⋅-+a a a a1. 在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。

PB α CA E FD2. 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β,求∠APB 的大小。

3. 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。

二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角。

例 在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。

高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)

高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)

AA 1 =2, E、E 1 、F 分别是棱 AD、AA 1 、AB 的中点。
D1
A1 (1) 证明:直线 EE 1 //平面 FCC 1 ;
C1 B1
(2) 求二面角 B-FC 1 -C 的余弦值。
E1
D
E
A
F
C B
证(1)略 解 ( 2) 因 为 AB=4, BC=CD=2, 、 F 是 棱 AB 的 中 点 ,所 以 A1 BF=BC=CF,△BCF 为正三角形,取 CF 的中点 O,则 OB⊥CF,又因
分析:本题是一道典型的利用三垂线定理求二面角问题,在证明 AD⊥平面 PAB 后,容易发现平面 PAB⊥ 平面 ABCD,点 P 就是二面角 P-BD-A 的半平面上的一个点,于是可过点 P 作棱 BD 的垂线,再作平面 ABCD
的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角 P BD A 的大
2 ,则 GF
2

2
又∵ SA AC 6 ,∴ AM 2 ,∵ AM AB 2 , ABM 600 ∴△ ABM 是等边三角形,∴
BF 3 。在△ GAB 中, AG 6 , AB 2 , GAB 900 ,∴ BG 3 4 11
2
2
2
cos BFG GF 2 FB 2 BG 2
6
,求二面角 E—AF—C 的余弦值.
2
分析:第 1 题容易发现,可通过证 AE⊥AD 后推出 AE⊥平面 APD,使命 题获证,而第 2 题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在 二面角的棱 AF 上找到可计算二面角的平面角的顶点 S,和两边 SE 与 SC,进而计算二面角的余弦值。(答

二面角的几种方法及例题

二面角的几种方法及例题

二面角大小的求法(例题)二面角的类型和求法可用框图展现如下:、定义法: 甬片+—*■垂面法化T不见播型直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、如图,已知二面角a - a - B等于120° ,PA丄a ,A €a ,PB丄B ,B .求/ APB的大小.做OB 交线,交于点O,连接OAQ PB 平面PB 交线同理PA 交线又Q OB 交线交线面PAOB交线OA即可得AOB为面的二面角,AOB=120所以APB=60例、在四棱锥P-ABCD中, ABCD是正方形,PA!平面ABCQPA=AB=a求二面角B-PC-D的大小。

提示:VPAB VPCD,而且是直角三角形可见槻型I解法• f三垂线法A、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD中,ABCD是平行四边形,P从平面ABCD PA=AB=a / ABC=30,求二面角P-BC-A的tag 大小。

过A做AH BC,交BC于H,连接PH Q PA 面ABCDPA AB, PA BCBC 面PHAPHA为二面角在VABH中ABH=30 , AB=aAH=a/2tag PHA 2例:如图,ABCD-ABGD是长方体,侧棱AA长为1,底面为正方体且边长为2,E是棱BC勺中点,求面CD%面CD所成二面角的正切值.提示:CO DE而且是长方体! !!例、△ ABC 中,/ A=90°, AB=4 AC=3 平面 ABC 外一点 P 在平 面ABC 内的射影是AB 中点M 二面角P-AC — B 的大小为45°。

求(1) 二面角P-BC — A 的大小;(2)二面角C-PB-A 的大小 提示:角PAB 是二面角,找到每个面的直角!射影,那么PM 为面ABC 的垂线!例、如图4,平面丄平面,A =l , A € , B € ,点A 在 直线I 上的射影为A,点B 在I 的射影为B,已知AB=2AA=1,BBp/2, 求:二面角A — AB- B 的大小.提示:AA1与BB1互相垂直AF 是辅助线且垂直AB,FE 平行BB四、射影法:(面积法)利用面积射影公式S 射=S 原cos ,其中 为平面BD i' M图4角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD中,ABC[为正方形,P从平面ABCD PA =AB= a,求平面PBA与平面PDC所成二面角的大小。

最新的版,二面角求法及经典题型归纳

最新的版,二面角求法及经典题型归纳

立体几何二面角求法一:知识准备1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。

3、二面角的大小范围:[0°,180°]4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直5、平面的法向量:直线L垂直平面α,取直线L的方向向量,则这个方向向量叫做平面α的法向量。

(显然,一个平面的法向量有无数个,它们是共线向量)6、二面角做法:做二面角的平面角主要有3种方法:(1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹的角;(2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(3)、三垂线法:过一个半平面内一点(记为A)做另一个半平面的一条垂线,过这个垂足(记为B)再做棱的垂线,记垂足为C,连接AC,则∠ACB即为该二面角的平面角。

7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系?二:二面角的基本求法及练习1、定义法:αβaOAB从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM—B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

高中数学必修2立体几何专题二面角典型例题解法总结

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。

在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

高中数学必修2立体几何专题二面角典型例题解法总结

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。

在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

五种方法法求二面角及限时练习

五种方法法求二面角及限时练习

五种方法求二面角及练习题一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AMB --的大小为)36arccos(-FGFG练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

求二面角的五种方法

求二面角的五种方法

求二面角的五种方法一、定义法:由图形的特殊条件按定义直接作出. 如在空间四边形ABCD 中, AB =AC , DB =DC , 求二面角A -BC -D 的大小.例1如图, 过正方形ABCD 的顶点A 作PA ⊥平面ABCD , 设PA =A B=a ,求二面角B -PC -D 的大小.例2二面角α-BC -β大小为120°, A ∈α,B ∈β, 且AB ⊥BC , BC ⊥CD ,AB =BC =CD =1, 求二面角A -BD -C 的正切值.例3如图, 已知四面体SABC 中, ∠ASB =2π,∠ASC =α(0<α<2π), ∠CSB =β(0<β<2π), 二面角A -SC -B 的大小为θ, 求证:θ=π-arccos(cos α·cot β).二、垂面法:通过作二面角棱的垂面, 此垂面与二面角的两个面所交的两条射线构成的角就是这个二面角的平面角.例4⑴空间三条射线PA ,PB ,PC 不共面, 若∠APC =∠APB =60°,∠BPC =90°, 则二面角B -PA -C 的大小是______;⑵已知∠AOB =90°, 过O 点引∠AOB 所在平面的斜线OC , 使它与OA ,OB 分别成45°,60°的角, 则二面角A -OC -B 的余弦值为______.例5如图, 在△ABC 中, AB ⊥BC , SA ⊥平面ABC , DE 垂直平分SC , 且分别交AC ,SC 于D ,E , 又SA =AB , SB =BC , 求二面角E -BD -C 的大小.三、延伸法:若所求的两个面只有一个公共点是已知的, 因此要把两个面延伸面得到二面角的棱, 然后再求出它的平面角.例6直角梯形ABCD 中, AB ⊥AD , AD ⊥CD , AB =2, CD =4, 平面PAD ⊥平面ABCD , △PBC 是边长为10的正三角形, 求平面PAD 和平面PBC 所成二面角的大小.例7设正方体ABCD-A1B1C1D1中, E为AA1中点, 求平面B1DE和底面ABCD所成二面角的大小.四、垂线法:利用三垂线定理或其逆定理作出平面角.例8已知由O点出发的三条射线OA,OB,OC不共面,且∠AOB=∠AOC, 求证:二面角A-OB-C与二面角A-OC-B相等.例9二面角M-CD-N中, A为平面M上一定点, △ADC的面积为定值S, DC=a,B为平面N内一点, AB⊥CD, 若AB与平面N成30°角, 求面积△BCD的最大值, 并求此时二面角M-CD-N的大小.五、射影法:若多边形面积为S, 它在一个平面上的射影的面积为S0, 则多边形所在平面与这个平面所成的二面角θ, 满足S0=S cosθ, 利用这个公式求二面角的方法称“射影法”, 射影法对于解决棱不太明显的二面角问题有独特的作用.例10过正方形ABCD的顶点A作线段PA⊥平面ABCD, 若AB=PA, 则平面ABP与平面CDP所成的二面角为( )A. 30°B. 45°C. 60°D. 90°例11 P是正方形ABCD所在平面外一点, △PAB是正三角形, 且平面PAB⊥平面ABCD,求二面角P-AC-B的大小.友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

高中数学必修2立体几何专题二面角典型例题解法总结

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法一、定义法:从一条直线出发的两个半平面所构成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题供给了添协助线的一种规律。

如例 1 中从二面角S—AM— B 中半平面ABM上的一已知点( B)向棱 AM作垂线,得垂足( F);在另一半平面ASM内过该垂足(F)作棱 AM的垂线(如 GF),这两条垂线( BF、GF)便形成该二面角的一个平面角,再在该平面角内成立一个可解三角形,而后借助直角三角函数、正弦定理与余弦定理解题。

例1如图,四棱锥S ABCD 中,底面ABCD 为矩形,SD底面ABCD ,AD2DC SD 2 ,点M在侧棱SC 上,ABM=60°(I )证明: M在侧棱SC的中点(II )求二面角S AM B的大小。

证( I)略解( II ):利用二面角的定义。

在等边三角形ABM 中过点 B 作 BF AM交AM于点F,则点F为AM的中点,过 F 点在平面 ASM内作GF AM ,GF交AS于G,连结 AC,∵△ ADC≌△ ADS,∴ AS-AC,且 M是 SC的中点,∴ AM⊥SC, GF⊥ AM,∴ GF∥ AS,又∵F为 AM的中点,GF ∴ GF是△ AMS的中位线,点G是 AS的中点。

则 GFB 即为所求二面角.∵ SM2,则GF 2,2又∵ SA AC6,∴AM2,∵ AM AB2,ABM600∴△ABM是等边三角形,∴BF3。

在△ GAB 中,AG6, AB2,GAB900,∴ BG3411222111cos BFG GF 2FB 2BG 2232262GF FB263G223F∴二面角 S AM B 的大小为arccos( 6 )3练习 1 如图,已知四棱锥 P - ABCD ,底面 ABCD 为菱形, PA ⊥平面 ABCD ,ABC 60 , E , F 分别是BC , PC 的中点 .(Ⅰ)证明: AE ⊥ PD ;(Ⅱ)若 H 为 PD 上的动点, EH 与平面 PAD 所成最大角的正切值为6,求二面角 E — AF —C 的余弦值 .2剖析 :第 1 题简单发现,可经过证 AE ⊥AD 后推出 AE ⊥平面 APD ,使命题获证,而第 2 题,则第一一定在找到最大角正切值有关的线段计算出各线段的长度以后,考虑到运用 在二面角的棱 AF 上找到可计算二面角的平面角的极点 S ,和两边 SE 与 SC ,从而计算二面角的余弦值。

(完整版)二面角求解方法

(完整版)二面角求解方法

二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。

下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。

2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。

斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。

3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。

4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。

尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。

分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角在PAE ∆中AE=PE=3,PA=6PCBAE∴PEA ∠=900∴二面角P-BC-A 的平面角为900。

例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。

[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。

解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=arctan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE由三垂线定理知AM ⊥PCPC BAEF MEPCBAF图1图2∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。

重点高中数学必修2立体几何专题二面角典型例题解法总结

重点高中数学必修2立体几何专题二面角典型例题解法总结

重点高中数学必修2立体几何专题二面角典型例题解法总结————————————————————————————————作者:————————————————————————————————日期:二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。

在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

二面角题型归纳及解题方法

二面角题型归纳及解题方法

αβa O A B 二面角题型归纳及解题方法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。

求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,我们分为三类问题六种解题方法。

从而给出二面角的通性通法。

第一类:有棱二面角的平面角的方法方法1、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1、(全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60°(I )证明:M 在侧棱的中点 (II )求二面角的余弦值。

证(I )略解(II ):利用二面角的定义。

在等边三角形中过点作交于点,则点为AM 的中点,过F 点在平面ASM 内作,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --ABM B BF AM ⊥AM F F GF AM ⊥F GFB ∠FG∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角的大小为)36arccos(-举一反三:空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B -PC -A 的大小。

二面角的计算(方法加经典题型)

二面角的计算(方法加经典题型)

二面角的求法(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

注:o 点在棱上,用定义法。

(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。

注:o 点在一个半平面上,用三垂线定理法。

(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。

注:点O 在二面角内,用垂面法。

(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ S A 图3 α βO B l O 图5 β α l CB A例题讲解1、(本小题满分14分)如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面,,ABCD PD CD E =是PC 的中点,作EF PB ⊥交PB 于点F 。

(I )求证://PA 平面EDB ;(II )求证:PB ⊥平面EFD ;(III )求二面角P BC D --的大小。

2、 如图1-125,PC ⊥平面ABC ,AB =BC=CA =PC ,求二面角B -PA -C 的平面角的正切值。

(三垂线定理法)3.在棱长为1的正方体1AC 中,(1)求二面角11A B D C --的大小的余弦值;(2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小的正切值。

18、(本题满分14分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,,60ABC ∠=°,PA AB BC ==,E 是PC 的中点. (Ⅰ)求PB 和平面PAD 所成的角的大小;(Ⅱ)证明⊥AE 平面PCD ; (Ⅲ)求二面角A PD C --的正弦值.O 1A 1C 1D 1B 1D C B A A BC DP E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 - αβa O A B 二面角求法
一:知识准备
1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.
2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。

3、二面角的大小范围:[0°,180°]
4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直
5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。

(显然,一个平面的法向量有无数个,它们是共线向量)
6、二面角做法:做二面角的平面角主要有3种方法:
(1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角;
(2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;
(3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。

7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习
1、定义法:
从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );
在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A
B C A 的大小;
(2)平面11A DC 与平面11ADD A 所成角的正切值。

C1。

相关文档
最新文档