高一数学简单的幂函数PPT优秀课件

合集下载

幂函数课件必修1-PPT课件

幂函数课件必修1-PPT课件
3 y 1 y x 2
2
(
( 1 ( -
- - 6 - 4 2 2 4 6
-1
(-
x -3 -2 -1 1 2 3
-2
y x1 -1/3 -1/2 -1 1 1/2 1/3
-3
-4
( 4 y x 3 ( y x 2
3 y 1 y x 2
2
(
( 1 ( y x - -
- - 6 - 4 2 2 4 6
\ \0 … -1/3 -1/2 -1 \ 1 1/2 1/3 …
4
3
2
1
(1,1)
-6
-4
-2
-1
(-1,-1)
-2
2
4
6
-3
-4
x -3 -2 -1 0 1 2 3 4
y=x2 9 4 1 0 1 4 9 3
y=x
2
1
(1,1)
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
3
2
(2,4) y=x
1
(-1,1)
(1,1)
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
(-2,4 4 )
3
(2,4) y x 2 =
y=x
2
(-1 1 ,1 (1 ) ,1)
-6
-4
-2
2
4
6
-1
(-1,-1)
x -2 -3 -2 -1 0 1 2 3 -3y=x3 -27 -8 -1 0 1 8 27

3.3幂函数(共43张PPT)

3.3幂函数(共43张PPT)

解决幂函数图象问题应把握的原则 (1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大, 幂函数图象越靠近 x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂 函数图象越远离 x 轴(简记为指大图高). (2)依据图象确定幂指数 α 与 0,1 的大小关系,即根据幂函数在第一象限内 的图象(类似于 y=x-1 或 y=x12或 y=x3)来判断.
()
解析:选 D.由题意设 f(x)=xn, 因为函数 f(x)的图象经过点(3, 3), 所以 3=3n,解得 n=12, 即 f(x)= x, 所以 f(x)既不是奇函数,也不是偶函数, 且在(0,+∞)上是增函数,故选 D.
4.函数 y=x-3 在区间[-4,-2]上的最小值是_____________. 解析:因为函数 y=x-3=x13在(-∞,0)上单调递减, 所以当 x=-2 时,ymin=(-2)-3=(-12)3=-18. 答案:-18
B.-3 D.3
()
【解析】 (1)②⑦中自变量 x 在指数的位置,③中系数不是 1,④中解析式 为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函数,所以 m2+2m-2=1, m>0, 所以 m=1.
【答案】 (1)B (2)A
所以( 2)-32>( 3)-32.
6
6
6
6
(3)因为 y=x5为 R 上的偶函数,所以(-0.31)5=0.315.又函数 y=x5为[0,
+∞)上的增函数,且 0.31<0.35,
6
6
6
6
所以 0.315<0.355,即(-0.31)5<0.355.

简单的幂函数

简单的幂函数

些特征?
图像回放
对任意的x,f(-x)=-f(x)
图像关于原点对称的函数 叫作奇函数
问题2:观察y=x2的图像,说出它有
哪些特征?
图像回放
对任意的x,f(-x)=f(x) 图像关于y轴对称的函数 叫作偶函数
ks5u精品课件
示范:判断f(x)=-2x5和f(x)=x4+2的 奇偶性
方法小结
ks5u精品课件
B .减少的 D.先减后增
ks5u精品课件
拓展性训练题
4.已知y=f(x)是定义在(-1,1)上的奇函数, 且在(-1,1)上是单调递减的,则不等式
f(1-x)+f(1-x2)<0的解集是( ) C
A.(-1,1) B.(0,√2) C.(0,1) D.(1,√2)
ks5u精品课件
小结:
1.幂函数的概念 2.奇函数,偶函数的概念 3.函数的奇偶性及其判断方法

x
2ห้องสมุดไป่ตู้
1,
x

0.
ks5u精品课件
拓展性训练题
2.已知函数f(x)=(m-1)x2+2mx+3是偶函
数 ,则f(x)在(-∞,0]上是( A )
A.增加的 C.先增后减
B .减少的 D.先减后增
3.已知函数y=f(x)是奇函数,在[a,b]上是
减少的,则它在[-b,-a]上是( B )
A.增加的 C.先增后减
简单的幂函数
ks5u精品课件
y=x , y 1 ( y=x-1 ), y=x2
x
如果一个函数,底数是自变量x,
指数是常量 ,即
y x
这样的函数称为幂函数.
ks5u精品课件

《幂函数》PPT课件

《幂函数》PPT课件
m2 m 1 1
解之得: m 2或m 1
m 2或m 1
二、五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
(4)
1
y x2
(5)
y x1
1
如何画y x3和y x 2的图像呢 ?
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
1
y = x y = x2 y= x3 y x 2
(5) y 1 x
思考:指数函数y=ax与幂 函数y=xα有什么区别?
答案(2)(5)
二、幂函数与指数函数比较
名称
式子
常数
x
y
指数函数: y=a x
(a>0且a≠1)
幂函数: y= xα
a为底数 α为指数
指数 底数
幂值 幂值
判断一个函数是幂函数还是指数函数切入点
看未知数x是指数还是底数
指数函数
幂函数
-2 -3
(-2,4)
4
y=x3 (2,4)
y=x2
3
y=x
1
y=x 2
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
幂函数的图象都通过点(1,1) α为奇数时,幂函数为奇函数, α为偶数时,幂函数为偶函数.
-3 在第一象限内,
a >0,在(0,+∞)上为增函数; -4 a <0,在(0,+∞)上为减函数.
解:
幂函数f
(x)
x
1
2的定义域是(0,

函数简单的幂函数课件ppt

函数简单的幂函数课件ppt
幂函数在化学反应中的运 用
描述化学反应速率、平衡常数等化学现象。
幂函数在物质性质中的运用
描述物质溶解度、沸点、密度等化学性质。
幂函数在量子力学中的运 用
用于描述原子能级、分子结构等化学现象。
05
总结与展望
本章内容总结
幂函数的定义
掌握了幂函数的定义和基本形 式。
幂函数的性质
了解了幂函数的单调性、奇偶性 、渐近线等性质。
幂函数的图像
幂函数的图像概述
幂函数的图像呈现出一种类似于直线或者曲线的形态,其变 化趋势和单调性及奇偶性有关。
绘制幂函数图像的方法
可以采用描点法或者直接根据幂函数的定义绘制图像。对于 不同的$a$值,可以分别绘制对应的幂函数图像,观察其变化 规律。
03
幂函数的运算性质
幂函数的加减乘除运算
总结词
幂函数的求导与求积分
总结词
幂函数的求导与求积分是学习幂函数的进阶内容,掌握其方法对解决实际问题有很大帮助 。
详细描述
求导是指找出函数在某一点的导数值,它反映了函数在这一点附近的斜率;求积分是指计 算函数在一个区间内的面积,它反映了函数在区间内的整体性质。对于幂函数,我们可以 利用微积分的基本公式进行求导与求积分。
幂函数的复合运算
01
总结词
ቤተ መጻሕፍቲ ባይዱ
幂函数的复合运算是学习幂函数的重要一环,通过复合运算可以加深
对幂函数的理解。
02 03
详细描述
复合运算通常是指将一个函数嵌套在另一个函数中,从而形成一个新 的函数。在幂函数的复合运算中,我们通常将一个幂函数作为另一个 幂函数的自变量。
举例
例如,我们可以将两个幂函数f(x)=x^a和g(x)=x^b进行复合,得到 一个新的幂函数h(x)=f(g(x))=(x^b)^a=x^(a*b)。

《幂函数》新教材PPT完美课件

《幂函数》新教材PPT完美课件

第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
பைடு நூலகம்
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)

高一数学幂函数ppt课件.ppt

高一数学幂函数ppt课件.ppt

(4)只有1项; (5)这些例子中涉及的函数都是形 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
幂函数的定义
一 般 地 ,函 数 y x 叫 做 幂 函 数 ,其 中 x 是 自 变 量 ,
下面我们一起来尝试幂函数性质的简单应用:
(基础练习)例4:写出下列函数的定义域,并指出它们的奇偶
性和单调性.
(1)y x4
1
(2) y x 4
(3)y x3
解:(1)函数 y x4的定义域为R,它是偶函数,在 [0,)上是增函数,
在(,0)上是减函数.
1
(2)函数 y x 4 的定义域为[0,),它是非奇非偶函数,在[0,)上是增函数.
(3)yx2 x(×)(4)yx2 (1 ×)
(5)y x2
(×) (6)y
1 x3
(√)
[总结]要判断一个函数是幂函数,判断的标准是它的定
义.根据定义,可以把幂函数的形式特征概括为:两个系
数为1,只有一项.
4
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(巩固提升)例3:已知函数f(x)(m 22m )xm 2m 1,m为何值
时,是:(1)正比例函数;(2)反比例函数;(3)二次
函数;(4)幂函数.
解 :
(感受理解)例5:比较下列各组中两个值的大小,并说明理由.
1

北师大版(2019)数学必修第一册:2.4.2《简单幂函数的图像和性质》PPT课件(共16页)

北师大版(2019)数学必修第一册:2.4.2《简单幂函数的图像和性质》PPT课件(共16页)
(0, +∞)上为减函数,解关于的不等式( + 1)− < (3 − 2)− .
提示: (4) 函数 = 3−9 ( ∈ ∗ )在(0, +∞)上为减函数,
则3 − 9 < 0,即 < 3, ∈ ∗ ,故 = 1或 = 2.
又图象关于轴对称,函数为偶函数,则3 − 9为偶数,所以 = 1
提示: = 3 .
(2)写出面积为的正方形的边长的函数.
提示: = 即 =
1
2

一般地,形如 = (∝为常数)的函数,称
为幂函数.
1
2
ቤተ መጻሕፍቲ ባይዱ
如:函数 = 3 、 = 、 = −1 等等
注意:
①幂函数的指数∝是常数,底数是自变量,且指数式前面的
系数是1;
②幂函数的图象和性质,根据不同的指数∝,视其情况具体
简单幂函数的图像和性质
初中学习了函数 = 、反比例函数 =
1
、二次函数

= 2 等,对它们的图象和性质已经很熟悉了
1
后面将学习“ ”可以记作“ −1 ”、“

1
2
”可以记作“ ”
以上都是形如“ = ∝ ”的函数,在实际生活中经常会遇到
思考讨论
(1)写出边长为的正方体体积的函数;
= 3
同一个坐标系中
= 2
=
=
可以看出:
幂函数 = ∝ 的图象
过定点(1,1)
1

思考讨论
(2)下列各图,只画出了函数在轴一侧的图象,请画出轴另一侧
的图象,并说出画法的依据.
前三个函数为奇函数,所以图象关于原点中心对称,

高一数学《幂函数》PPT课件

高一数学《幂函数》PPT课件

函数的性质不同
指数函数的底数是一个大于0且 不等于1的常数,而幂函数的底 数可以是任意实数。此外,指 数函数的值域为正实数集,而 幂函数的值域为非负实数集。
图像的形状不同
指数函数的图像是一条经过点 (0,1)的曲线,而幂函数的图像 是一条经过原点的曲线。
02
常见幂函数类型及其特点
一次幂函数
表达式
幂的乘方法则
幂的乘方
底数不变,指数相乘。公式: (a^m)^n = a^(m×n)
举例
(2^3)^4 = 2^(3×4) = 2^12; (x^2)^5 = x^(2×5) = x^10
积的乘方法则
积的乘方
把积的每一个因式分别乘方,再把所得的幂相乘。公式: (ab)^n = a^n × b^n
举例
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
幂函数性质
幂函数的性质包括定义域、值域、奇偶性、单调性等。例如,当a>0时,幂函数在定义域内 单调递增;当a<0时,幂函数在定义域内单调递减。
幂函数图像
幂函数的图像根据a的不同取值而呈现出不同的形态,如直线、抛物线、双曲线等。通过图像 可以直观地了解幂函数的性质。
易错难点剖y = x^n(n为实数)
图像
02
一条直线(n=1时)或射线(n≠1时)
性质
03
当n>0时,函数在(0, +∞)上单调递增;当n<0时,函数在(0,

新课标人教版必修一幂函数课件(共11张PPT)

新课标人教版必修一幂函数课件(共11张PPT)
幂 函 数
代 兵
高中数学必修1同步辅导课程——幂函数
知识要点:
1:幂函数的定义:
一般地,函数y x 叫做幂函数, 其中x是自变量,

是常数.
注: 1 1.对于幂函数,我们重点讨论 =1,2,3, ,-1 2 时的情形。(对照教材,作出上述图像)
2.幂函数不同于指数函数和对数函数,其定义域
1
高中数学必修1同步辅导课程——幂函数
p x (0,1) 变式1: 时,函数 y x 的图像在直线 y x
上方,则P的取值范围是_________.
高中数学必修1同步辅导课程——幂函数
变式2:如果函数 f ( x) (m m 1) x
2
m2 ;∞ )内是减函数,求满足条件 的实数m的集合。
1.所有的幂函数在(0,+∞)都有定义,并且函 数图象都通过点(1,1);
a>1 0<a<1
2.如果a>0,则幂函数的图象过点 (0,0),(1,1)并在(0,+∞)上为增函数;
a<0
3.如果a<0,则幂函数的图象过点(1,1), 并在(0,+∞)上为减函数; 其它象限的图像可由函数奇偶性对称作出
高中数学必修1同步辅导课程——幂函数
典型题例:
例1:若f(x)=(m2-3m+3)x3为幂函数,求m的值
解析:由题意: m2-3m+3=1 解得:m=1或4
高中数学必修1同步辅导课程——幂函数
例2:如图所示,曲线是幂函数 y = xa 在第一象
1 限内的图象,已知 a分别取 1,1, , 2 2
四个值,则相应图象依次为:________
高中数学必修1同步辅导课程——幂函数

幂函数优质课件PPT课件

幂函数优质课件PPT课件

小结:
1.学习了幂函数的概念; 2.利用“还原根式”求幂函数定义
域的方法; 3.利用幂函数在第一象限内的图象 特征,并会根据奇偶性完成整个 函数的图象。 4.利用函数的单调性比较几个“同 指数不同底数”的幂的大小.
课后再探究
整数m, n的奇偶性与幂函数 y x (m, n Z , 且m, n互质)的定 义域以及奇偶性有什么 关系?
一 幂函数的定义:
我们把形如:
yx

的函数称为幂函数,其中 是实常数。 ------为了研究方便,我们只对 是 有理数的情况进行一些讨论
研究几个具体的幂函数
例1 求下列函数的定义域,判断 它们的奇偶性:
(1) y x (3) yx
1 2
(2) y x
2
3 5
例2 判定函数y=x0.5在定义域上 的单调性.
2 1 0 0 1 2
知识理解、运用
图象性质应用(奇偶性和单调性)
例3、试解下列各题 1
1.画出幂函数 y x 3的图象,并指出它
的单调性
2.比较下列各组数的大小.
(1) 1.5 ,1.7 ,1 (2) ( 2) ,( 3) ,( 5)
3 7 3 7 3 7
1 3
1 3
课堂探究
(1)若(a+1)-2>(3-2a)-2,求实数a 的取值范围。 2-2m-3 m (2)已知幂函数y=x (m∈N) 的图像与x轴、y轴都没有公共点, 且关于y轴对称,求m的值。
重点研究 幂函数在第一象限的图象
• 因为函数的奇偶性能够帮助我们 完成左半平面内的图象,所以只需 要研究它们在第一象限内的图象
二 幂函数在第一象限的图象
利用Excel作出下列幂函数在第一象限的图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.(-1,1) B.(0,√2) C.(0,1) D.(1,√2)
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
(2)g(x) 3x3 4x2 3x 2
(3)h(x) x3 1 1 x3
(4)u(x) ( x)2
拓展性训练题
1x2,x0 1.已知 f(x)0,x0, ,试判断这个偶 函性 .数
x2 1,x0.
拓展性训练题
2.已知函数f(x)=(m-1)x2+2mx+3是偶函
数 ,则f(x)在(-∞,0]上是( A )
图像关于原点对称的函数 叫作奇函数
问题2:观察y=x2的图像,说出它 有哪些特征? 图像回放
对任意的x,f(-x)=f(x) 图像关于y轴对称的函数 叫作偶函数
示范:判断f(x)=-2x5和f(x)=x4+2 的奇偶性
方法小结
基本训练题
讨论下列函数的奇偶性:
(1)f (x)
4 x2
x2 6x 9 3
简单的幂函数
y=x , y 1 ( y=x-1 ), y=x2
x
如果一个函数,底数是自变量x,
指数是常量,即
y x
这样的函数称为幂函数.
幂函数 的图像
y1

y x2
问题1:观察y=x3的图像,说出它 有哪些特征? 图像回放
对任意的x,f(-x)=-f(x)
A.增加的 C.先增后减
B .减少的 D.先减后增
3.已知函数y=f(x)是奇函数,在[a,b]上是
减少的,则它在[-b,-a]上是( B )
A.增加的 C.先增后减
B .减少的 D.先减后增
拓展性训练题
4.已知y=f(x)是定义在(-1,1)上的奇函数, 且在(-1,1)上是单调递减的,则不等
式f(1-x)+f(1-x2)<0的解集是( )C
相关文档
最新文档