北师大七年级下1.2幂的乘方与积的乘方专题练习题含答案(最新整理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学七年级下册第1 章整式的乘除

1.2 幂的乘方与积的乘方幂的乘方专题练习题1.计算(a2)3 的结果是( )

A.a5 B.a6 C.a8 D.3a2

2.下列式子的化简结果不是a8 的是( )

A.a6·a2 B.(a4)2 C.(a2)4 D.(a4)4

3.下列各式计算正确的是( )

A.(x3)3=x6 B.a6·a4=a24

C.[(-x)3]3=(-x)9 D.-(a2)5=a10

4.下列运算正确的是( )

A.a2+a2=a4 B.a5-a3=a2 C.a2·a2=2a2 D.(a5)2=a10

5.填空:( )2=( )3=( )4=a12.

6.已知x n=2,则x3n=.

7.已知10a=5,那么100a 的值是( )

A.25 B.50 C.250 D.500

8.若3x+4y-5=0,则8x·16y 的值是( )

A.64 B.8 C.16 D.32

9.下列各式与x3n+2 相等的是( )

A.(x3)n+2 B.(x n+2)3 C.x2·(x3)n D.x3·x n+x2

10.计算(-p)8·[(-p)2]3·[(-p)3]2 的结果是( )

A.-p20 B.p20 C.-p18 D.p18

11.若26=a2=4b,则a b 等于( )

A.43 B.82 C.83 D.48

12.若2a=3,2b=4,则23a+2b 等于( )

A.7 B.12 C.432 D.108

13.若3×9m×27m=321,则m 的值是( )

A.3 B.4 C.5 D.6

14.若a4n=3,那么(a3n)4=.

15.若5m=2,5n=3,则53m+2n+1=.

16.填空:(1)(-a3)2·(-

a)3=;

(2)[(x-y)3]5·[(y-x)7]2=;

(3)a3·(a3)2-2·(a3)3=

.1

7.计算:

(1)(-x)3·(x3)2·(-x)4;(2)x n-

1·(x n+2)2·x2·(x2n-1)3;

(3)2(x3)2·x2-3(x2)4+5x2·x6;

(4)[(a-b)3]2-2(a-b)3·(b-a)3.

18.若x2n=5,且n 为整数,求(x3n)2-5(x2)2n 的值.

19.已知10m=2,10n=3,求103m+2n 的值.

20.(1)已知2x+5y-3=0,求4x·32y 的值;

(2)已知273×94=3x,求x 的值.

21.已知A=355,B=444,C=533,试比较A,B,C 的大小.

答案:

1---4 BDCD

5.a6 a4 a3

6. 8

7---13 ADCBC CB

14. 27

15. 360

16. (1) -a9 (2) (x-y)29 (3) -a9

17. (1) 解:原式=x13

(2)解:原式=a9n+2

(3)解:原式=4x8

(4) 解:原式=3(a-b)6

18. 解:原式=x6n-5x4n=(x2n)3-5(x2n)2=53-5×52=0

19. 解:103m+2n=(10m)3·(10n)2=23×32=72

20. (1) 解:由2x+5y-3=0 得2x+5y=3,所以4x·32y=22x·25y=22x+5y=23=8

(2) 解:x=17

21. 解:因为A=355=(35)11=24311;B=444=(44)11=25611;C=533=(53)11=12511,所以B>A>C

“”

“”

At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!

相关文档
最新文档