七年级数学幂的乘方练习
完整)北师大版七年级数学下册第一章课后练习题集
完整)北师大版七年级数学下册第一章课后练习题集北师大版七年级数学下册第一章课后题集——幂的乘方一、基础题1.32x = 2^5x;3-a(-a) = 3 + a^2;a×a = a^2;2n)^(1/3) × [(1/3)/(3/2)] = 2;y^(4/2n) = (y^2)^(1/n) = a^7;3^(-2) × c^3 = c^3/9;2.若(a^3)^n = (a^n)^m(m。
n都是正整数),则m = 3n。
3.计算(-1/2x^2y)^(4/3)的结果正确的是(B)1/x^4y^2.4.判断题:(对的打“√”,错的打“×”)a^2 + a^3 = a^5(√);x^2 × x^3 = x^6(√);x^2)^3 = x^6(×);a^4 × a^2 = a^6(×);5.若m、n、p是正整数,则(am×an)^p等于(C)anmp。
6.计算题:1)-p(-p)^4 = -p^5;2)-(a^2)^3 = -a^6;3)(-a^2)^3 = -a^6;4)[-6^3]^4 = 6^12;5)[2/3 × p^3 × (-p^2)^3] + 2 = -2p^19/27;6)[(x^2)^3]^7 = x^42;7)(x^2)^n - (x^n)^2 = x^2n - x^2n = 0;8)(-a^2)^3 × a^3 + (-4a)^2 × a^2-5 × a^3^7 = -a^6 × a^3 + 16a^2 × a^2-5 × a^3^7 = -a^9 + 16a^-3 × a^3^7 = 16 - a^12.7.若x^m × x^(2m) = 2,求x^(9m)的值。
解:x^m × x^(2m) = x^(3m) = 2^(1/3);则x^(9m) = (x^(3m))^3 = 2.二、提高题:1.计算(-a^2)^3 × (-a^3)^2的结果是(A)-a^12.2.如果(9n)^2 = 3,则n的值是(D)无法确定。
人教版七年级数学上册幂的知识点及练习
1、幂的意义: na a a ⋅⋅⋅=n a2、同底数幂的乘法运算法则:a m · a n =a m+n (m,n 都是正整数)同底数幂相乘:底数不变,指数相加。
例:52×58=510 ɑ10×ɑ6=ɑ16练习:1.判断下列各题是否正确,并改正。
2.已知2m =3,2n =22,则22m+n 的值是多少3.已知105,106αβ==,求2310αβ+的值3、幂的乘方法则:(ɑm )n =ɑmn (m,n 都是正整数) 幂的乘方,底数不变,指数相乘。
4、积的乘方公式:(ab)n =a n b n ;(abc)n =a n b n c n积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
注意:(-ɑ)n 当n 为奇数时, (-ɑ)n = -ɑn (n 为正整数)当n 为偶数时, (-ɑ)n =ɑn (n 为正整数)例1 、计算:(1)(2a)3 (2) (- 5b)3 (3)(xy 2)2 (4) (- 2x 3)4练习:1计算:(1)(ab)6; (2)(-a)3; (3)(-2x)4 ; (4)(21ab)3 (5)(-xy)7; (6)(-3abc)2;(7)[(-5)3]2 ; (8)[(-t)5]32、下面的计算对不对?如果不对,应怎样改正?(1)(ab 2)2=ab 4; (2)(3cd)3=9c 3d 3;(3)(-3a 3)2= -9a 6; (4)(-31x 3y)3= -278x 6y 3; 3、填空:(1) a 6y 3=( )3; (2)81x 4y 10=( )2 (3)32004×(-31)2004=(4)若(a 3y m )2=a n y 8, 则m= , n= .(5) 28×55= .4.解答:;2333x x x =⋅;633x x x =+;2633x x x =⋅;933x x x =⋅;33a a a =⋅[()]m n p mnp a a=()则若则)若(x ,x ,x b a x 28642225963281==⨯=-=(4)16m =4×22n-2,27n =9×3m+3.求m,n 的值。
七年级数学幂运算经典习题
七年级数学幂运算经典习题1.删除明显有问题的段落,没有需要改写的段落。
2.修改每段话的表述,使其更规范、准确。
一、同底数幂的乘法同底数幂的乘法可以用指数的加法来表示,例如a^m * a^n = a^(m+n)。
另外,要注意负数的幂次,例如(-a)^n,当n 为偶数时结果为a^n,当n为奇数时结果为-a^n。
二、幂的乘方幂的乘方可以用指数的乘法来表示,例如(a^m)^n =a^(m*n)。
同时,要注意负数的幂次,例如(-a)^n,当n为偶数时结果为a^n,当n为奇数时结果为-a^n。
三、积的乘方积的乘方可以用每个因子的幂次相乘来表示,例如(a*b)^n = a^n * b^n。
同时,要注意负数的幂次,例如(-a)^n,当n为偶数时结果为a^n,当n为奇数时结果为-a^n。
四、同底数幂的除法同底数幂的除法可以用指数的减法来表示,例如a^m / a^n = a^(m-n)。
同时,要注意除数和被除数都不能为0.其他题目需要给出具体的计算过程,无法进行改写。
11、计算:(-c)5÷(-c)3= -c2x+y)m+3÷(x+y)2= (x+y)m+1x10÷(-x)2÷x3= -x5五、幂的混合运算1、a5÷(-a2)·a= -a22、(a2b)•(ab3)2= a5b63、(-a3)2·(-a2)3= a124、(x2•xm)3÷x2m= x45、xm•(xn)3÷(xm-1•2xn-1)= xn+26、(-3a)3-(-a)·(-3a)2= -24a37、2(x3)4+x4(x4)2+x5•x7+x6(x3)2= 2x13+x12+x12+x98、下列运算中与a4•a4结果相同的是(。
) C。
(a4)49、32m×9m×27= 8748m310、化简求值a3·(-b3)2+(-1/2ab2)3,其中a=1/4,b=4.答案:-5/32六、混合运算整体思想1、(a+b)2·(b+a)3= (a+b)52、(2m-n)3·(n-2m)2= -8(2m-n)33、(p-q)4÷(q-p)3·(p-q)2= -(p-q)24、(b-a)(b-a)3(a-b)5= -(b-a)75、[(n-m)3]p•[(m-n)(m-n)p]5= (n-m)2p6、(a-b)5m(b-a)2m÷(b-a)7m(m为偶数,a≠b)= -(a-b)3m7、(y-x)2(x-y)+(x-y)3+1= x3+y3+1七、零指数幂与负整指数幂1、用小数表示2.61×10-5= 0.xxxxxxxπ-3.14)= -0.xxxxxxxxxxx2、(3x-2)=1成立的条件是 x=13、用科学记数法表示0.并保留两个有效数字为6.9×10-44、计算(-3-2)3的结果是 -1255、若x2+x-2=5,则x4+x-4的值为 276、若x=2-1,则x+x-1= 5/27、计算(-2a-5)2的结果是 4a2+20a+258、若5k-2=1,则k的值是 29、用正整数指数幂表示5a-2bc-1= 5a-2/bc10、若5x-3y-2=3/4,则105x÷103y= 37511、要使(x-1)-(x+1)-2有意义,x的取值应满足什么条件。
初一数学七年级下幂的乘方与积的乘方练习
初一数学七年级下幂的乘方与积的乘方练习例1. 计算:(1)(106)2; (2)(a 4)m (m 为正整数); (3)-(y 3)2;(4)(-x 3)3. ⑸ [(x-y )2]3; ⑹ [(-a 3)2]5.例2.计算:(1) x 2·x 4+(x 3)2; (2)(a 3)3·(a 4)3.例3.计算(1)(5m )3 (2)(-xy 32) (3)(3xy 22) (4)(-2ab 423)c变式一.计算:(1)(-ab )3 (2)(x 432)y (3)(223)10⨯ (4)(-2a 343)y变式二.巧学巧用:计算:553)32(⨯原来积的乘方法则可以逆用 n n n ab b a )(=(1)=36y a ( )3 10481y x =( )2(2)320042004)2(125.0⨯ = 1)40082()2004(+n n = 例4.计算⑴()43a+48a a ; ⑵23422225)()()()(2a a a a ⋅-⋅⑶()()3443a a-⋅-; ⑷335210243254)()()()()(a a a a a a a -∙-∙--+∙---.例5. 地球可以近视地看作是球体,如果用V.R 表示球的体积和半径,那么V= 334r π,地球半径是3106⨯千米,它的体积大约是多少立方千米?(π取3.14)例6. 1.请你比较340与430的大小。
2.比较1083与1442的大小关系例7.简便计算(1)399400400)31()25.0(12⨯-⨯ (2)126332225.0125.0⨯⨯⨯例8.若22=⋅m m x x,求m x 9的值。
变式:若3,5==n n y x ,求n xy 2)(的值;例9.已知51,5=-=y x ,求2122)(+⋅n n y x x 的值.例10.已知:0432=-+y x ,求y x 84⋅的值.例11.若510=x ,310=y ,求y x 3210+的值.例12.已知:723921=-+n n ,求n 的值.例13.若552=a ,443=b ,334=c ,比较a.b.c 的大小.课后习题1.计算:23)3(a = ,232)3(y x -= .2.计算:31)(+⋅n n ba = _____ ____. 3.计算:=+-222)(3ab b a _____ ___.4.计算: =⨯200920095)51( . 5.若2,3n n x y ==,则()n xy = ,23()n x y = .6. 下列等式,错误的是( )A.64232)(y x y x =;B.33)(xy xy -=-;C.442229)3(n m n m =;D.64232)(b a b a =-.7.计算3223)()(a a -+-的结果为( )A.62a -;B.52a - ;C.62a ;D.0.8.下列等式,成立的是( )A. 222)(b a b a -=-;B. 222)(b a b a +=+;C. 222)(b a ab =;D. 5223)(b a ab =.9.下列式子结果为1210的是( )A.571010+ ;B.399)52(⨯;C.6510)1052(⨯⨯⨯ ;D.93)10(.10.已知P=(-ab 3)2,那么-P 2的正确结果是( )A.a 4b 12;B.-a 2b 6 ;C.-a 4b 8;D.- a 4 b 12.11.计算:⑴;)()()(8)2(322232b a a b a -⋅-⋅+- ⑵25234)4()3(a a a ---⋅;⑶232324)()(b a b a -⋅- ; ⑷(231)20·(73)21.。
北师大版七年级下册 幂的乘方专项练习50题(有答案过程)复习进程
幂的乘方专项练习50题(有答案)知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x 3)5 (13)[(-x )2] 3 (14)[(x -y )3]4(15)______________)()(3224=-⋅a a(16)(16)____________)()(323=-⋅-a a ;(17)___________)()(4554=-+-x x ,(18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 3=n x , 则=n x3(21)x·(x 2)3(22)(x m )n ·(x n )m(23)(y 4)5-(y 5)4(24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2(26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8(28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2(30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a2n=3,求(a3n)4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)
北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)班级________姓名________学号________评价等次________一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )17.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确; ∴错误的为D . 故选D . 5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−5 13 )5故选:C .首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6, 得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a 2+2ab =2×32+2×3×3=36. (2)当a =−3,b =3时,2a 2+2ab =2×(−3)2+2×(−3)×3=18−18=0. 所以2a 2+2ab 的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。
幂的乘方专项练习题有答案过程
幂的乘方专项练习50题(有答案)知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x 3)5 (13)[(-x )2] 3 (14)[(x -y )3]4(15)______________)()(3224=-⋅a a(16)(16)____________)()(323=-⋅-a a ;(17)___________)()(4554=-+-x x ,(18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 3=n x , 则=n x3(21)x·(x 2)3(22)(x m )n ·(x n )m(23)(y 4)5-(y 5)4(24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2 (26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8(28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2(30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a2n=3,求(a3n)4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
幂的乘方专项练习50题(有答案过程)
幂的乘方专项练习50题(有答案过程)(1)[(a+b)²]⁴= (2)-( y⁴) ⁵=(3)(y²ᵃ⁺¹)²(4) [(- 5) ³]⁴-( 5⁴) ³(5) ( a—b) [(a—b) ²]⁵(6)(−a²)⁵a−a¹¹(7)(x⁶)²+x¹⁰x²+2[(−x)³]⁴(8) (一×⁵)²= (一ײ)⁵= ,[(一×)²]⁵=(9) (a⁵)³(10)(aⁿ⁻²)³(11)(4³)³(12 )(—׳)⁵(13)[(一×)²]³(14)[(x—y)³]⁴(15)(a⁴)²(a²)³(16)(16)(a³)²(a)³=;,(17)(x4)5(x5)4¯(18)(a m1)3(a2)1m¯(19)3(×)(×)2(×)=512 #212(20)若 xⁿ3,则x³ⁿ(21 )×?()³(22)(xᵐ)ⁿ?()ᵐ(23 )(y⁴) ⁵-( y⁵)⁴(24)(m³)⁴+m¹⁰m²+m?m³?n⁸(25) [(a-b) "]²[(b- a) ⁿ⁻¹]²(26)若2ᵏ=8³,贝 Uk= r(27)(m³)⁴+m¹⁰m²−m?m³(28) 5( a³) ⁴-13 (a⁶) ²=(29) 7×⁴?⁵x? -X) ⁷+5(x⁴) ⁴-(x³) ²(30) [- x+y) ³]⁶+[- x+y) ⁹]²为正整数) (32)x³?Xⁿ)⁵=X¹³,贝U n= r(34) 若xᵐ−²X=2求x⁹ᵐ(35) 若a²ⁿ=3,求-a³ⁿ)⁴(36) 已知aᵐ=2,aⁿ=3,求a²ᵐ⁺³ⁿ(37) 若644X83=2X,求 x的值。
幂的乘法与乘方练习题
幂的乘法与乘方练习题一、基础题1. 计算:(2^3) × (2^2)2. 计算:(5^4) ÷ (5^2)3. 计算:(3^5) × (3^3)4. 计算:(4^6) ÷ (4^3)5. 计算:(10^2) × (10^5)二、进阶题1. 简化表达式:(2^3)^42. 简化表达式:(3^2)^53. 简化表达式:(4^3)^24. 简化表达式:(5^4)^35. 简化表达式:(6^2)^4三、应用题1. 某城市的人口每十年增长一倍,经过三个十年,人口增长了多少倍?2. 一个细菌每半小时分裂一次,经过两小时,细菌数量增加了多少倍?3. 一块正方形的土地边长扩大3倍,面积增加了多少倍?4. 一个立方体的边长扩大2倍,体积增加了多少倍?5. 一家公司的年利润连续三年增长50%,三年后利润增加了多少倍?四、混合题1. 计算:(2^3) × (3^2) ÷ (2^2)2. 计算:(4^3) × (5^2) ÷ (4^2)3. 计算:(6^2) × (7^3) ÷ (6^3)4. 计算:(8^4) × (9^2) ÷ (8^2)5. 计算:(10^5) × (11^3) ÷ (10^3)五、挑战题1. 简化表达式:(2^3)^2 × (3^2)^32. 简化表达式:(4^4)^3 ÷ (2^2)^53. 简化表达式:(6^3)^2 × (3^3)^24. 简化表达式:(8^5)^2 ÷ (4^4)^35. 简化表达式:(10^4)^3 × (5^3)^2分数的加减乘除练习题一、基础题1. 计算:1/4 + 1/32. 计算:2/5 1/53. 计算:3/8 × 2/34. 计算:4/9 ÷ 2/35. 计算:5/7 + 2/7二、进阶题1. 计算:(3/4) + (2/5)2. 计算:(5/6) (1/3)3. 计算:(7/8) × (4/7)4. 计算:(9/10) ÷ (3/5)5. 计算:(11/12) + (5/12)三、应用题1. 小明有1/3升牛奶,他又买了1/4升,现在有多少升牛奶?2. 小红有2/5块巧克力,她吃掉了1/5块,还剩下多少块?3. 一本书的1/4是图片,剩下的3/4是文字,如果文字部分有120页,这本书总共有多少页?4. 一个班级有5/8的学生参加了数学竞赛,如果参赛的学生有20人,这个班级总共有多少人?5. 一块地的2/3种植了玉米,1/4种植了大豆,如果大豆占地6亩,这块地总共有多少亩?四、混合题1. 计算:1/2 + 3/4 1/42. 计算:2/3 × 5/6 ÷ 2/33. 计算:3/5 + 4/15 2/54. 计算:4/9 × 3/8 ÷ 1/45. 计算:5/8 + 3/8 1/4五、挑战题1. 计算:(2/3)^2 (1/3)^22. 计算:(3/4)^3 × (4/5)^23. 计算:(4/5)^2 ÷ (2/5)^34. 计算:(5/6)^3 + (1/6)^35. 计算:(6/7)^2 (5/7)^2几何图形的面积与体积练习题一、基础题1. 计算一个边长为5厘米的正方形的面积。
(完整版)幂的乘方练习题
14.1.1同底数幂的乘法一、填空题1、=⋅53x x ;=⋅⋅32a a a ;=⋅2x x n ;=⋅53x x =⋅4x ⋅x = ;2、=⋅-32)(x x ;=-⋅-32)()(a a ;3、=⋅10104 ;=⨯⨯32333 ;4、⋅2x =6x ;⋅-)(2y =5y ;5、=⋅++312n n x x ;=-⋅-43)()(a b a b ;6、=-⋅--n n y x y x 212)()(7.ax=9,ay=81,则ax+y 等于二、计算;1、34a a a ⋅⋅2、()()()53222---3、231010100⨯⨯4、()()()352a a a -⋅-⋅--5、254242423a a a a a a a ⋅-⋅⋅+⋅6、()()m m 2224⨯⨯三、选择题1、333+m x 可以写成( )A 、13=m xB 、33x x m +C 、13+⨯m x xD 、33x x m ⨯2、3,2==n m a a ,则m n a + =( )A 、5B 、6C 、8D 、9四、已知n 为正整数,试计算 ()()()a a a n n -⨯-⨯-++2312五、判断(正确的打“√”,错误的打“×”)(1) x3·x5=x15 ( ) (2) x·x3=x3 ( )(3) x3+x5=x8 ( ) (4)x2·x2=2x4 ( )(5)(-x)2 · (-x)3 = (-x)5= -x5 ( ) (6)a3·a2 - a2·a3 = 0 ( )(7)a3·b5=(ab)8 ( ) (8) y7+y7=y14 ( )1.2幂的乘方一、判断题1、()52323x x x ==+ ( )2、()7632a a a a a =⋅=-⨯ ( )3、()93232x x x == ( )4、9333)(--=m m x x( )5、532)()()(y x x y y x --=-⋅- ( )二、填空题:1、,__________])2[(32=-___________)2(32=-;2、______________)()(3224=-⋅a a ,____________)()(323=-⋅-a a ;3、___________)()(4554=-+-x x ,_______________)()(1231=⋅-++m m a a ;4、___________________)()()()(322254222x x x x ⋅-⋅;5、若 3=n x , 则=n x 3________.三、选择题1、122)(--n x 等于( )A 、14-n xB 、14--n xC 、24-n xD 、24--n x2、21)(--n a 等于( )A 、22-n aB 、22--n aC 、12-n aD 、22--n a3、13+n y 可写成( )A 、13)(+n yB 、13)(+n yC 、n y y 3⋅D 、1)(+n n y4、2)()(m m m a a ⋅不等于( )A 、m m a )(2+B 、m m a a )(2⋅C 、22m m a +D 、m m m a a )()(13-⋅四、若162,273==y x ,求:y x +的值。
北师大版七年级下册 幂的乘方专项练习50题(有答案过程)
幂的乘方专项练习50题(有答案)知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x 3)5 (13)[(-x )2] 3 (14)[(x -y )3] 4(15) ______________)()(3224=-⋅a a (16)(16);____________)()(323=-⋅-a a (17),___________)()(4554=-+-x x (18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 , 则3=n x =nx3(21)x·(x 2)3(22)(x m )n ·(x n )m (23)(y 4)5-(y 5)4 (24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2(26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8 (28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2 (30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a2n=3,求(a3n)4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
七年级数学幂的运算经典习题
1、 a 4
a
2、 a5 a
a4
3、 ab 3 ab
a 3 b3
4、 x n 2 x 2
5、 ab 4 ab 4
.
6、下列 4 个算式:
(1) c 4
c2
c2
(2) y 6 y 4
y2
(3) z3 z0 z3
(4) a 4m
m
a
4
a
其中 ,计算错误的有 ( )
A.4 个
B.3 个
C.2 个
6、若 x= 2 -1,则 x+x-1=__________. 7、计算 (-2a-5)2 的结果是 _________.
8、若 5k 2 1, 则 k 的值是
.
9、用正整数指数幂表示
21
5a bc
.
10、若 5x 3y 2 0 ,则 105x 103y
初中精品资料
欢迎下载
=Leabharlann .11、要使 (x-1)0-(x +1)-2 有意义, x 的取值应满足什么
初中精品资料
欢迎下载
7、 a 2 4
3
a
8、 (-a n ) 2n 的结果是
9、
x2
5
=
10、若 ax 2, 则 a3x =
三、积的乘方 1)、(-5ab)2 2)、-(3x2y)2
3)、 (11 ab 2 c3 )3
3
4)、(0.2x4y3)2 5)、(-1.1xmy3m)2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995
2
D. 1
81
9
2
0
2、 1
1
53
(完整版)北师大版七年级下册幂的乘方专项练习50题(有答案过程)
幂的乘方专项练习50题(有答案)知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x 3)5 (13)[(-x )2] 3 (14)[(x -y )3]4(15)______________)()(3224=-⋅a a(16)(16)____________)()(323=-⋅-a a ;(17)___________)()(4554=-+-x x ,(18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 3=n x , 则=n x3(21)x·(x 2)3(22)(x m )n ·(x n )m(23)(y 4)5-(y 5)4(24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2(26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8(28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2(30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a2n=3,求(a3n)4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
幂的乘方专项练习50题(有答案)
幂的乘方专项练习50题知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x3)5(13)[(-x)2] 3(14)[(x-y)3] 4(15)______________)()(3224=-⋅a a (16)____________)()(323=-⋅-a a ;(17)___________)()(4554=-+-x x , (18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 3=n x , 则=n x3 (21)x·(x 2)3(22)(x m )n ·(x n )m(23)(y 4)5-(y 5)4(24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2(26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8(28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2(30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a 2n =3,求(a 3n )4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
幂的乘方练习题
幂的乘方练习题1. 计算下列幂的值:a) 2^3b) 5^2c) 10^0d) 7^1e) 4^2解答:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) 10^0 = 1 (任何数的0次方都等于1)d) 7^1 = 7e) 4^2 = 4 * 4 = 162. 化简下列表达式:a) 4^2 * 4^3b) 3^4 * 3^2c) (2^3)^2d) (6^2)^3解答:a) 4^2 * 4^3 = (4 * 4) * (4 * 4 * 4) = 16 * 64 = 1024b) 3^4 * 3^2 = (3 * 3 * 3 * 3) * (3 * 3) = 81 * 9 = 729c) (2^3)^2 = (2 * 2 * 2)^2 = 8^2 = 64d) (6^2)^3 = (6 * 6)^3 = 36^3 = 466563. 计算下列幂的值,给出结果的科学计数法表示:a) 10^4b) 2^10c) 1.5^3d) 0.1^5解答:a) 10^4 = 10000b) 2^10 = 1024c) 1.5^3 = 3.375d) 0.1^5 = 0.00001科学计数法表示:a) 10^4 = 1.0 × 10^4b) 2^10 = 1.024 × 10^3c) 1.5^3 = 3.375d) 0.1^5 = 1.0 × 10^-54. 求解方程:a) 2^x = 16b) 3^(2x + 1) = 27解答:a) 2^x = 16,将16与2^x展开为基数相同的幂。
2^x = 2^4,通过幂相等的性质得出 x = 4。
b) 3^(2x + 1) = 27,将27与3^(2x + 1)展开为基数相同的幂。
3^(2x + 1) = 3^3,通过幂相等的性质得出 2x + 1 = 3。
解方程得 x = 1。
5. 计算以下表达式的值:a) (2^3 + 3^2) / (4^2 - 3^3)b) (5^2 * 4^3) / (6^2 + 2^3)解答:a) (2^3 + 3^2) / (4^2 - 3^3) = (8 + 9) / (16 - 27) = 17 / (-11) = -1.54b) (5^2 * 4^3) / (6^2 + 2^3) = (25 * 64) / (36 + 8) = 1600 / 44 ≈ 36.36通过以上练习题的计算和简化,我们对幂的乘方有了更深入的理解,也掌握了幂的计算和运用的技巧。
幂的乘方专项练习50题(有答案过程)
幂的乘方专项练习50题(有答案)知识点:1.若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.2.计算:(1)(75)4=_______;(2)75×74=_______;(3)(x5)2=_______;(4)x5·x2=________;(5)[(-7)4] 5=_______;(6)[(-7)5] 4=________.3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1)y·(y2)3=y·y6()=y7()(2)2(a2)6-(a3)4=2a12-a12()=a12()专项练习:(1)[(a+b)2] 4= (2)-(y4)5=(3)(y2a+1)2(4)[(-5)3] 4-(54)3(5)(a-b)[(a-b)2] 5(6)(-a2)5·a-a11(7)(x6)2+x10·x2+2[(-x)3] 4(8)(-x5)2=_______,(-x2)5=________,[(-x)2] 5=______.(9)(a5)3(10)(a n-2)3(11)(43)3(12)(-x 3)5 (13)[(-x )2] 3 (14)[(x -y )3]4(15)______________)()(3224=-⋅a a(16)(16)____________)()(323=-⋅-a a ;(17)___________)()(4554=-+-x x ,(18)_______________)()(1231=⋅-++m m a a(19)___________________)()()()(322254222x x x x ⋅-⋅(20)若 3=n x , 则=n x3(21)x·(x 2)3(22)(x m )n ·(x n )m(23)(y 4)5-(y 5)4(24)(m 3)4+m 10m 2+m·m 3·m 8(25)[(a -b )n ] 2 [(b -a )n -1] 2(26)若2k =83,则k=______.(27)(m 3)4+m 10m 2-m·m 3·m 8(28)5(a 3)4-13(a 6)2 =(29)7x 4·x 5·(-x )7+5(x 4)4-(x 8)2(30)[(x+y )3]6+[(x+y )9]2(31)[(b-3a )2]n+1·[(3a-b )2n+1]3(n 为正整数)(32)x 3·(x n )5=x 13,则n=_______.(33)(x 3)4+(x 4)3=________,(a 3)2·(a 2)3=_________.(34)若x m ·x 2m =2,求x 9m(35)若a2n=3,求(a3n)4(36)已知a m=2,a n=3,求a2m+3n(37)若644×83=2x,求x的值。
初中数学幂的运算专题讲解及典型题练习(含答案)
初中数学幂的运算专题讲解及典型题练习【知识点梳理】1.有理数的乘方定义求个相同因数的积的运算,叫做乘方.乘方运算的结果叫幂.n 一般地,,叫做底数,叫做指数,叫做幂。
n n a a a a a ⋅⋅⋅= 个a n n a 读作“的次幂”或读作“的次方”.n a a n a n 【注意】(1)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算的结果.(2)一个数可以看作是这个数本身的一次方,例如5就是,就是,指数是1通常省略15a 1a 不写.2.有理数幂的符号法则(1)正数的任何次幂都是正数.(2)负数的奇数次幂是负数,负数的偶数次幂是正数.(3)特别地,.()11,00n n n ==为正整数【注意】“负幂”与“负数的幂”区别:“负幂”例如表示的相反数,其结果为负数.“负51()2-51()2数的幂”例如,结果要看指数,即负数的奇次幂为负数,负数的偶次幂为正数.1()2n -3.有理数的混合运算一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算,称为有理数的混合运算.【注意】加法、减法、乘法、除法有各自的运算法则,也有各自的运算技巧,减法可以统一成加法,除法可以统一成乘法,加法与乘法还有各自的运算律,乘方是乘法的特例,也有自己的符号法则,同时也要考虑整体的符号关系以及简便算法.4.有理数的混合运算顺序(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右依次进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【注意】(1)在加、减、乘、除、乘方这几种运算基本掌握的前提下,学习混含运算,首先应注意的就是运算顺序的问题.(2)通常把六种基本的代数运算分成三级:第一级运算是加和减,第二级运算是乘和除,第三级运算是乘方和开方(以后学习).运算顺序的规定是先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序计算.对于含有多重括号的运算,一般先算小括号内的,再算中括号内的,最后算大括号内的.(3)括号前带负号,去括号后要将括号内的各项都要变号,即.()(),a b a b a b a b -+=----=-+5.科学记数法把一个数写成(其中,是正整数)的形式,这种记数法称为科学记数10n a ⨯110a <≤n 法.【注意】(1)科学记数法是一种特定的记数方法,应明白其中包含的基本原理及其结构,即要掌握形式的结构特征: ,为正整数,且值等于原数的整数位数减1.10n a ⨯110a <≤n n (2)在把用科学记数法表示的数还原为原数时,根据其基本原理和结构,把的小数点向右a 移动位,中数字不够时,用补足.n a 0【典型例题讲解】【例1】计算:.2007200812()2⨯-【分析】直接进行各自的乘方运算非常困难,但根据乘方的意义可得.共200722222=⨯⨯⨯⋅⋅⋅⨯2007个2相乘,2008200811()()22-=2007112008200722111111111222222222=⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=⨯个个()利用乘法交换律和结合律,把2007个2与结合在一起相乘,利用互为倒数即可求出数12值.【解析】2007200812()2⨯-20072008122=⨯().20072007200711111222222=⨯⨯⨯⨯=()()=(2)【方法总结】此题主要应用互为倒数、乘法运算律及乘方的意义进行计算,事实上我们不难发现,当与互为倒数时,其值为1.计算时要注意符号的问题.多加理解与练()m m m a b ab = a b 习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:、.2010201115()5⨯-200920102 2.55⎛⎫-⨯ ⎪⎝⎭【解析】.20102010201111115()55555⎡⎤⎛⎫⎛⎫⨯-=⨯-⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.200920092009201020102252552.5 2.5552522⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯=-⨯⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【例2】计算:.22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦【分析】根据有理数的混合运算法则进行计算,分清计算的先后顺序,还要注意去括号的时候要注意符号.【解析】22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦[]135(13)435(1253)40.04⎡⎤=---+-⨯÷=---+-⨯÷⎢⎥⎣⎦[][]35(175)435(74)4=---+-÷=---+-÷.[]35(18.5)3(23.5)20.5=---+-=---=【借题发挥】计算:()()[]2243225.02115.01--⨯⎪⎭⎫ ⎝⎛-÷-+-【解析】原式=()[]()()2411110.52910.571167554162⎛⎫⎛⎫-+-÷⨯-=-+-÷⨯-=-+⨯⨯= ⎪ ⎪⎝⎭⎝⎭【例3】已知,,求的值.12x =-13y =-432231x y x --【分析】把,的值分别代入要求的式子,按有理数混合运算顺序进行计算.x y 【解析】把,代入,得12x =-13y =-432231x y x -- 原式43211112()3()23()231627111()124⨯--⨯-⨯-⨯-==---11114141789()3893627544-==+⨯=+=【方法总结】此类题一方面代入要准确,即负数或分数代入时一般加上小括号,另一方面代入后计算必须准确,最后结果是分数时一定是最简分数.【借题发挥】求当时,代数式的值.2,1x y =-=-2222222x y x xy y x y x y--+++-【解析】将带入,得2,1x y =-=-2222222x y x xy y x y x y --+++-原式=.()()()()()()()()()()2222221222113114221531521⨯-----⨯-⨯-+--+=+=⨯-+-----【例4】(1)补充完整下表:1323334353637383392781(2)从表中你发现3的方幂的个位数有何规律?(3)3251的个位数是什么数字?为什么?【分析】幂的个位上的数字3、9、7、l 交错重复出现,即每隔四个数,个位数字就重复一次,所以用251除以4所得的余数来确定.【解析】(1)132333435363738339278124372921876561(2)个位上的数字为3、9、7、1交错重复出现.(3)的个位数是7,因为除以4的余数是3.是重复出现时的第三个数.2513251【方法总结】此类题一般都是通过写出一些简单的幂,通过这些幂的结果总结出末位出现数字的种类及循环规律,进一步把指数按循环数进行分解,通过剩余指数求得最后答案.【借题发挥】的个位数是 ,的个位数是 ,253263的个位数是 ,的个位数是 .273283【解析】3,9,7,1.【例5】怎样比较,,的大小呢?553444335【解析】本题如果通过硬算,数字太大,不可能,因此要观察此三个数的特点,经观察,我们发现55、44、33存在着最大公因数11,不妨利用这一点以及乘方的定义来入手解题.具体过程如下:5511115533333(33333)243=⋅⋅⋅=⨯⨯⨯⨯= 个344111144444444(4444)256=⋅⋅⋅=⨯⨯⨯= 个.33111133555555(555)125=⋅⋅⋅=⨯⨯= 个因为,所以256243125>>111111256243125>>即.445533435>>【借题发挥】1.试比较的大小.443322234、、【解析】因为:,则,即()()()111111444113331122211221633274416======,,11111627<.442233243<=2.你能比较和的大小吗?2004200320032004 为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较和1n n +(1)n n +的大小(是自然数).然后,我们从分析…这些简单情形人手,从中发现规n 1,2,3,n n n ===律,经过归纳,猜想出结论.(1)通过计算.比较下列各组中两个数的大小(填“>”,“<”或“”).- ①___;②____;③ ;④____;⑤ ;…21123223433454456556 (2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是 .1n n +(1)n n + (3)根据上面归纳猜想后得到的一般结论,试比较下面两个数的大小:.2004200320032004【解析】经计算与分析可推出结论:当时,<;当时,>.3n <1n n +(1)n n +3n ≥1n n +(1)n n +(1)①<;②<;③>;④>;⑤> (2) 当时,<;当时,>3n <1n n +(1)n n +3n ≥1n n +(1)n n +(3)>.(2)【借题发挥】比较下面各对数的大小:___; ; .211243342010200920092010【解析】<;>;>.【例6】比较与的大小.109.99810⨯111.00110⨯【分析】二者是用科学记数法表示的数,一方面可以把它们化成原数,通过比较原数大小来比较这两个数的大小;另一方面也可以把它化为相同指数,通过比较前面数(即)的大小来比a 较二者大小.【解析】解法一:,109.9981099980000000⨯=.111.00110100100000000⨯= 又,100100000000>99980000000.∴10119.99810 1.00110⨯<⨯ 解法二:,1110101.001l01. 0011010 10.0110⨯=⨯⨯=⨯ 又,10.019.998> .∴10119.99810 1.00110⨯<⨯【方法总结】解法一是常规方法,但书写起来很麻烦,易出现错误;方法二较巧妙地转化了,容易比较大小.11101.0011010.0110⨯=⨯【借题发挥】试比较:和.20099.9810⨯20101.0510⨯【解析】.2010200920091.051010.5109.9810⨯=⨯>⨯【例7】 定义“”“”两种运算,对于任意的两个数、,都有,○+○-a b a ○+b 1a b =+-a ○-b 1ab =-.求[()()]的值.4○-3○+5○+6○-2【分解】按规定的“”与“”进行各自的运算,运算时先算士括号里的,再算中括号里的.○+○-【解析】由,,得a ○+b 1a b =+-a ○-b 1ab =-[()()]4○-3○+5○+6○-2[()()]4=○-351+-○+621⨯-()()4=○-7○+114=○-7111+-.4=○-174=⨯171-67=【方法总结】此类题按规定的运算关系进行计算,首先要读懂表达式的含义,会套用公式,计算时注意符号关系及准确性外,还要注意运算的先后顺序.【借题发挥】“△”表示一种新的运算符号,其意义是对于任意,都存在△,如果△△a b a b 2a b =-x (1,则 .3)2=x =【解析】由△,得△△,即,则,所a b 2a b =-x (13)2=()()21312x x ⨯-=-=△△()212x --=以.12x =【例8】若尺布可做件上衣,则尺布能做多少件这样的上衣?619【解析】第题按计算件,但实际情况是只能做件,所以只能舍,不能入;961.5÷=105.【借题发挥】若每条船能载个人,则个人需要几条船?310【解析】按计算,但实际情况是条船不够,需要4条船,所以在这里应该入,取1103=33÷3134.【方法总结】在实际问题中,经常对药对一些数位上的数进行取舍,有的要求进行四舍五入,有的则按生活及生产实际进行取舍,千万不能遇及以上的数就入,遇以下的数就舍.555【随堂练习】1.计算: .2008(1)-=【答案】1.2.计算: .20102010201020104(0.25)(1)1-+-+= 【答案】原式=.201020102010201014()(1)111114-+-+=-++= 3.若,则 .21(2)0a b ++-=20102009()a b a ++=【答案】由题意知 得,代入原式可求结果为:0.1020a b +=⎧⎨-=⎩12a b =-⎧⎨=⎩4.如果那么的值为 .214,,2x y ==222x y -【答案】.222112243122x y -=⨯-=5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下米,第二次后剩下米,第三次后剩下米,由此推下1221142⎛⎫= ⎪⎝⎭312⎛⎫ ⎪⎝⎭去,第次后剩下米.所以六次后剩下的木条为(米).n 12n ⎛⎫ ⎪⎝⎭611264⎛⎫= ⎪⎝⎭6.计算:(1); (2); (3)321()(1)33-÷-232(3)-⨯-32221(0.2)(1).3(0.3)-⨯÷-【答案】(1);(2)108;(3).290.002-7.(1). (2).451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯()1452515213⨯-÷+-(3). (4).()3432322⎪⎭⎫ ⎝⎛-⨯-÷-()()()3428102-⨯---÷+-(5).()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---(6).()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-【答案】(1) (2) (3) (4) (5) (6)225-347-1111620-11147224-8.利用乘方的有关知识确定的末两位数字.20076【答案】9.已知“三角”表示运算“”,“正方形”表示的运算是“” ,试计a b c -+d f g e -+-算的值.【答案】原式=.()()()199649551996281474116-+⨯-+-=-⨯=-9.计算:.111111111248163264128256512++++++++【答案】原式=11111111111122448816128256256512⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+⋅⋅⋅+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.151********-=10.光年是天文学中使用的距离单位,指的是光在真空中经历一年所走的距离,若真空中光的速度为千米/秒,用科学记数法表示l 光年是多少?(1年按天计算)300000365【答案】已知:千米/秒,(秒).300000v =365243600t =⨯⨯ 由(千米).300000365243600s vt ==⨯⨯⨯9460800000000=129.460810=⨯所以,l 光年是千米.129.460810⨯11.阅读下列解题过程:计算:()632113115⨯⎪⎭⎫ ⎝⎛--÷-解:()632113115⨯⎪⎭⎫ ⎝⎛--÷-(第一步)()662515⨯⎪⎭⎫ ⎝⎛-÷-=(第二步)()()2515-÷-=(第三步)53-=回答:(1)上面的解题过程中有两个错误,第一处是第 步,错误的原因是 ;第二处是第 步,错误原因是 .(2)正确的结果是 .【答案】(1)二,乘除为同一等级的计算,没有按照从前往后的顺序求解;(2)三,负数乘以负数得到正数,题中为负数. (2).3215【课堂总结】【课后作业】一、填空题1. .=---3232. .()22533235-⨯-⨯+=3. .()()()()()=-⨯---⨯---⨯++n n n 212211111014. .()()=-÷⎪⎭⎫ ⎝⎛-+-⨯-5214387165. .()()()=-⨯-+⨯-03.716.016.4003.76. .()()=-⨯+-÷-2333227.若、互为倒数,、互为相反数,,则 .a b c d 2=m ()=-+⋅+23m ab ba d c 8.一个数用科学记数法表示为,则它是 位整数.10n a ⨯二、选择题9.下列公式计算正确的是( )A .B .()527527⨯--=⨯--31354453=÷=⨯÷C . D .⎪⎭⎫ ⎝⎛÷÷=÷÷5454354543()932=--10.计算的值是( )()()2007200822-+-A .1 B . C . D .2-20072-2007211.下列各组数中,相等的一组是( ).A .与B .与23-2(3)-2(3)--3(2)-- C .与 D .与3(3)-33-223-⨯332-⨯12.用合理的方法计算:(1) ; (2) ;515635236767---1544 3.87 4.253495-+-+(3) ; (4) ; 1511342461832⎛⎫⎛⎫--+--+ ⎪ ⎪⎝⎭⎝⎭()110.5678111-----+⎡⎤⎣⎦13.计算:(1); (2);63221⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷2131521(3); (4).⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--838712787431⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯1811351121961365514.用科学计数法表示下列计算结果:(1)一昼夜小时是多少秒?24 (2)50251002⨯15.(1)阅读短文《拆项计算》:拆项计算下面带分数的计算申,常把整数部分和分数部分拆开,以简化计算过程,举例如下:5231591736342⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭()5231591736342523159173634252315917363425213063241235644⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=----++--⎛⎫=--+-+--+- ⎪⎝⎭⎛⎫=-+++ ⎪⎝⎭=-+=-(2)仿照第(1)小题的计算方法计算:5211200620054000116332⎛⎫⎛⎫⎛⎫-+-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】1.-11 2.21 3.1 4.2 5.-281.2 6.-7 7.-1 8.1n +9.D 10.D 11.C12.(1) 515655163523325319867676677⎡⎤⎛⎫⎛⎫⎛⎫---=-+-+-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2) 1541451454 3.87 4.253437437495459459-+-+=-+-+=(3) 151153424146183218⎛⎫⎛⎫--+--+=- ⎪ ⎪⎝⎭⎝⎭ (4) ()110.56781110.4321-----+=-⎡⎤⎣⎦13.(1) 121266612323⎛⎫⎛⎫-⨯=⨯+-⨯=- ⎪ ⎪⎝⎭⎝⎭(2) ()2117216853255⎛⎫÷-=⨯-=- ⎪⎝⎭(3) 377733114812888⎛⎫⎛⎫⎛⎫--÷-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4).51111351936361853911366623518633519⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯-÷-=⨯-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭14.(1) 一昼夜小时是(秒)244246060864008.6410⨯⨯==⨯(2) =50251002⨯50505010025410010⨯==15.原式=()5211352200620054000110.6332263⎛⎫⎛⎫--+++--++=+-+=- ⎪ ⎪⎝⎭⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单选题1.下列计算正确的是( )A .a 8+a 2=a 10B .a 8•a 2=a 16C .(a 8)2=a 16D .a 8÷a 2=a 4 2.计算(a 3)2•a 3的结果是( )A .a 8B .a 9C .a 10D .a 11 3.计算()2444•a a a -的结果是( )A .86a a +B .0C .82aD .16a 4.已知m 、n 均为正整数,且235m n +=,则48m n ⋅=( )A .16B .25C .32D .64 5.已知21a =,23b =,则22a b +的值是( )A .6B .8C .10D .9 6.已知a x =2,a y =3,则a 2x +3y 的值等于( )A .108B .36C .31D .27 7.比较255、344、433的大小( )A .255<344<433B .433<344<255C .255<433<344D .344<433<255 8.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 二、填空题9.计算()22a =__________.10.()42x -=________________________.11.计算:(a 3)2•a 3=____.12.计算:()5352a a a +-=_______ ;13.若()332x a a a ⋅=,则x =__________.14.比较大小:332_________223(填“>”、“<”或“=”)15.若x 4a =,x 3b =,x 8c =,则2x a b c +-的值为__________,16.若2m a =,5n a =,则2m n a +=__________________.三、解答题17.计算:()()()()()322323..a a a a a ---+---18.计算: (1)(﹣t 4)3+(﹣t 2)6; (2)(m 4)2+(m 3)2﹣m (m 2)2•m 3.19.若a m =5,a n =2,求a 2m +3n 值.20.(1)若4a +3b =3,求92a •27b .(2)已知3×9m ×27m =321,求m 的值参考答案1.C【解析】【分析】根据合并同类项以及幂的四个运算法则:;();();m n m n m n mn m m m m n m n aa a a a ab a b a a a +-===÷=判断即可.【详解】解:A 、根据同类项的定义可知:a 8与a 2不是同类项,不能合并,本选项错误;B 、a 8•a 2=a 8+2=a 10,本选项错误;C 、(a 8)2=a 8×2=a 16,本选项正确;D 、a 8÷a 2=a 8﹣2=a 6,本选项错误,故选:C .【点睛】本题考查了合并同类项以及幂的运算法则,正确运用每一个法则是解题的关键.2.B【解析】【分析】先计算幂的乘方,然后再计算同底数幂的乘法即可.【详解】(a 3)2•a 3=6 a •39 a a =,故选:B .【点睛】本题考查了幂的运算,熟记幂的乘方和同底数幂的乘法公式是解决此题的关键.3.B【解析】【分析】直接利用合并同类项法则以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【详解】解:()2484480a a a a a =--=,此题主要考查了幂的乘方运算和同底数幂的乘法运算,熟练掌握相关运算法则是解题关键.4.C【解析】【分析】根据幂的乘方,把48m n ⋅变形为232m n +,然后把235m n +=代入计算即可.【详解】∵235m n +=,∴48m n ⋅=232m n +=52=32.故选C.【点睛】本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键.幂的乘方底数不变,指数相乘.5.D【解析】【分析】根据幂的运算公式即可求解.【详解】∵21a =,23b =,∴()2222222139a a b bb a a a +=⋅=⋅=⨯= 故选D .【点睛】此题主要考查幂的运算,解题的关键是熟知幂的乘方逆运算.6.A【解析】【分析】先把()()2323,x y xy a a a +=⨯再把2,3x y a a ==代入可得答案. 【详解】解:()()23232323427108,x y xy a a a +=⨯=⨯=⨯=本题考查的是同底数幂的运算逆运算,幂的乘方运算的逆运算,掌握以上知识是解题的关键.7.C【解析】【分析】根据幂的乘方的知识,可得255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,再比较底数的大小,即可得结论.【详解】解:∵255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,又∵32<64<81,∴255<433<344.故选C .【点睛】本题考查了幂的乘方,解题的关键是根据幂的乘方的公式,转化为底数相同的幂.8.D【解析】【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.9.4a 【解析】【分析】根据幂的乘方和积的乘方的运算法则求解.【详解】解:(a 2)2=a 4.本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.10.8x【解析】【分析】根据幂的乘方法则,即可求解.【详解】()428x x -=.故答案为:8x .【点睛】本题主要考查了幂的乘方,熟悉幂的乘方运算法则是解题的关键.11.a 9【解析】试题解析:原式639.a a a =⋅=故答案为9.a12.810-a a【解析】【分析】根据幂的乘方底数不变指数相乘,积的乘方,可得答案.【详解】()5352a a a +-=810-a a ,故答案为:810-a a .【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题关键在于掌握运算法则.13.3.【解析】【分析】根据同底数幂的乘法和幂的乘方将条件等式进行变形,得到方程求解即可.解:∵()332x a a a ⋅=,∴+36x a a =∴36x +=∴3x =.故答案为:3.【点睛】此题主要考查了同底数幂的乘法和幂的乘方,熟练掌握它们的性质是解答此题的关键.14.<【解析】【分析】利用幂的乘方法则将这两个幂都化为一个数的11次幂,比较底数即可.【详解】解:∵233=(23)11=811,322=(32)11=911,∵8<9,∴811<911,∴233<322,故答案为:<.【点睛】本题考查了幂的大小比较、幂的乘方及其逆运算,解题的关键是化为同底数或同指数进行比较.15.6【解析】【分析】逆用同底数幂的运算法则即可求出答案,【详解】2x a b c +-=2a b c x x x ⋅÷=2()a b c x x x ⋅÷=2438⨯÷=6, 故答案为:6,【点睛】本题考查了同底数幂的运算,解题的关键是熟练运用运算法则,本题属于基础题型,【解析】【分析】逆用同底数幂的乘法、幂的乘方法则即可解题.【详解】解:222()2520m n m n a a a +=⋅=⨯=.故答案为:20.【点睛】本题考查了同底数幂的乘法法则、幂的乘方(逆用),熟练掌握同底数幂的乘法、幂的乘方法则是解题关键. 17.6a -【解析】【分析】根据幂的运算计算即可得出答案.【详解】解:原式=2366a a a a a --=662a a -=6a -【点睛】本题考查的是幂的运算,需要熟练掌握幂的运算法则.18.(1)0;(2)m 6.【解析】【分析】(1)首先计算幂的乘方,再算加减即可;(2)首先计算幂的乘方和同底数幂的乘法,再算加减即可.【详解】(1)(﹣t 4)3+(﹣t 2)6=﹣t 12+t 12=0;=m8+m6﹣m8=m6.【点睛】本题主要考查了幂的乘方运算以及合并同类项、同底数幂的乘法运算,正确掌握相关运算法则是解题关键.19.200.【解析】【分析】根据同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘,变形计算即可.【详解】解:∵a m=5,a n=2,∴a2m+3n=a2m•a3n=(a m)2•(a n)3=52×23=200.【点睛】此题主要考查了幂的乘方和同底数幂的乘法,关键是掌握计算法则,并能熟练应用.20.(1)27;(2)4【解析】【分析】(1)根据幂的乘方以及同底数幂的乘法法则解答即可;(2)根据幂的乘方以及同底数幂的乘法法则解答即可.【详解】解:(1)∵4a+3b=3,∴92a•27b=34a•33b=33=27;(2)∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,解得m=4.【点睛】考查幂的乘方,以及同底数幂的乘法,掌握运用即可,本题属于典型题,也易错.。