核受体介导的信号转导通路PPT课件

合集下载

细胞信号转导PPT课件

细胞信号转导PPT课件

21
11/24/2019
22
一般将细胞外信号分子称为“第一信使”,第一信使与受 体作用后在细胞内产生的信号分子称为第二信使。
胞外物质(第一信使)不能进入细胞,它作用于细胞表面 受体导致胞内产生第二信使,从而激发一系列生化反应, 最后产生一定的生理效应,第二信使的降解使其信号作用 终止。
11/24/2019
11/24/2019
11
亲脂性信号分子:主要是甾类激素和甲状腺素,它们可以穿过细胞膜 进入细胞,与细胞质或细胞核中的受体结合,调节基因表达。
亲水性信号分子:包括神经递质、生长因子和大多数激素,它们不能 穿过细胞质膜,只能通过与靶细胞膜表面受体结合,再经过信号转导 机制,在细胞内产生第二信使或激活蛋白激酶或磷酸蛋白酶的活性, 引起细胞的应答反应。
气体性信号分子(NO) :是迄今为止发现的第一个气体信号分子,它 能直接进入细胞直接激活效应酶,是近年来出现的“明星分子”。
11/24/2019
12
11/24/2019
13
受体是一种能够识别和选择性结合某种配体(信号分子) 的大分子。当与配体结合后,通过信号转导作用将胞外信 号转换为胞内物理或化学的信号,以启动一系过程,最终 表现出生物学效应。
11/24/2019
18
此类受体是细胞表面受体中最大家族,普遍存在于各类 真核细胞表面。其信号的传递需要依赖于G蛋白的活性。
11/24/2019
19
此类受体包括两种类型:一是受体胞内结构域具有潜在酶 活力,另一类是受体本身不具酶活性,通过其胞内区与酶 相联系。
11/24/2019
20
11/24/2019
山东师范大学生命科学学院
11/24/2019

细胞的信号转导完美版PPT

细胞的信号转导完美版PPT

一、信号转导概述
信号转导——细胞外刺激信号作用于细胞的特殊结构,通过 一系列反应实现对细胞功能活动的调控。
(一)细胞外刺激信号 体内的信号物质一般为生物活性物质,如神经递质、激素、 细胞因子等,其中多数为水溶性物质。
(二)受体及其特征
1.受体的概念及其分类 受体(receptor)——位于细胞膜或细胞内能与某些信号
3.以神经-肌接头处兴奋传递为例,简述通道耦联的受体介导 的信号转导过程。
G蛋白作用模式
cAMP作为第二信使的发现
➢ 第二信使学说是E.W.萨瑟兰于1965年首先提出。他认为 人体内各种含氮激素(蛋白质、多肽和氨基酸衍生物)都 是通过细胞内的环磷酸腺苷(cAMP)而发挥作用的。首次 把cAMP叫做第二信使,激素等为第一信使。已知的第二 信使种类很少,但却能转递多种细胞外的不同信息,调节 大量不同的生理生化过程,这说明细胞内的信号通路具有 明显的通用性。
(3)G蛋白效应器(G protein effector)
(4)第二信使(second messenger) (5)蛋白激酶(protein kinase, PK)
G蛋白耦联受体介导的信号转导的基本过程
配体 受体
受体-配体
G蛋白
激活型G蛋白
G蛋白效应器
激活的 G蛋白效应器
[第二信使] 或
依赖于第二信使的酶或通道激活或抑制
某些蛋白质磷酸化
生物效应
2. G蛋白受体介导的信号转导的主要途径
(2)受体-G蛋白-DG/PKC途径: 配体与膜受体结合 膜中的G蛋白(Gq) 激活磷脂酶C(PLC) 膜脂质中的二磷酸磷脂酰肌醇(PIP2)迅速水解为 IP3(三磷酸肌醇)和DG(二酰甘油) DG激活蛋白激酶C(PKC) 进一步作用于下游的信号蛋白或功能蛋白 诱发细胞功能改变。

细胞的信号转导医学细胞生物学第

细胞的信号转导医学细胞生物学第

7
二、细胞的信号分子
➢信号分子(配体ligand):能与细胞内受体或膜受体结合并 产生特定生物学效应的化学物质。 ➢特点:①特异性;②高效性;③可被灭活。 ➢分子种类:短肽、蛋白质、气体分子(NO、CO)、氨基酸、 核苷酸、脂类、胆固醇衍生物。 ➢从产生和作用方式来看可分为内分泌激素、神经递质、局部 化学介导因子和气体分子等四类; ➢从信号分子性质分为:脂溶性、水溶性、气体分子三类。
配体→RTK →adaptor →GEF →Ras →Raf (MAPKKK)→MAPKK→MAPK→进入细 胞核→其它激酶或转录因子的磷酸化修饰
医学ppt
41
第三节、细胞内受体介导的信号转导
➢核受体介导的信号途径 ➢NO作为信号分子介导的信号途径
医学ppt
42
一、核受体介导的信号途径
➢核受体即细胞内受体,存在于核或胞质内,其本质 是甾类激素激活的基因调控蛋白。
Chap 4. 细胞的信号转导
Cell Signal Transduction
医学ppt
1
细胞的信号转导(signal transduction)
概述 膜表面受体介导的信号转导 细胞内受体介导的信号转导
信号转导的特点 信号转导与医学
医学ppt
2
第一节、概述
息的现代一环的息别
系现象间方境存处在 统象是传面的在理于生 的,信递核变使系生命 进生息维酸化有统命与 化命在持和,机。是非 。的同了蛋维体一一生
的发生和组织的构建,协调细胞
的功能,控制细胞的生长、分裂、
分化和凋亡等是必须的。
医学ppt
5
细胞通讯的主要方式
细胞间隙连接 膜表面分子接触通讯 化学通讯
医学ppt

第八章细胞信号转导(0001)ppt课件

第八章细胞信号转导(0001)ppt课件
1A型: Gsα等位基因的单个基因突变; 有 AC相连的激素抵抗症(TSH、LH、FSH等) 1B型:Gs正常、仅对PTH抵抗
3、 肢端肥大症和巨人症
GH释放激素 Gs + AC cAMP
Adult?
GH分泌
child
三、细胞内信号转导分子、转 录因子异常与疾病
(一)NO与缺血-再灌注损伤 心肌缺血 NO合酶 NO cGMP PKG
家族性高胆固醇血症*
家族性肾性尿崩症
遗传性受体病
甲状腺素抵抗综合征*
重症肌无力
自身免疫受体病
自身免疫性甲状腺病
继发性受体异常
损伤性:膜磷脂分解 代偿性:ligand
家族性高胆固醇血症(familial hypercholesterolemia, FH)
LDL-R
1、合成障碍 2、转运障碍 数目
3、与配体结合障碍 4、内吞缺陷
21000~28000
位于细胞内
只有G α功能
(Ras ,微管蛋白 β亚基)
在将信号从细胞膜外传递至细胞核的过程中, Ras蛋白起着非常重要的作用。整个过程开 始于生长因子(如EGF或PDFG)等与各自
受体的细胞外功能域结合
G 蛋白介导的细胞信号转导途径
G蛋白
腺苷酸环化酶 (AC)
PLC β
DG-蛋白激酶C
cell
Vascular smooth muscle
cell
Vascular GC signal transduction system
cytokines CO
Ca2+
GTP
Ach-R arg
NO
synthase NO
sG
GRC
C cGM

07-3-细胞内受体介导的信号转导

07-3-细胞内受体介导的信号转导

12.3 细胞内受体介导的信号传递同学们好!前面我介绍细胞信号转导系统的构成要素时,已经讲过,受体可分为细胞膜受体和细胞内受体。

细胞内受体包括细胞质受体和核内受体,由于大多数细胞质受体在活化之后会转移到细胞核,因此,我们通常把细胞内受体统称为核受体。

还有少数非核受体的细胞质受体,如一氧化氮(NO)受体。

细胞内受体接收一些亲脂性信号分子,这些信号分子可直接通透细胞膜,无需特别的跨膜信号转导机制,就可到细胞内找到并结合相应的胞内受体,传递信号,引起细胞效应。

下面我们就着重讲一下核受体介导的信号通路和NO介导的信号通路。

一、核受体信号通路人细胞中已发现48个核受体。

核受体的配体包括雌激素和孕激素等类固醇激素,以及视黄醇和甲状腺素等脂溶性信号分子。

核受体可区分为I型核受体和II型核受体,它们介导的信号通路有一定差异。

1、I型核受体信号通路。

在这一信号通路中,I型核受体通常在胞质中与分子伴侣热休克蛋白90(简称HSP90)结合处于失活状态。

当雄激素、雌激素和孕激素等激素进入细胞,与受体结合,引起HSP90与受体解离,受体分子将形成二聚体,暴露核定位信号,即可迁移到细胞核内。

入核后,激素-受体复合物借助DNA结合结构域(DBD),与DNA中的激素响应元件(HRE)发生特异性结合,并招募转录共激活因子,激活目的基因的表达。

2、II型核受体信号通路。

在这一信号通路中,II型核受体已经定位在核内,并与DNA 中的特定HRE结合,只不过还结合有转录共抑制因子,使之处于失活状态。

当视黄醇、维甲酸、维生素D和甲状腺素等脂溶性配体扩散入核与受体结合形成复合体后,将招募转录共激活因子替换转录共抑制因子,从而激活目的基因的表达。

类固醇激素诱导的基因活化通常分为两个阶段:1)快速的初级反应阶段,直接激活少数特定基因转录;2)延迟的次级反应阶段,初级反应阶段的基因表达产物再激活更多基因表达,是对初级反应的持续放大。

核受体信号通路在细胞的增殖、分化等生命活动中发挥着重要调控作用。

TLR及信号通路(Toll样受体及其信号转导)课件

TLR及信号通路(Toll样受体及其信号转导)课件
•可被固有免疫的特定受体所识别;
•病原体赖以生存、变化较小的主要部分(如病 毒的双链RNA和细菌的脂多糖), 因此病原体 很难发生突变逃逸固有免疫的作用。
PAMP分类:
PAMP
糖类/脂类 细菌胞壁
病毒/细菌 胞核/产物
脂多糖:革兰阴性菌 肽聚糖:革兰阳性菌
糖 脂:分枝杆菌 甘露糖Cp:G酵DN母A菌
• 细胞表面模式识别受体
---甘露糖受体 (巨噬细胞) ---清道夫受体 (巨噬细胞): LPS;脂蛋白;氧化LDL等 ---Toll样受体 (TLR 1/2/4/5/6/10)
识别PAMP的甘露糖受体(A)和清道夫受体(B)
模式识别受体种类与分布:
细胞内模式识别受体
---Toll样受体 (TLR3/7/8/9)
---NOD样受体 ---RIG-1样受体
NLR: MDP系吞噬溶酶体中解离的革兰阳性菌胞壁肽聚糖相关成分,属PAMP
NLR
TLR
RLR
Toll样受体( TLR ):
• TLR发现; • TLR的分子结构与配体; • TLR的胞内分布和定位; • TLR信号转导与调控; • TLR的生物学功能; • 靶向TLR的疾病治疗
M\088
TIRAP
HF-«B
TRAM TRJ F
HF-«B Ty[w I IFLI
NF-<B
•••@• klyDBB•dependo‹›I pet:hway Inflammatory cytokines
TLR
Virus-infected cells
Plesma membrane
Endolysosome
• LPS还是固有免疫信号转导研究的突破口之一,由此发现 了相应的受体TLR4,及一些当初未知的炎症基因信号转 导和激活方式,开拓了研究固有免疫识别的新局面。

细胞信号转导PPT演示课件

细胞信号转导PPT演示课件
Department of Biochemistry & Molecular Biology
甾体激素NR
类别
非甾体激素NR
Байду номын сангаас孤儿NR
被领养的孤儿NR
未被领养的孤儿NR (配体不明或不需要)
NR的分类
成员 糖皮质激素受体 盐皮质激素受体
雄激素受体 雌激素受体 孕激素受体 甲状腺激素受体
维甲酸受体
维生素D3 受体
配体 糖皮质激素 盐皮质激素
雄激素 雌激素 孕激素 甲状腺激素
全反式维甲酸
维生素D3
PPARα PPARγ PPARβ/δ
FXR LXRs PXR RXRs CAR RORs HNF4 ERR SXR SF-1 COUP-TFs GCNF Nor1 Nurr1 Nurr77 PNR TR2/4 Rev-erbs TLX
Clinical tips
➢Why glucocorticoid( 糖 皮 质 激 素 ) can promote glyconeogenesis(糖异生) in hypoglycaemia(低血糖)?
➢Why thyroxin deficiency can result in cretinism(呆小 症 ), and much higher level of thyroxin is closely associated with the hypermetabolism( 高 代 谢 ) in hyperthyroidism (甲亢)?
domain(配体依赖性转录激活功能域)
Nomenclature of NR
➢ 1999年,NR命名委员会根据NR的C和E结构域的同源性对NR 进行了系统命名,用NRXYZ来表示,其中NR表示核受体,X 和Z是阿拉伯数字,Y是大写英文字母。X代表NR的亚家族, Y代表亚家族中的组别,Z代表组别中的成员。 例如:FXR:NR1H4; LXRα:NR1H3; LXRβ:NR1H2.

信号转导通路PPT课件

信号转导通路PPT课件

细胞内信号传递特点
信号的逐级放大
细胞内信号传递过程中,信号分子通过级联反应 逐级放大,使微弱的细胞外信号能够引起强烈的 细胞生理反应。
信号的可调性
细胞内信号传递过程受到多种因素的调节,包括 受体表达水平、信号分子的合成与降解、信号转 导蛋白的活性与定位等,这些调节机制使细胞能 够对外界刺激作出精确而灵活的应答。
免疫细胞信号转导通路的抑制失活
02 如免疫抑制性受体信号转导通路的失活,导致免疫细
胞过度激活和炎症反应。
免疫细胞与靶细胞之间的信号转导异常
03
免疫细胞与靶细胞之间的信号转导异常,导致免疫相
关疾病的发生和发展。
其他常见疾病中信号转导问题
心血管疾病中信号转导异常
如血管内皮细胞信号转导通路的异常,导致动脉粥样硬化和高血 压等疾病的发生。
信号的特异性
细胞内信号传递具有高度的特异性,不同的信号 分子只能激活特定的信号转导途径,引起特定的 细胞生理反应。
信号的整合性
细胞内存在多种信号转导途径,这些途径之间通 过交叉对话和相互调控,实现对细胞生理功能的 整体协调和控制。
02
典型信号转导通路介绍
G蛋白偶联受体介导通路
G蛋白偶联受体(GPCR)是一大类膜蛋白受体的统称 ,介导细胞对多种信号分子的响应。
GPCR与G蛋白结合后,通过激活或抑制下游效应器酶, 将信号传递至细胞内。
常见的GPCR介导的信号转导通路包括cAMP信号通路、 磷脂酰肌醇信号通路等。
酶联受体介导通路
01
酶联受体是一种具有内在酶 活性的受体,其介导的信号 转导通常与受体的酶活性相
关。
02
酶联受体通过催化特定的底 物生成第二信使,从而将信
导通路中的关键基因。

《细胞信号传导》PPT课件

《细胞信号传导》PPT课件

精选课件
24
(三)细胞内信号转导分子
相关 分子
概念:细胞外的信号经过受体转换进入细胞内,通 过细胞内的一些小分子物质和蛋白质进行传递。
类型: 小分子化学物质:第二信使
酶 催化产生第二信使的酶 激酶/磷酸酶
G蛋白 调节蛋白
接头蛋白
精选课件
25
1. 小分子化学物质
概念:细胞内可扩散,并能调节信号转导蛋白 活性的小分子或离子,又称为第二信使。 如cAMP、cGMP、Ca2+、DAG、IP3、Cer或花 生四烯酸等。
质膜受体 质膜受体
蛋白质、多肽及氨基 酸衍生物类激素 类固醇类激素、甲状 腺激素
质膜受体 胞内受体
引起细胞内的变化 影响离子通道开闭
引起酶蛋白和功能蛋白 的磷酸 /脱磷酸,改变 细胞的代谢和基因表达 同上
影响转录
精选课件
13
(二)受体(Receptor)
相关 分子
受体:是一类分布于细胞膜、细胞质或细胞核的特 殊蛋白质,能特异性识别并结合相应信号分子,激 活并启动细胞内一系列生化反应,使细胞对信号刺 激产生相应的生物效应。
精选课件
5
细胞信号转导:胞外信号通过与细胞表面的 受体相互作用转变为胞内信号,在细胞内经 信号途径传递引起细胞发生反应的过程。
精选课件
6
跨膜信号转导的一般步骤 特定的细胞释放信息物质
信息物质经扩散或血循环到达靶细胞
与靶细胞的受体特异性结合
受体对信号进行转换并启动细胞内信使系统
靶细胞产生生物学效应
精选课件
14
1.受体的类型
细胞膜受体
离子通道型 G蛋白偶联型 催化型 酶偶联型)离子通道偶联受体
受体本身为离子通

第八章细胞信号转导

第八章细胞信号转导
迄今未发现和制备出MAPK组成型突变(dominant negative mutant),提示细 胞难于忍受MAPK的持续激活(MAPK的去活是细胞维持正常生长代谢所必须)。 主要机制:特异性的Tyr/Thr磷脂酶可选择性地使MAPK去磷酸化,关闭MAPK 信号。
cAMP , MAPK ;cAMP直接激活cAMP依赖的PKA;PKA可能通过RTK 或通过抑制Raf-Ras相互作用起负调控作用。
细胞间的通讯对于多细胞生物体的发生和组织 的构建,协调细胞的功能,控制细胞的生长、 分裂、分化和凋亡是必须的。
(一)细胞通讯的方式:
分泌化学信号进行通讯 :内分泌(激素)、 旁分泌(如调节发育的许多生长因子)、自分 泌(肿瘤细胞生长因子)、化学突触。 接触性依赖性的通讯:细胞间直接接触,信 号分子与受体都是细胞的跨膜蛋白。在胚胎发 育过程中影响组织内相邻细胞的分化命运。 通过间隙连接或胞间连丝的通讯:交换小分 子来实现代谢偶联或电偶联。
第二节 细胞内受体介导的信号转导
一、细胞内核受体及其对基因表达的调节 类固醇激素、视黄酸、VitD和甲状腺素的受体 在细胞核内。类固醇激素介导的信号通路 包括 两步反应阶段:
初级反应:直接活化少数特殊基因转录, 发生迅速。
次级反应:初级反应产物再活化其它基因 产生延迟的放大作用 二、一氧化氮介导的信号通路 (98Nobel Prize)
二、信号转导系统及其特性
(一)信号转导系统的基本组成与信号蛋白 步骤: 1) 受体对信号分子的识别与互作;2)
信号转导(产生第二信使或活化信号蛋白);3) 信号放大(级联反应):影响代谢或基因表达; 4)细胞反应的终止与下调。 组成:1)受体;2)转承蛋白、信使蛋白、接头 蛋白、放大和转导蛋白、传感蛋白、分歧蛋白、 整合蛋白、潜在基因调控蛋白。

信号通路途径ppt课件

信号通路途径ppt课件
48
Hh信号传递受靶细胞膜上两种受体 Patched(Ptc)和Smoothened(Smo)的控制。受体Ptc由 肿瘤抑制基因Patched编码,是由12个跨膜区的单 一肽链构成,能与配体直接结合,对Hh信号起负 调控作用。受体Smo由原癌基因Smothened 编码, 与G蛋白偶联受体同源,由7个跨膜区的单一肽链 构成,N端位于细胞外,C端位于细胞内,跨膜区 氨基酸序列高度保守,C 末端的丝氨酸与苏氨酸 残基为磷酸化部位,蛋白激酶催化时结合磷酸基 团。
21
受体络氨酸介导的信号通路主要有Ras信号通路、 PI3K信号通路、磷脂酰肌醇信号通路等等。
信号分子间的识别结构域主要有三类: SH2结构域:介导信号分子与含磷酸酪氨酸
蛋白分子结合; SH3结构域:介导信号分子与富含脯氨酸的
蛋白质分子结合; PH结构域:与磷脂类分子PIP2、PIP3、IP3
代谢改变 基因表达 细胞形状
改变
或运动改变
4
cAMP是第一个被发现的第二信使。
NH2
N
N
O CH2O N
O P O OH OH
N
萨瑟兰(EaEral rWl Wilb. uSruSthuethrelralnandd, JJrr) 1915.( 111.991~5 1- 9197744.3).9
1971年获诺贝尔生理学和医学奖
17
18
IP3信号的终止:是通过去磷酸化形成IP2、或磷酸化为 IP4 。Ca2+被质膜上的钙泵和Na+- Ca2+交换器抽出细胞,
或被内质网膜上的钙泵抽回内质网。
DAG信号的终止:
-----被DAG激酶磷酸化成为磷脂酸,进入磷脂酰肌醇 循环;
-----被DAG酯酶水解成单酯酰甘油。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
4、丝/苏氨酸蛋白激酶型受体
特点:胞内都有丝/苏氨
(TGF-β)2
酸蛋白激酶(PSTK)区
ⅡⅠ
GS
ⅡⅠ
Smad2
Smad4
Smad2-P
Smad4 Smad2 -P
细胞膜
SARA
(—)Smad6,7
胞浆
P300
P300
Fast2
Smad4 Smad2 -P
P15、P21
Fast2
核膜
18
5、肿瘤坏死因子(TNF)受体家 族
靶蛋白 磷酸化
ERK
与配体结合后发生二聚化, 激活胞内酪氨酸蛋白激酶 区靶,基继因而结合含SH2区的蛋 白。转录
14
MAPK家族
15
3、酪氨酸激酶(PTK)结合受体
G H
JAK
STAT P
细胞因子如白介素(IL)、 GH receptor干扰素(INF)及红细胞
生成素等的膜受体本身
JAK
并无蛋白激酶活性,其
Gq
PLCβ
4,5-二磷酸磷脂酰肌醇 (PIP2), 三磷酸肌醇(IP3), 二酰甘油(DAG) .
靶基因 转录
PIP2
IP3
DAG
Ca2+释放
PKC
靶蛋白 磷酸化
12
3.G蛋白-其他磷脂酶途径 激活PLA2,促进花生四烯酸、前列腺素、白三烯和TXA2的生 成激活PLD,产生磷脂酸等。 4.激活MAPK家族成员
13
2、受体酪氨酸蛋白激酶通路 生长因子受体TPK
GDP Ras
GTP
Raf
MEK
Sos Grb2 P 50多种跨膜受体组成的超 家族,其共同特征是受体 胞内区含有TPK,包括胰岛 (reegx素生tu受长rlaa体因ctee( 子dllu受IkGlian体Fr-a(ssiRegE),nGa,FEl-R导的信号转导通路
G蛋白偶联受体(G protein coupled receptor, GPCR) 酪氨酸蛋白激酶型受体(protein tyrosine kinase, PTK) 细胞因子受体超家族 丝/苏氨酸蛋白激酶(PSTK) 死亡受体家族 离子通道型受体 黏附分子
4
真核细胞信号转导模式
5
受体介导的细胞信号
1.物理刺激或信号:物理信号包括射线、紫外线、光信号、 电信号、机械信号(磨擦力、压力、牵张力以及血液在血 管中流动所产生的切应力等)以及与环境应激有关的信号 ,如热刺激、细胞容积和渗透压改变等。
2.化学信号又被称为配体(1igand),它们包括:①体液因子 ,如激素、神经递质和神经肽、细胞生长因子和细胞因子 以及局部化学介质如前列腺素等;②气味分子;③细胞的 代谢产物,如ATP、活性氧等;④进入体内的药物、包括 细菌毒素在内的毒物等。
3
跨膜信号转导 Transmembrane signal transduction
胞外信息分子与膜受体结合,将信息传递至胞浆 或核内,调节靶细胞功能的过程。
核受体介导的信号转导
Nuclear receptor-mediated signal transduction 信息分子与核受体结合启动靶基因转录的过程。 位于胞浆或核内的受体,激活后作为转录因子,在 核内调节靶基因的转录活性,从而诱发细胞特定的 应答反应。
1.腺苷酸环化酶 信号转导通路
受体
α2受体 M受体
Gs
Gi
+
-
腺苷酸环化酶
靶蛋白 磷酸化
cAMP
CREB: cAMP response element binding protein
PKA
磷酸化 CREB
靶基因 转录 CRE
11
2. 通过Gq蛋白,激 活磷脂酶Cβ (PLCβ)
α1受体 Ang II受体
第七章 细胞信号转导异常 与疾病
cell signal transduction and disease
1
信号转导系统的组成: 接受信号的特定受体 受体后信号转导通路 靶蛋白
信号转导系统的作用: 调节细胞增殖、分化、代谢、适应、防御和凋亡等。 异常:肿瘤、心血管病、糖尿病、神经精神性疾病及多 种遗传性疾病有关。
7
1、以GPCR介导的信号转导通路为例

Gs 激活腺苷酸环化酶(AC)
Gi 抑制AC
Gq 激活PLC
G12 激活小G蛋白RhoGEF
G蛋白 (G protein)
8
非活化型: α、β、γ 三聚体结合GDP 活化型: α亚基结合GTP,与βγ 亚基分离
9
10
如α2与β肾上腺素受体, 毒蕈碱型乙酰胆碱受体 (mAchR)和视网膜视 紫红质(Rh)受体等
6、离子通道型受体
19
(二)核受体介导的信号转导通路
(二)(N核uc受lea体r re介cep导tor的-me信dia号ted转sig导na通l 路
transduction pathway)
❖类固醇激素受体家族 ❖甲状腺素受体家族
20
HSP R Cortisol
R HSP
HSP
RR
RR Gene
信号转导是由非受体TPK
STAT
介导的。
P
STAT STAT
Targe
Growth hormone receptor signaling through the JAK/STAT pathway
16
例如INFγ与受体结合后发生二聚化后,可与胞浆内非受体 TPK——JAK激酶结合并发生磷酸化,进而与信号转导和 转录激活因子(signal transducers and activators of transcription,STAT)相结合。STAT中的酪氨酸磷酸化, 二聚体转移入核,与DNA启动子的活化序列结合,诱导 靶基因的表达,促进多种蛋白质的合成,进而增强细胞抵 御病毒感染的能力。
Nuclear receptor-mediated signal transduction pathway
HSP
类固醇激素受体位于胞浆,未 与配体结合前与热休克蛋白 (HSP)结合,处于非活化状 态。配体与受体的结合使HSP 与受体解离,暴露DNA结合 区。激活的受体二聚化并转移 入核,与DNA上的激素反应 元件(HRE)相结合或与其他 转录因子相互作用,增强或抑 制靶基因转录;
研究意义: 1、阐明疾病的机制 2、开发设计新药 3、发展新的治疗方法
2
第一节 细胞信号转导系统概述 Cellular signal transduction
细胞信号转导 指细胞通过胞膜或胞内受体感受信息分子的刺激, 经细胞内信号转导系统转换,从而影响细胞生物学 功能的过程 。
膜受体介导的跨膜信号转导 核受体介导的信号转导
相关文档
最新文档