轴对称的性质(一)

合集下载

轴对称的基本性质(第1课时)课件

轴对称的基本性质(第1课时)课件

点A′就是点A关于直线l的对称点;
2.类似地,作出点B关于直线l
的对称点B′; 3.连接A′B′.
B
B′
所以线段A′B′即为所求.
【规律方法】 作已知图形关于某条直线对称的图形的一般步聚:
1.找点 (确定图形中的一些特殊点). 2.画点 (画出特殊点关于已知直线的对称点). 3.连线 (连接对称点).
【跟踪训练】
1.两个图形关于某直线对称,对称点一定在 ( D )
A.直线的两旁
B.直线的同旁
C.直线上
D.直线两旁或这直线上
2.轴对称图形沿对称轴对折后,对称轴两旁的
部分( A )
A.完全重合
B.不完全重合
C.两者都有
D. 没有关系
3.如果两个图形关于某条直线对称,那么对应点所连的线 段被__对__称__轴__垂直平分. 4.下图是轴对称图形,相等的线段是_A_B_=_C_D_,__B_E_=_C_E__, 相等的角__∠__B_=_∠__C___.
A
ED
B
C
共同探究
l
已知对称轴 l 和一个点A,如何
画出点A关于 l 的对称点A′?
A
O
A′
作法: 过点A作直线l的垂线,在垂线上
截取OA′=OA,垂足为点O,点A′就是 点A关于直线l 的对称点.
【例 题】
例2 如图,已知△ABC和直线l,怎样作出与△ABC关于直
线l对称的图形呢?
【解析】△ABC可以由三
(2)对应线段相等,对应角相等. 2.按要求作出一图形关于某条直线成轴对称的图形.
1.下面说法中,正确的是( C ) A.设A,B关于直线MN对称,则AB垂直平分MN. B.如果△ABC≌△DEF,则一定存在一条直线MN,使 △ABC与△DEF关于MN对称. C.如果一个三角形是轴对称图形,且对称轴不止一条, 则它是等边三角形. D.两个图形关于MN对称,则这两个图形分别在MN的两 侧.

八上 1.2 轴对称的性质(1)

八上 1.2 轴对称的性质(1)

1.2 轴对称的性质--- [ 教案]
班级姓名学号
教学目标:
1、掌握轴对称性质;
2、会利用轴对称的性质,作对称点,对称图形等
教学重点:作已知图形的轴对称图形的一般步骤.
教学难点:怎样确定已知图形的关键点并根据这些点作出对称图形.
教学过程:
一、创设情境:
试一试
如下图,方格子内的两图形都是成轴对称的,请画出它们的对称轴.
做一做1
请试着画出下图所示图形的对称轴.
(1)(2)
你可以用折叠的方法来检验自己画的对称轴是否准确,如果准确的话,能总结你的方法吗?你是如何判断对称轴位置的呢?
做一做2
1、实践、操作:
在纸上画出线段AB 及它的中点O ,再过O 点画出与AB 垂直的直线CD ,
沿直线CD 将纸对折,看看线段OA 与OB 是否重合?
从上面的操作我们可以看出,线段是轴对称图形.
直线CD 是线段AB 的对称轴,它垂直于线段AB ,又平分线段AB ,
我们把这样垂直并且平分一条线段的直线,叫做这条线段的垂直平分线.
2、动手、操作
(1
直平分;
(2)说出图中相等的线段和角.
成轴对称的两个图形全等.
如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线
二、例题示范:
例题 用针扎重叠的纸得到下面关于l 成轴对称的两个图案:
(1) 找出它的两对对称点,两条对称线段;
(2) 用测量的方法验证你找到的对称点所连线段被对称轴垂直平分.
F
三、课堂小结:
1、能找到轴对称中的对称点;
2、会画出对称点、对称线段;
3、能找到对称轴
四、课后作业:P13-14 1,2,3
五、教学后记:。

1.2 轴对称的性质(一)

1.2 轴对称的性质(一)

学案初二1.2 轴对称的性质(一)——提前自学班级姓名一、自学目标:1、知道线段的垂直平分线的概念,掌握轴对称图形的性质。

2、会画简单的图形关于对称轴的对称图形。

自学重点:会利用轴对称性质作对称点、对称图形等。

自学难点:准确理解成轴对称的两个图形的基本性质并会简单应用性质解决实际问题。

二、自学过程:1、完成课本第10页的操作,即图1—7,并将你完成的操作带到课堂上来。

2、思考:(1)、针孔A、A’折痕l之间有什么关系?请记录下你的发现。

(2)、线段AA’与折痕l之间有什么关系?请记录下你的发现。

(3)、且一条线段的直线,叫做这条线段的垂直平分线。

(4)、成轴对称的两个图形。

(5)、如果两个图形成轴对称,那么对称轴是的垂直平分线。

3、自学、相信自己:1.下列数字图象都是由镜中看到的,请分别写出它们所对应的实际数字,并说明数字图象与镜面的位置关系。

图 1 图 22、(1)如图所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半(2)如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?(3)作轴对称图形的对称轴的方法是:找到一对,作出连接它们的的线,就可以得到这个图形的对称轴.1.2 轴对称的性质(一)——作业(一)回顾与检测:1、右图是从镜中看到的一串数字,这串数字应为 .23、右图是两个关于某条直线成轴对称的图形,请你画出它们的对称轴。

(二) 拓展:1、如上图,在两面成“八”字形放置的镜子中间放着塑料做的数字9, 你在左右两面镜子中看到的像是怎么样的?请你把它们写出来。

2、如图,△ABC 中,∠C=900⑴在BC 上找一点D ,使点D 到AB 的距离等于DC 的长度;⑵连结AD ,画一个三角形与△ABC 关于直线AD 对称.3、(1)实践与运用:将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过 点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G(如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.(2)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(3)、思考题:如图,DA 、CB 是平面镜前同一发光点S 发出的经平面镜反射后的反射光线,请通过画图确定发光点S 的位置,并将光路图补充完整.(三)自我反思与整理我的收获与困惑:A 图① A 图② F E E D C FB A图③ E D C A B F G ' D ' A D E C B F α 图④ 图⑤。

2.2轴对称的性质(1)

2.2轴对称的性质(1)

(1)2.2轴对称的性质教学目标1.知道线段垂直平分线的概念,知道成轴对称的两个图形全等,且成轴对称的两个图形中,对应点的连线被对称轴垂直平分;2.经历探索轴对称性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理的思考和表达能力.教学重点理解“成轴对称的两个图形中,对应点的连线被对称轴垂直平分,对应线段相等、对应角相等”.教学难点轴对称性质的运用教学过程开场白同学们,你们喜欢照镜子吗你知道“你与镜中的你”有什么关系吗引入【一些图形也想照镜子看看自己美不美,一位数学老师就让同学们记录下圆、正方形、长方形、平行四边形照镜子的状况,你对这四位的记录有什么意见吗(投影图片)同学们的看法到底对不对通过这一节课的学习我们就有答案了(对学生的回答不予评价,探索完轴对称的性质后,让学生自评或互评).需满足几个条件(活动说明:最好用透明纸,这样更方便观察现象).实践探索一1.指导学生完成下边的活动(投影要求).活动一:如图所示,把一张纸折叠后,用针扎一个孔;再把纸展开,两针孔分别记为点A、点A,折痕记为l;连接AA,AA与l相交于点O.2.探究:你有什么发现(1)通过活动一的操作,你小组探索的结果是什么你们是怎样发现的给直线l起个名字.(2)线段的垂直平分线你觉得线段的垂直平分线我们怎样定义%线段的垂直平分线的特征是什么实践探索二指导学生完成活动二(投影要求).仿照上面的操作,在对折后的纸上再扎一个孔,把纸展开后记这两个针孔为点B、点B,连接AB、A B、BB.你有什么新的发现实践探索三(投影要求)如图,并仿照上面进行操作,扎孔、展开、标记、连线.你又有什么发现引导学生观察,形成结论.返回情景导入题(投影图片)开始同学们的回答对不对先让学生自评,再由他评.投影例题&例1 小明取一张纸,用小针在纸上扎出“4”,然后将纸放在镜子前.(1)你能画出镜子所在直线l的位置吗(2)图中点A、B、C、D的在镜中的对应点分别是,线段AC、AB 的在镜中的对应线段分别是,CD=,∠CAB=,∠ACD=.(3)连接AE、BG,AE与BG平行吗为什么(4)AE与BG平行,能说明轴对称图形对称点的连线一定互相平行吗(5)延长线段CA、FE,连接CB、FG并延长,作直线AB、EG,你有什么发现吗总结轴对称在我们的生活中无处不在,通过这节课的学习,你有什么感受呢,说出来告诉大家。

1.2轴对称的性质(1)

1.2轴对称的性质(1)
13
南京市人民中学 孙宇红
练一练
6.利用三角尺分别画出下列图形的对称轴.其中, 哪几个图形的对称轴可以不用三角尺上的刻度画 出?
解:四个图形的对称轴都可以不用三角尺上的刻度画出 . 南京市人民中学 孙宇红
14
练一练
2.画出图中轴对称图形的对称轴,并把该图形 在对称轴上的点用字母标注出来.
A
B C
10
南京市人民中学 孙宇红
练一练
3.如图,线段AB与A’B’关于直线 l 对称,连接 AA’、BB’,设它们分别与 l 相交于点P、Q. (1)在所画的图形中,相等的线段有: AB=A’B’、AP=A’P、BQ=B’Q . (2)AA’与BB’平行吗?为什么? P 解:AA’与BB’平行. ∵ l⊥AA’,l⊥BB’. ∴AA’∥BB’.
2
理一理
设AA’交l于点O.
A
l 1 2 O A’
如果把纸沿l重新折叠, ∵点A、A’重合, ∴线段OA、OA’重合,即O是AA’的中点, ∵∠1与∠2相等且互补, ∴∠1=∠2=90°, 即l垂直且平分AA’.
3
南京市人民中学 孙宇红
理一理
A
l 1 2 O A’
1.线段的垂直平分线: 垂直并且平分一条线段的直线叫做 这条线段的垂直平分线.
5
南京市人民中学 孙宇红
再做一做
如图,再在纸上画一点C,并仿照上面进行操作, △ABC与△A’B’C’有什么关系? △ABC与△A’B’C’全等.
你能得出什么结论?
6
南京市人民中学 孙宇红
理一理
1.轴对称的性质: (1)成轴对称的两个图形全等. ①对应角相等; ②对应边相等. △ABC≌A’B’C’. ∠A=∠A’,∠B=∠B’,∠C=∠C’. AB=A’B’,AC=A’C’,BC=B’C’.

轴对称图形的性质及应用

轴对称图形的性质及应用

轴对称图形的性质及应用轴对称图形是指通过对称轴将图形分为两个互补的部分,两侧部分完全对称的图形。

本文将介绍轴对称图形的特点、性质以及在日常生活中的应用。

特点:轴对称图形在对称轴两侧完全对称,也就是说,左右两侧完全相同,而相应的点到对称轴的距离也完全相等。

轴对称图形最简单的例子就是欧拉线。

性质:轴对称图形与一般图形相比,具有许多独特性质。

1.对称坐标:轴对称图形在对称轴两侧完全对称,因此可以将其坐标进行相应的简化,将对称轴视为原点,将图形分解为x轴和y轴两个部分。

这种简化的坐标系统被称为对称坐标系。

2.取消相似性:一个轴对称图形绕对称轴旋转180度后,两部分分别重叠,正反都是一样的。

这也就说明了轴对称图形并不具有缩放不变性。

与此相反,使用其他变换,如旋转和平移时,图形可能变形,但尺寸和形状不变化。

3.构造对称轴:如果给定一个轴对称图形,很容易通过观察来确定它的对称轴。

但是,如果给定一个线段,如何通过它来构造轴对称图形呢?有一种简单的方法是,将线段的中点作为对称轴,然后用半径相等的圆弧将线段两端连接起来,就可以得到一个轴对称图形。

应用:轴对称图形在各个领域都有着广泛的应用。

1.设计:在建筑设计过程中,轴对称设计可以增强结构的平衡和美感。

对称图案也常常出现在布艺和墙壁装饰品上。

2.生物学:轴对称图形在生物学中也有着广泛的应用。

例如,许多植物和动物的身体结构都具有轴对称性。

轴对称性在遗传学中也发挥着重要作用,它对生物特征的分析和研究有重要的指导作用。

3.艺术:轴对称图形是艺术中常常使用的一种形式。

例如,一些字母、标志和图形都是轴对称的,这在机器制图和商业设计中都很常见。

4.数学:轴对称图形在数学中也发挥着重要作用,特别是在几何学中。

几何转化和对称操作常常用于证明数学定理,而轴对称图形则是证明某些性质的好例子。

总结:轴对称图形是一种可以通过对称轴将图形分为两个互补的部分,两侧部分完全对称的图形。

轴对称图形具有特殊的性质,例如对称坐标,取消相似性以及构造对称轴等。

《轴对称再认识(一)》轴对称和平移

《轴对称再认识(一)》轴对称和平移

对称变换在经济学中 的应用
在对称经济学中,对称原则被用来建 立经济模型,从而对经济现象进行分 析和研究。此外,在对称金融学中, 对称变换也被广泛应用于金融衍生品 定价和风险管理等领域。
对称变换的未来展望
随着科学技术的发展,对称变换将在 更多领域得到应用和发展。例如,在 人工智能领域,通过对称变换可以研 究深度学习和神经网络等算法的本质 和结构;在数据科学领域,通过对称 变换可以挖掘数据中的模式和规律; 在生物医学领域,通过对称变换可以 研究分子结构和生物大分子的性质等 。
对称变换在现代数学中的应用
01 02
对称变换在几何学中的应用
对称变换被广泛应用于几何学中,例如在平面几何、立体几何和解析 几何中,通过对称变换可以解决许多问题,如证明定理、求解方程等 。
对称变换在代数中的应用
对称变换也被广泛应用于代数中,例如在矩阵变换、群论和李代数中 ,通过对称变换可以研究问题的本质和结构。
平移和轴对称的关系
平移和轴对称都是图形的基本变换,它们之间存在密切 的关系。例如,可以通过平移将两个图形重合,也可以 通过轴对称将两个图形重合。
04
轴对称的实例
生活中的轴对称实例
建筑物
许多建筑物,如中国的故宫、 美国的自由女神像,都利用了 轴对称的设计,使建筑在视觉
上更具美感。
植物
自然界中许多植物也呈现出轴对 称的特点,如向日葵、睡莲等。
轴对称图形的特点
轴对称图形是左右或上下对称的,对称轴两侧的对应点到对称轴的距离相等 。
轴对称的判断,通过折叠或比较对应 部分来判断是否为轴对称图形。
常见的轴对称图形
正方形、长方形、等腰三角形、等边三角形、圆形、菱形等 。
轴对称的应用

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结轴对称是指物体具有在某一平面上的镜像对称性质。

在数学和几何学中,轴对称是一种特殊的对称形式,是对称性的重要表现形式之一。

下面将对轴对称的知识点进行总结。

一、轴对称的概念轴对称是指物体或图形在某一平面上的镜像对称性质。

这个平面被称为轴线或对称轴。

沿着轴线对物体进行镜像变换,使得物体的每一个点与镜像点相关联,二者之间的距离保持不变。

轴对称可以存在于二维图形、立体物体以及其他几何结构中。

二、轴对称的特点1. 图形的每一点都关于轴线对称,对称点在轴线上。

2. 对称图形的延长线与轴线重合,对称图形的每一条直线都是轴线上两个对称点的中垂线或垂直平分线。

3. 对称图形的面积、周长和内角和与其镜像图形相等。

4. 对称图形的对称中心与图形的每一个点距离的平方和最小。

三、轴对称的判定方法1. 观察图形是否有明显的对称形状,例如正方形、圆等。

2. 通过自身对折或平移观察是否可以重合。

3. 镜像变换:通过将图形投影到一个平面上,并观察是否与投影前的图形重合完成。

四、轴对称的应用1. 图案设计:轴对称的图案可以给人以和谐、美感的感受,常用于服装、陶瓷、织物等设计中。

2. 建筑设计:许多建筑物在设计中运用了轴对称的原则,例如古代的宫殿、寺庙等,可以使建筑更加庄重、稳定。

3. 生物学:许多生物体的结构具有轴对称性,例如动物的身体结构,植物的花朵等都存在轴对称现象,这也是生命体的一种基本特征。

4. 数学研究:轴对称是数学中的一个重要概念,广泛应用于几何、代数和图论等领域的研究中。

特别是在图论中,轴对称是许多图形算法的基础。

五、轴对称的相关定理1. 轴对称的性质可以应用于线段、角、多边形、三角形等几何概念的研究中,例如轴对称定理、轴对称三角形定理等。

2. 轴对称可以通过镜像变换来实现,这也与线性变换和矩阵运算有关。

研究轴对称问题可以进一步理解和应用线性代数等数学知识。

六、轴对称与其他对称性质的关系1. 轴对称是平移对称的一种特殊形式。

专题2.2轴对称的性质(举一反三)(浙教版)(原卷版)

专题2.2轴对称的性质(举一反三)(浙教版)(原卷版)

专题2.2 轴对称的性质【八大题型】【浙教版】【题型1 游戏中的轴对称】 (1)【题型2 利用轴对称的性质求角度】 (3)【题型3 利用轴对称的性质求线段长度】 (4)【题型4 在格点中作轴对称图形】 (6)【题型5 利用轴对称的性质解决折叠问题】 (8)【题型6 利用轴对称的性质解决最短路径问题】 (11)【题型7 利用轴对称的性质解决探究性问题】 (13)【题型8 轴对称图案的设计】 (18)【题型1 游戏中的轴对称】【例1】(2022春•余姚市校级月考)小王设计了一“对称跳棋”题:如图,在作业本上画一条直线l,在直线l两边各放一粒围棋子A、B,使线段AB长8cm,并关于直线l对称,在图中P1处有一粒跳棋子,P1距A点6cm、与直线l的距离为3cm,按以下程序起跳:第1次,从P1点以A为对称中心跳至P2点;第2次,从P2点以l为对称轴跳至P3点;第3次,从P3点以B为对称中心跳至P4点;第4次,从P4点以l对称轴跳至P5点;….(1)棋子跳至P6点时,与点P1的距离是;(2)棋子按上述程序跳跃2014次后停下,这时它与点B的距离是.【变式11】(2022•云梦县一模)甲和乙下棋,甲执白子,乙执黑子.如图,已共下了7枚棋子,棋盘中心黑子的位置用(﹣1,0)表示,其右下角黑子的位置用(0,﹣1)表示.甲将第4枚白子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣1,1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,﹣2)【变式12】(2022•潍坊)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)【变式13】(2022•绥棱县校级模拟)如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为3步.【题型2 利用轴对称的性质求角度】【例2】(2022秋•河东区期末)如图,△ABC中,∠B=58°,∠C=55°,点D为BC边上一动点.分别作点D关于AB,AC的对称点E,F,连接AE,AF.则∠EAF的度数等于.【变式21】(2022春•寿阳县期末)如图,△ABC中,∠B=60°,∠C=50°,点D是BC上任一点,点E和点F分别是点D关于AB和AC的对称点,连接AE和AF,则∠EAF的度数是()A.140°B.135°C.120°D.100°【变式22】(2022秋•台江区期中)如图,四边形ABCD中,AB=AD,△ABC沿着AC翻折,点B关于AC的对称点E恰好落在CD上,若∠B=α度,则∠D的度数是度.【变式23】(2022秋•房山区期末)如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R 是点P关于OB的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度数.【题型3 利用轴对称的性质求线段长度】【例3】(2022秋•土默特左旗期中)如图,点P在∠AOB内,点M、N分别是点P关于AO、BO的对称点,若△PEF的周长为15,求MN的长.【变式31】(2022春•洛宁县期末)如图,点P在∠AOB内,点M、N分别是P点关于OA、OB的对称点,且MN交OA、OB相交于点E,若△PEF的周长为20,求MN的长.【变式32】(2022春•驿城区期末)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM =3cm,PN=4cm,MN=4.5cm,则线段QR的长为.【变式33】(2022秋•淮安月考)如图,在△ABC中,AB=12cm,AC=6cm,BC=10cm,点D,E分别在AC,AB上,且△BCD和△BED关于BD对称.(1)求AE的长;(2)求△ADE的周长.【题型4 在格点中作轴对称图形】【例4】(2022秋•密山市校级期末)如图所示,(1)写出顶点C的坐标;(2)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;(3)若点A2(a,b)与点A关于x轴对称,求a﹣b的值.【变式41】(2022秋•自贡期末)如图,在直角坐标系中,A、B、C、D各点的坐标分别为(﹣7,7)、(﹣7,1)、(﹣3,1)、(﹣1,4).(1)在给出的图形中,画出四边形ABCD关于y轴对称的四边形A1B1C1D1;(不写作法)(2)写出点A1和C1的坐标;(3)求四边形A1B1C1D1的面积.【变式42】(2022秋•嵊州市期末)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC (顶点是网格线交点的三角形)的顶点A,B的坐标分别是(﹣6,7),(﹣4,3).(1)请你根据题意在图中的网格平面内作出平面直角坐标系.(2)请画出△ABC关于y轴对称的△A1B1C1【变式43】(2022春•铜仁市期末)如图,已知点A(4,3),B(3,1),C(1,2),请解决下列问题:(1)若把△ABC向下平移1个单位,再向左平移5个单位得到△A1B1C1,请画出平移后的图形并写出A1,B1,C1的坐标;(2)若△A2B2C2是△ABC关于x轴对称的图形,请画出△A2B2C2并写出A2,B2,C2的坐标.【题型5 利用轴对称的性质解决折叠问题】【例5】(2022春•广陵区校级期中)发现(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A有何数量关系,直接写出你的结论,不必说明理由思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=100°,求∠BIC的度数;拓展(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC 折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.【变式51】(2022春•杜尔伯特县期中)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN.(1)求线段CN长.(2)连接FN,并求FN的长.【变式52】(2022秋•成都期末)如图,四边形ABCD中,AB∥CD,AD⊥AB,AB=6,AD=CD=3,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在四边形ABCD内部时,PD的最小值等于.【变式53】(2022•惠安县期末)如图,已知一张长方形纸片ABCD,AB∥CD,AD=BC=1,AB=CD=5.在长方形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)请你动手操作,判断△MNK的形状一定是;?试说明理由;(2)问△MNK的面积能否小于12(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,并求最大值.【题型6 利用轴对称的性质解决最短路径问题】【例6】(2022春•崂山区期中)早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图2,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.证明:如图3,在直线l上另取任一点C′,连接AC′,BC′,B′C′,∵直线l是点B,B′的对称轴,点C,C′在l上,∴CB=CB′,C′B=C′B′,∴AC+CB=AC+=.在△AC′B′中,∵AB′<AC′+C′B′∴AC+CB<AC′+C′B′即AC+CB最小.本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(其中C在AB′与l的交点上,即A、C、B′三点共线).本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型.【简单应用】(1)如图4,在等边△ABC中,AB=6,AD⊥BC,E是AC的中点,M是AD上的一点,求EM+MC的最小值借助上面的模型,由等边三角形的轴对称性可知,B与C关于直线AD对称,连接BM,EM+MC的最小值就是线段BE的长度,则EM+MC的最小值是;(2)如图5,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M、N 当△AMN周长最小时,∠AMN+∠ANM=°.【拓展应用】如图6,是一个港湾,港湾两岸有A、B两个码头,∠AOB=30°,OA=1千米,OB=2千米,现有一艘货船从码头A出发,根据计划,货船应先停靠OB岸C处装货,再停靠OA岸D处装货,最后到达码头B.怎样安排两岸的装货地点,使货船行驶的水路最短?请画出最短路线并求出最短路程.【变式61】在ABC中,∠ACB=90°,∠B=60°,AC=6,点D,E在AB边上,AD=CD,点E关于AC,CD的对称点分别为F,G,则线段FG的最小值等于()A.2B.3C.4D.5【变式62】(2022秋•双流区校级期中)在△ABC中,∠A=45°,AC=8,BD⊥AC,BD=6,点E为边BC上的一个动点.E1,E2分别为点E关于直线AC,AB的对称点,连接E1E2,则线段E1E2长度的最小值是.【变式63】(2022春•青羊区期末)如图,△ABC中,∠B=45°,∠C=75°,AB=4,D为BC上一动点,过D作DE⊥AC于点E,作DF⊥AB于点F,连接EF,则EF的最小值为.【题型7 利用轴对称的性质解决探究性问题】【例7】(2022春•二道区期末)解答下列各题:(1)【问题引入】:如图①,在△ABC中,∠BAC=70°,点D在BC的延长线上,三角形的内角∠ABC与外角∠ACD的角平分线BP,CP相交于点P,求∠P的度数﹒(写出完整的解答过程)(2)【深入探究】:如图②,在四边形MNCB中,设∠M=a,∠N=β,四边形MNCB的内角∠MBC 与外角∠NCD的角平分线BP,CP相交于点P,则∠P的度数为﹒(用含有α和β的代数式表示)(3)【问题拓展】:如图③,在图①中,把∠BAC=70°改成∠BAC=γ,其他条件不变,将△PBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M,则∠BMC的度数为.(用含有γ的代数式表示)【变式71】(2022秋•洛南县期末)问题提出:(1)如图1,画出直角三角形ABC关于AC所在直线的轴对称图形△ACB′,其中∠BAC=90°(保留作图痕迹,不写作法).问题探究:(2)如图2,∠MAN=90°,射线AE在∠MAN的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,过点C作CF⊥AE于点F,过点B作BD⊥AE于点D,证明:△ABD≌△CAF.深入思考:(3)如图3,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的异侧,过点A作AD⊥l于点D,过点B作BE⊥l于点E.判断线段AD、BE、DE之间的数量关系,并加以说明.【变式72】(2022春•临汾期末)综合实践课上,小聪用一张长方形纸片ABCD对不同折法下的夹角大小进行了探究,先将纸片的一角对折,使角的顶点A落在A′处,EF为折痕,如图①所示.(1)若∠AEF=30°,①求∠A′EB的度数;②又将它的另一个角也折过去,并使点B落在EA′上的B′处,折痕为EG,如图②所示,求∠FEG的度数;(2)若改变∠AEF的大小,则EA′的位置也随之改变,则∠FEG的大小是否改变?请说明理由.【变式73】(2022秋•鼓楼区月考)问题情境如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;如此反复操作,沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,我们就称∠BAC是△ABC的正角.以图2为例,△ABC中,∠B=70°,∠C=35°,若沿∠BAC的平分线AB1折叠,则∠AA1B1=70°.沿A1B1剪掉重叠部分,在余下的△B1A1C中,由三角形的内角和定理可知∠A1B1C=35°,若沿∠B1A1C的平分线A1B2第二次折叠,则点B1与点C重合.此时,我们就称∠BAC是△ABC的正角.探究发现(1)△ABC中,∠B=2∠C,则经过两次折叠后,∠BAC是不是△ABC的正角?(填“是”或“不是”).(2)小明经过三次折叠发现∠BAC是△ABC的正角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的正角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)如果一个三角形的最小角是10°,直接写出此三角形另外两个角的度数,使得此三角形的三个角均是它的正角.【题型8 轴对称图案的设计】【例8】(2022秋•沧州期末)如图1所示是一块有图案的瓷砖,请利用四块这样的瓷砖拼出一个正方形,使所拼的图案为轴对称图形.在图4中画出你的四个设计方案.(图2、图3视为同一图案)【变式81】(2022•金华)现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.【变式82】(2022春•临渭区期末)认真观察下面四幅图中阴影部分构成的图案,回答下列问题.(1)请你写出这四个图案都具有的两个共同特征:特征1:;特征2:.(2)请你借助下面的网格,设计出三个不同图案,使它也具备你所写出的上述特征.(注意:新图案与以上四幅图中的图案不能相同)【变式83】(2022秋•盂县期末)有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)。

轴对称的基本性质

轴对称的基本性质

方法( 方法( 21 ) )

A

l D H

E

C
● ●

F
B
G

(2)图中点A、B、C、D的对称点分别 是 E、G、F、H,线段AC、AB的对应线段 分别是 EF、EG ∠CAB= ∠FEG ,CD= FH . , ,∠ACD= ∠EFH

A

l D H

E

C
● ●

F
B
G

(3)连接AE、BG, AE与BG平行吗?为什么?
● ●

l D H

E

C


F
B
G

(5)延长线段CA、FE,连接CB、FG并延长,作直线AB、 EG,你有什么发现吗? 成轴对称的两个图形中的对称线段所在直线的交点在对
称轴上或对称线段所在直线互相平行.

A

l D H

E

C
● ●

F
B
G

(二)如果直线l外有一点A,那么怎样画出点A关 于直线l的对称点A′?
A B C
l C′
你能得出什么结论?
A′

B′
说一说
A
轴对称的性质
A
轴对称的性质: 1.成轴对称的两个图形全等. 2.成轴对称的两个图形中,对应点的连线被对 称轴垂直平分;对应线段相等,对应角相等。
例1
小明取一张纸,用小针在纸上扎出“4”,然后将纸
放在镜子前.
(1)图中两个“4”有什么关系? (1)你能画出镜子所在直线l的位置吗?

北师大版三年数学下册《第二单元轴对称(一)》说课稿

北师大版三年数学下册《第二单元轴对称(一)》说课稿

北师大版三年数学下册《第二单元轴对称(一)》说课稿一. 教材分析北师大版三年数学下册《第二单元轴对称(一)》这一节主要讲述了轴对称的概念和性质。

教材通过丰富的实例,让学生感受和理解轴对称的意义,学会寻找对称轴,并能够运用轴对称的性质解决实际问题。

本节课的内容是学生对几何图形认识的一次提升,同时也是对他们的空间想象能力和抽象思维能力的培养。

二. 学情分析三年级的学生已经具备了一定的几何图形认知基础,他们能够识别一些基本的二维图形,并能够进行简单的图形变换。

但是,对于轴对称的概念,他们可能是第一次接触,因此需要通过具体的实例和活动,让学生感受和理解轴对称的意义。

同时,学生还需要培养观察、思考和解决问题的能力。

三. 说教学目标1.知识与技能:学生能够理解轴对称的概念,学会寻找对称轴,并能够运用轴对称的性质解决实际问题。

2.过程与方法:学生通过观察、操作、思考,培养空间想象能力和抽象思维能力。

3.情感态度与价值观:学生感受数学与生活的联系,培养对数学的兴趣和好奇心。

四. 说教学重难点1.教学重点:学生能够理解轴对称的概念,学会寻找对称轴,并能够运用轴对称的性质解决实际问题。

2.教学难点:学生能够通过观察和操作,发现和总结轴对称的性质。

五. 说教学方法与手段1.教学方法:采用情境教学法、活动教学法和启发式教学法,引导学生通过观察、操作、思考,培养空间想象能力和抽象思维能力。

2.教学手段:利用多媒体课件、实物模型、对称卡片等,帮助学生直观地理解轴对称的概念。

六. 说教学过程1.导入:通过展示一些生活中的对称现象,如剪纸、衣服、建筑等,引导学生发现和感受对称的美,激发学生的学习兴趣。

2.新课导入:教师简要介绍轴对称的概念,让学生初步认识对称轴,并通过实例让学生寻找和确认对称轴。

3.教学展开:教师引导学生通过观察和操作,发现和总结轴对称的性质,如对称轴两侧的图形是完全相同的,对称轴将图形分为两个对称的部分等。

4.应用拓展:教师设计一些实际问题,让学生运用轴对称的性质进行解决,如剪纸设计、衣服搭配等。

§2.2 轴对称的性质(1)教案

§2.2  轴对称的性质(1)教案
问题3:折痕 与AA’什么关系?
操作2:仿照上面的操作,在对折的纸上再扎一个孔,把纸展开后记这两个针孔为点B、点B’,连接BB’、AB、A’B’,BB’与折痕 有什么关系?
再仿照上面的操作,扎孔、展开、标记、连线,CC’与折痕 有什么关系?
小组合作进行操作、探究.小组讨论,代表回答,形成认识
小组合作通过观察、讨论,形成结论.能用自己的语言有条理地得出结论
学段学科
初一数学
主备人
课题
§2.2轴对称的性质(1)
教学目标
1.知道线段的垂直平分线的概念,知道成轴对称的两个图形全等,对称轴是对称点的连线的垂直平分线.
2.经历探索轴对称的性质的活动的过程,进一步发展空间观念,以及有条理地思考和表达的能力.
教学重点
准确理解成轴对称的两个图形的基本性质.
教学难点
应用轴对称的性质解决一些实际问题.
【当堂练习】
1、在镜子中看到时钟显示的时间是
则实际时间是.
2、下列右侧四幅图中,平行移动到位置M后能与N成轴对称的是()
3、如图,线段AB与 关于直线 对称,连接 、 ,设它们分别与 相交于点P、Q。
(1)所得图中,相等的线段有那几对?
(2) 与 平行吗?为什么程(教师)
学生活动
设计意图
【情景引入】
操作1:在纸上任意画一点A,把纸对折,用针在点A处穿孔,再把纸展开,并连接两针孔A、A’.
探索:两针孔A、A’和线段AA’与折痕 之间有什么关系?
问题1:如果把纸重新折叠,因为A、A’重合,那么线段OA、OA’呢?那么O是的AA’的什么点?
问题2:∠1与∠2有什么关系?
【小结】
这节课你有什么收获?
学生自由发表意见.

轴对称图形及其性质(一)(解析版)

轴对称图形及其性质(一)(解析版)

第九讲轴对称图形及其性质(一)知识点一轴对称图形及轴对称性质1、轴对称图形如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.注意:轴对称图形的对称轴可能只有一条,也可能有多条甚至无数条.2、两个图形成轴对称如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.3、轴对称的性质在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.注意:在轴对称图形或两个成轴对称的图形中,沿对称轴折叠后,重合的点是对应点,叫做对称点.类似地,重合的线段是对应线段,重合的角是对应角.知识点二利用轴对称作图1、已知轴对称图形求作对称轴方法:先确定图形的两个对应点,再作以这两个对应点为端点的线段的垂直平分线,这条直线就是它的对称轴.2、已知对称轴,求作与已知图形成轴对称的图形的步骤方法:(1)先观察已知图形,并确定能代表已知图形的关键点;(2)分别作出这些关键点关于对称轴的对应点;(3)根据已知图形连接这些对应点,即可得到与已知图形成轴对称的图形.经典例题【例1】选择题(1)如图,ABC∠度数为()C∠=︒,则B'∠=︒,20∆与△A B C'''关于直线l对称,若50AA.110︒B.70︒C.90︒D.30︒【解析】A.(2)下列说法:①线段的对称轴有两条;②角是轴对称图形,对称轴是它的角平分线;③两个全等的等边三角形一定成轴对称;④两个图形关于某条直线对称,则这两个图形一定分别位于这条直线两侧;⑤到直线L距离相等的点关于L对称.其中说法不正确的有()A.3个B.2个C.1个D.4个【解析】D.【例2】如图,AOB∠=︒,BOD ∆与COB∆关于边OB所在的直线成轴对称,AO的延长线交BC于点D.若46∠=︒.∠=︒,则ADCC22【解析】AOB与COB∆关于边OB所在的直线成轴对称,∆∴∆≅∆,AOB COB∠=∠,∴∠=∠=︒,ABO CBO22A C,∠=∠+∠BOD A ABO∴∠=︒-︒=︒,462224ABO∴∠=∠=︒,ABD ABO248∴∠=∠+∠=︒+︒=︒,ADC A ABD224870故答案为:70.【例3】如图,在Rt ABCBC=,AD平分CABAC=,4∠交BC于D点,E,F分ACB∠=︒,3∆中,90别是AD,AC上的动点,求CE EF+的最小值.【解析】在AB上取一点G,使AG AF==∠=∠CAD BAD,AE AE∴∆≅∆()AEF AEG SAS∴=FE EG∴+=+CE EF CE EG则最小值时CG垂直AB时,CG的长度12CG=5【例4】如图在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.A B C;(1)在图中画出与ABC∆关于直线l成轴对称的△111(2)利用网格线在直线l上求作一点P,使得PA PC+最小,请在直线l上标出点P位置.A B C即为所求作.【解析】解:(1)如图,△111(2)如图,点P即为所求作.【例5】如图,在ABCBC cm==,8=,AB的垂直平分线交AB于点M,交AC于点N,∆中,10AB AC cm在直线MN上存在一点P,使P、B、C三点构成的PBC∆的周长最小值.∆的周长最小,求PBC【解析】如图,连接PA.=++,8=,BC cm的周长BC PB PC∆PBC∴+的值最小时,PBC∆的周长最小,PB PC垂直平分线段AB,MN∴=,PA PB,∴+=+=PB PC PA PC AC cm10∴+的最小值为10cm,PB PC∴∆的周长的最小值为18cm.PBC故答案为18cm【例6】在等边ABC∆中,点P、Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且=,点Q关于直线AC的对称点为M,连接AM,PM,求证:PA PM=.AP AQ【解析】证明:AP AQ,=∴∠=∠,APQ AQP∆是等边三角形,ABC∴∠=∠,B C∠=∠+∠,,AQP C CAQ∠=∠+∠APQ B BAP∴∠=∠,BAP CAQ点Q关于直线AC的对称点为M,∴=,QAC MAC∠=∠,AQ AM∠=∠,BAP CAQ∴∠=∠,MAC BAP∴∠+∠=∠+∠=︒,BAP PAC MAC CAP60∴∠=︒,PAM60=,AP AQ∴=,AP AM∴∆是等边三角形APM∴=.AP PM配套练习1、如图,ABC ∆与DEF ∆关于直线l 对称,BE 交l 于点O ,则下列说法不一定正确的是()A .AC DF=B .BO EO =C .AD l ⊥D .//AB EF【解析】D .2、在44⨯的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与ABC ∆关于某条直线对称的格点三角形,最多能画()个.A .5B .6C .7D .8【解析】C .3、如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B '、D '点处,若得70AOB ∠'=︒,则B OG ∠'的度数为.【解析】根据轴对称的性质得:B OG BOG∠'=∠又70AOB ∠'=︒,可得110B OG BOG ∠'+∠=︒1110552B OG ∴∠'=⨯︒=︒.4、如图,ABC ∆中,90ACB ∠=︒,6BC =,8AC =,10AB =,动点P 在边AB 上运动(不与端点重合),点P 关于直线AC ,BC 对称的点分别为1P ,2P .则在点P 的运动过程中,线段12P P 的长的最小值是.【解析】如图,连接CP ,点P 关于直线AC ,BC 对称的点分别为1P ,2P ,12PC PC P C ∴==,∴线段12P P 的长等于2CP ,如图所示,当CP AB ⊥时,CP 的长最小,此时线段12P P 的长最小,90ACB ∠=︒ ,6BC =,8AC =,10AB =,4.8AC BC CP AB⨯∴==,∴线段12P P 的长的最小值是9.6,故答案为:9.6.5、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点ABC ∆(顶点均在格点上)关于直线DE 对称的△111A B C ;(2)在DE 上画出点P ,使1PB PC +最小;(3)在DE 上画出点Q ,使1||QB QC -最大.A B C即为所求作.【解析】(1)如图,△111(2)如图,点P即为所求作.(3)如图点Q即为所求作.。

八年级数学轴对称的性质2

八年级数学轴对称的性质2

; 吸尘器https:///
;


蓊郁的树林,莽草及花丛,在岁月中,一一爬上你的肤体,招来夜枭及风的情歌,仿佛乐园。
你仰望繁星,那熠熠的星子,莫非伊人亲手点的寻人灯?啊!败神不死,乃最残酷的魔咒;生既不能生,死不得死,神非神,人非人。泪,自你的眼眶溢出,如一缕银丝,在残月照
系?并用测量的方法验证.
解:(3) 直线 l 是线段AE、BG的垂直平分线(验证
略).
●A
l E●
C●
● D H●
●F
●B
秋天把旧叶子揉掉了,你要听新故事吗?静静的河水睁着
星子眼睛,笑着说:总有回家的人,总有离岸的船。? 六则城市速写 ? 1 黄疸 ? 豪雨落下,雷声电击这座气息低迷的首都。你在捷运车厢内,森森冷气沿脚踝、手臂而行,如被冰镇。有人头发滴着水,趁啾啾鸟鸣声车门未关,一箭步冲进来。 ? 好险的一座繁华城市,瘟疫、干旱、暴雨,当
往年偶一见之的灾劫竟挤入同一年时,确实令你心绪错乱,不知如何应对进退?譬如眼前暴雨,该担忧低洼民宅淹水抑或庆幸翡翠、石门两款表情,该选哪一个? ? 木栅线捷运贯穿南京东、忠孝东、仁爱、信义、和平东路主干道,于是在烟雨迷乱、繁华五彩隐入一片灰蒙蒙之中,你从疾行的
高架车厢中登高临下获得鲜艳的视象:黄色,黄色出租车,空的黄出租车,塞满主干道,如虫,如蛇,如无助长龙。 你被这视象鞭笞,每辆车内有位认份讨生活的爸爸(或儿子、丈夫),每辆车代表一个等着缴房贷、付学费、筹三餐的家庭。你无法对照地庆幸自己不必如此奔波,你感到心痛。
如图,在纸上再任画一点B,同样地,折纸、穿孔、展 开,并连接AB、A′B′、BB′.线段AB与A′B′有什么关系? 线段BB′与 l 有什么关系?
l A′
B′

轴对称的基本性质

轴对称的基本性质

轴对称的基本性质
1 对称性质
对称性,是一种常见的几何变换,它通常意味着当你将一个图形经过对某个轴对称操作之后,最初图形和变换后图形几乎一模一样。

一般来说,被称为对称性的几何图形和空间结构都具有某种可见的对称性。

比如正方形、三角形、六边形等常见几何图形都具有显著的对称性特征。

2 对称轴
对称轴是指可以使图形对称的独特线段或者平面,它可以是一条正直或者水平线段,或者是一条斜线段,也可以是一个圆,平行于正方形的半径也可以使一个正方形对称。

无论是哪种类型的对称轴,只要是其上的点被反射出一个相同的图形就表明它是对称轴。

3 对称中心
对称中心是指一个特殊的点,它具有对称性的对称轴经过的点,而且它与对称轴的任意一点都是对称的。

在正方形和六边形中,它们的对称中心是包含了轴心的几何体中心;在三角形中,它的对称中心是指的锐角的顶点。

4 基本性质
1. 对称性是一种完全一致的几何变换,最初图形和变换后图形几乎一模一样;
2. 所有对称图形都具有特定的对称轴,它们一般是正直、水平或斜线段;
3. 所有对称图形都有特定的对称中心,它可以是几何图形的中心也可以是一条锐角顶点。

以上就是有关对称性和关于轴对称的基本性质,当我们知道它们在几何图形里的应用,就可以容易的用它们描绘出几何图形的对称,从而获得规则的几何图形。

轴对称的基本性质

轴对称的基本性质

轴对称的基本性质【要点梳理】要点一、轴对称的基本性质★成轴对称的两个图形中,对应点的连线被对称轴垂直评分★轴对称及轴对称的判定(1)如果两个图形的对应点所连线段被同一条直线垂直平分,那么这两个图形关于这条直线成轴对称.(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等,并且这两个图形成轴对称.要点诠释:(1)对应点的连线是一条线段,而对称轴是一条直线.(2)两条成轴对称的线段要么平行,要么所在直线相交且交点一定在对称轴上.【例1】如图,△ABC和△A′B′C′关于直线l对称,若△A=50°,△C′=30°,则△B的度数为()A.30°B.50°C.90°D.100°【变式1.1】如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA 于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm【变式1.2】如图,△MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若△MON=35°,则△GOH=()A.60°B.70°C.80°D.90°【变式1.3】如图,在Rt△ABC中,△BAC=90°,△B=50°,AD△BC,垂足为D,△ADB 与△ADB'关于直线AD对称,点B的对称点是点B',则△CAB'的度数为()A.10°B.20°C.30°D.40°(1)若某点在对称轴上,则它的对称点也一定在对称轴上,并且和这个点重合.(2)如果一个点在对称轴的左侧,那么这个点的对称点一定在对称轴的右侧;反之,一个点在对称轴的右侧,则这个点的对称点一定在对称轴的左侧.要点三、平面直角坐标系中的轴对称★关于坐标轴对称的点的坐标的关系★在平面直角坐标系中作成轴对称的图形【例2】作一个图形关于x轴(或y轴)成轴对称的图形的步骤:(1)找:在原图形上找特殊点(如线段的端点);(2)作:作各个特殊点关于对称轴的对称点;(3)连:按原图的顺序连接所作的各对称点.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【变式2.1】在下图中,画出△ABC关于直线MN的对称图形.【变式2.1】若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【变式2.2】已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为()A.(﹣4,2)B.(﹣4,﹣2)C.(4,﹣2)D.(4,2)【变式2.3】小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)典型例题题型一:轴对称的性质【练习1.1】如图,△ABC与△A′B′C′关于直线l对称,且△A=105°,△C′=30°,则△B=()A.25°B.45°C.30°D.20°【练习1.2】如图,在△ABC中,AB=AC,△C=70°,△AB′C′与△ABC关于直线EF对称,△CAF=10°,连接BB′,则△ABB′的度数是()A.30°B.35°C.40°D.45°【练习1.3】如图,△ABC与△A′B′C′关于直线l对称,则△B的度数为()A.30°B.50°C.90°D.100°【练习1.4】如图,Rt△ABC中,△ACB=90°,△A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则△A′DB为.【练习1.5】如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD =3,则图中阴影部分的面积是.【练习1.6】如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.【练习1.7】如图,点P是△ACB外的一点,点D,E分别是△ACB两边上的点,点P关于CA的对称点P1恰好落在线段ED上,P点关于CB的对称点P2落在ED的延长线上,若PE=2.5,PD=3,ED=4,则线段P1P2的长为.【练习1.8】如图,△BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则△P AQ的度数是.【练习1.9】如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.【练习1.10】如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个【练习1.11】如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个【练习1.12】如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个【练习1.13】如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A .5个B .4个C .3个D .2个【练习1.14】如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对称点B '恰好落在CD 上,若∠BAD =α,则∠ACB 的度数为( )A .45°B .α﹣45°C .12αD .90°−12α 【练习1.15】如图,点P 关于OA 、OB 的对称点是H 、G ,直线HG 交OA 、OB 于点C 、D ,若∠HOG =80°,则∠CPD = °.【练习1.16】在等边△ABC 外作射线AD ,使得AD 和AC 在直线AB 的两侧,∠BAD =α(0°<α<180°),点B 关于直线AD 的对称点为P ,连接PB ,PC .(1)依题意补全图1;(2)在图1中,求∠BPC 的度数;(3)直接写出使得△PBC 是等腰三角形的α的值.【练习1.17】如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为14,求△P AB的周长.【练习1.18】如图,等边三角形ABC中,D为边BC上的一点,点D关于直线AB的对称点为点E,连接AD,DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)探究CG与DE之间的等量关系,并证明.【练习1.19】如图,△ABC的点C与C′关于AB对称,点B与B′关于AC对称,连结BB′、CC′,交于点O.(1)如图(1),若∠BAC=30°,①求∠B'AC'的度数;②观察并描述:△ABC'可以由△AB'C通过什么变换得来?求出∠BOC'的角度;(2)如图(2),若∠BAC=α,点D、E分别在AB、AC上,且C′D∥BC∥B′E,BE、CD交于点F,设∠BFD=β,试探索α与β之间的数量关系,并说明理由.【练习1.20】如图在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.【练习1.21】国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).【练习1.22】如图所示,梯形ABCD关于y轴对称,点A的坐标为(﹣3,3),点B的坐标为(﹣2,0).(1)写出点C和点D的坐标;(2)求出梯形ABCD的面积.题型二:关于x、y轴对称的点的坐标【练习2.1】在平面直角坐标中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是()A.(﹣a,5)B.(a,﹣5)C.(﹣a+2,5)D.(﹣a+4,5)【练习2.2】点M(1,4﹣m)关于直线y=﹣3对称的点的坐标为(1,7),则m=()A.16B.27C.17D.15【练习2.3】如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A.10B.8C.6D.4【练习2.4】如图,若△A′B′C′与△ABC关于直线AB对称,则点C的对称点C′的坐标是()A.(0,1)B.(0,﹣3)C.(3,0)D.(2,1)【练习2.5】在坐标平面上有一个轴对称图形,其中A(3,−52)和B(3,−112)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()A.(﹣2,1)B.(﹣2,−32)C.(−32,﹣9)D.(﹣2,﹣1)【练习2.6】甲、乙两名同学下棋,甲执圆子,乙执方子,如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示,甲将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,甲放的位置是()A.(﹣2,1)B.(﹣1,1)C.(﹣1,0)D.(﹣1,2)【练习2.7】点P(2,5)关于直线x=1的对称点的坐标是()A.(﹣2,5)B.(﹣3,5)C.(4,5)D.(0,5)【练习2.8】嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用(﹣1,1)表示,右下角的圆形棋子用(0,0)表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置可能是()A.(﹣1,2)B.(﹣1,﹣1)C.(0,2)D.(1,3)【练习2.9】在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(√3,√2),则经过第2019次变换后所得的点A的坐标是()A.(−√3,√2)B.(−√3,−√2)C.(√3,−√2)D.(√3,√2)【练习2.10】在平面直角坐标系中,已知点P(a2+2,5),则点P关于直线m(直线m上各点的横坐标都为﹣2)对称点的坐标是()A.(﹣a2+6,5)B.(﹣a2﹣6,5)C.(a2﹣6,5)D.(﹣a2+4,5)【练习2.11】点(6,3)关于直线x=2的对称点为()A.(﹣6,3)B.(6,﹣3)C.(﹣2,3)D.(﹣3,﹣3)【练习2.12】如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边△ABC的顶点C的坐标为()A.(−2016,√3+1)B.(−2016,√3−1)C.(−2017,√3+1)D.(−2017,−√3−1)【练习2.13】平面内点A(﹣1,2)和点B(﹣1,a)关于直线y=4对称,a=.【练习2.14】如图,在平面直角坐标系xOy中,△DEF可以看作是由△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程:.【练习2.15】已知△ABC关于直线y=1对称,C到AB的距离为2,AB长为6,则点A、点B的坐标分别为.【练习2.16】如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A关于点B的对称点.(1)求点C的坐标;(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.题型三:轴对称—最短路线问题【练习3.1】如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【练习3.2】如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC 上的点,当△AEF的周长最小时,∠EAF的度数为()A .50°B .60°C .70°D .80°【练习3.3】如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .6B .8C .10D .12【练习3.4】如图,在△ABC 中,AB =AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( )A .BCB .CEC .AD D .AC【练习3.5】如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .125B .4C .245D .5【练习3.6】如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A.√29B.√34C.5√2D.√41【练习3.7】如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,点E,F分别是线段BC,DC上的动点.当△AEF的周长最小时,则∠EAF的度数为()A.90°B.80°C.70°D.60°【练习3.8】如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是()A.2B.4C.6D.8【练习3.9】如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2√3B.2√6C.3D.√6【练习3.10】如图,在△ABC中,AB=AC,BC=4,△ABC的面积是16,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A .6B .8C .10D .12【练习3.11】如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,√3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则P A +PC 的最小值为( )A .√132B .√312C .3+√192D .2√7【练习3.12】如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上一动点,则DN +MN 的最小值为( )A .6B .8C .12D .10【练习3.13】如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM ﹣PN 的最大值为 .【练习3.14】如图,在锐角△ABC 中,AB =4√2,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .【练习3.15】如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【练习3.16】如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.【练习3.17】如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6√2,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.【练习3.18】如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.【练习3.19】如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是.【练习3.20】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.【练习3.21】如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.【练习3.22】如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是.【练习3.23】在锐角三角形ABC中,BC=4√2,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是.【练习3.24】已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.【练习3.25】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△P AB=1 3S矩形ABCD,则点P到A、B两点的距离之和P A+PB的最小值为.【练习3.26】如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.【练习3.27】(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.【练习3.28】已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.【练习3.29】如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM的长;(2)若CD=132,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求AP+PQ+QB的最小值.【练习3.30】如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小;(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12−x)2+9的最小值.【练习3.31】如图,C为线段BD上的一个动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问:点C满足什么条件时,AC+CE的值最小?求出这个最小值.(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12−x)2+9的最小值.【练习3.32】如图,△ABC三个顶点的坐标分别为A(1,1)、B.(4,2)、C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为:A1,B1,C1;(2)若P为x轴上一点,则P A+PB的最小值为;(3)计算△ABC的面积.【练习3.33】如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD 上的动点,则|P A﹣PB|的最大值为.【练习3.34】如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)△ABC的面积为;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)【练习3.35】请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小明的思路是:如图2所示,先作点A关于直线l的对称点A′,使点A′,B分别位于直线l的两侧,再连接A′B,根据“两点之间线段最短”可知A′B与直线l的交点P 即为所求.请你参考小明同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设AA'与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,AC=1,PD=2,直接写出AP+BP的值;(2)将(1)中的条件“AC=1”去掉,换成“BD=4﹣AC”,其它条件不变,直接写出此时AP+BP的值;(3)请结合图形,求√(m−3)2+1+√(9−m)2+4的最小值.【练习3.36】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.题型四:翻折变换(折叠问题)【练习4.1】如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB =6,BC =4√6,则FD 的长为( )A .2B .4C .√6D .2√3【练习4.2】如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC ',DC ′与AB 交于点E ,连结AC ',若AD =AC ′=2,BD =3,则点D 到BC ′的距离为( )A .3√32B .3√217C .√7D .√13【练习4.3】如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75 【练习4.4】如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A.2B.√3C.√2D.1【练习4.5】如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4【练习4.6】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【练习4.7】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A .①②B .②③C .①③D .①④【练习4.8】如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .53B .52C .4D .5【练习4.9】如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12【练习4.10】如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 .【练习4.11】如图矩形ABCD 中,AD =5,AB =7,点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D ′落在∠ABC 的角平分线上时,DE 的长为 .【练习4.12】如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P到边AB距离的最小值是.【练习4.13】折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG 翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.【练习4.14】如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.【练习4.15】如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为.【练习4.16】如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.【练习4.17】阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C 重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B >∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【练习4.18】如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【练习4.19】如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM 的长.题型五:图形的剪拼【练习5.1】如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【练习5.2】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24B.25C.26D.27【练习5.3】如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a【练习5.4】如图,在正方形ABCD纸片上有一点P,P A=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD 的度数为()A.150°B.135°C.120°D.108°【练习5.5】如图,方格纸中每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A.√7B.2√2C.3D.√10【练习5.6】如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,3.则EB的长是()A.0.5B.1C.1.5D.2【练习 5.7】用两个全等的直角三角形拼成下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.则一定可以拼成的图形是()A.①④⑤B.②⑤⑥C.①②③D.①②⑤【练习5.8】用两个全等的直角三角形拼下面的图形:(1)平行四边形;(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形;(6)等边三角形.可以拼成的图形是()A.(1)(4)(5)B.(2)(5)(6)C.(1)(2)(3)D.(1)(2)(5)【练习5.9】如图1,将矩形ABCD和正方形EFGH的分别沿对角线AC和EG剪开,拼成图2所示的平行四边形PQMN,中间空白部分的四边形KRST是正方形.如果正方形EFGH 与正方形KRST的面积分别是16和1,则矩形ABCD的面积为()A.15B.16C.17D.25【练习5.10】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的四边形ALMN,若中间空白部分四边形恰好是正方形OPQR,且四边形ALMN的面积为72,则正方形的面积是()A.34B.35C.36D.37【练习5.11】如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为.【练习5.12】如图1,分别沿矩形纸片ABCD和正方形EFGH纸片的对角线AC,EG剪开,拼成如图2所示的平行四边形KLMN,若中间空白部分恰好是正方形OPQR,且平行四边形KLMN的面积为50,则正方形EFGH的面积为.【练习5.13】有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.【练习5.14】如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A.B 两个顶点,过顶点C作CD⊥AB,垂足为D.“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比为.【练习5.15】如图1,在大正方形中剪去一个小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个长方形的长为24,宽为16,则图2中S2部分的面积是.【练习5.16】如图,每个小正方形的边长为1,剪一剪,拼成一个正方形,那么这个正方形的边长是.【练习5.17】有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有六个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.【练习5.18】如图,把一个半径为r厘米的圆分成若干等份,然后把它剪开,照下图的样子拼起来,拼成新的图形的周长比原来圆的周长多10厘米,则该圆的半径为厘米.【练习5.19】列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.【练习5.20】在△ABC中,沿着中位线DE剪切后,用得到的△ADE和四边形DBCE可以拼成平行四边形DBCF,剪切线与拼图如图1所示.仿照上述的方法,按要求完成下列操作设计,并在规定位置画出图示.(画图工具不限,剪切线用实线表示,拼接线用虚线表示,要求写出简要的说明)(1)将平行四边形ABCD剪切成两个图形,再将它们拼成一个矩形,剪切线与拼图画在图2的位置;(2)将梯形ABCD剪切成两个图形,再将它们拼成一个平行四边形,剪切线与拼图画在图3的位置.【练习 5.21】著名台湾魔术师刘谦发明了一个道具,他把下图①中的正方形,分割成两个全等的直角三角形和直角梯形.然后拼成图②中的长方形.通过计算这两个图形的面积,证明了64=65.请你用学过的数学知识,找到刘谦的破绽.。

1.2轴对称的性质(1)

1.2轴对称的性质(1)

形全等(对应角相
等,对应边相等).
B
2. 如果两个图形成轴对称,那么对称轴是
对称点所连的线段的垂直平分线.
思考:如图,两个三角形成轴对称,不用折叠
的方法你能画出对称轴吗? 方法:连接对称 点,并作这条线 段的垂直平分线, 即为所求的对称 轴.
依据:如果两个图形成 轴对称,那么对称轴是 对称点连线段的垂直平 分线. 练习:书P11:1,2,3
解:(3) 直线 l 是线段AE、BG的垂直平分线(验略).

A

l D H

E

C


F

B
G

(4) AE与BG平行吗?为什么?
解:(4) 平行.
因为 A和E,B和G是关于直线 l 的对称点, 所以 l⊥AE ,l⊥BG. 所以 ...

A

l D H

E

C
● ●

F
B
G

(5) AE与BG平行,能说明轴对称图形对称点的H、CF就不互相平行,而是 在同一条直线上,从而说明轴对称图形对称点的 连线互相平行或在同一条直线上.

A

l
E


C
● ●
D
H

F
B
G

(6) 延长线段CA、CD、FH 、FE,连接CB、FG并
延长,作 直线AB、EG,你有什么发现吗?
AB 中 BC中 AC 中 AB边 AC边
C
A
B
BC边 新
D A B
C

C A B D

C

专题03《轴对称》(学生版)

专题03《轴对称》(学生版)

专题03 轴对称1.轴对称图形与轴对称的相关概念(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.2.轴对称的性质(1)轴对称的两个图形是全等图形;轴对称图形的两个部分也是全等图形.(2)轴对称(轴对称图形)对应线段相等,对应角相等.(3)如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

(4)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.(5)两个图形关于某条直线对称,那么如果它们的对应线段或延长线相交,那么交点一定在在对称轴上.3.轴对称与轴对称图形的区别与联系区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的.联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.4.线段垂直平分线的性质及判定性质:线段垂直平分线上的任意一点到线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.5.画一图形关于某条直线的轴对称图形的步骤先找到关键点,画出关键点的对应点,然后按照原图顺序依次连接各点.6.关于坐标轴对称的点的坐标的关系(1)点(x,y)关于x轴对称的点的坐标为(x,-y).(2)点(x,y)关于y轴对称的点的坐标为(-x,y).(3)点(x,y)关于原点轴对称的点的坐标为(-x,-y).7.等腰三角形的性质性质1:等腰三角形的性质:等腰三角形的两个底角相等,(简写成等边对等角).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,(简写成三线合一).8.等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成等角对等边).9.等边三角形的性质等边三角形的三个内角都相等,并且每一个角都等于60度.10.等边三角形的判定(1)三个角都相等的三角形是等腰三角形.(2)有一个角是60度的等腰三角形是等边三角形.11.含30度角的直角三角形的性质在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半.12.最短路径问题利用轴对称将最短路径问题转化为“两点之间线段最短”问题.考点一、轴对称图形例1 (2020永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A.B.C.D.【答案】D【解析】A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.【名师点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.考点二、轴对称的性质例2(2020哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB/关于直线AD对称,点B的对称点是B/,∴∠AB/B=∠B=50°,∴∠ACB/=∠AB/B-∠C=10°,故选:A.【名师点睛】本题考查了轴对称的性质,轴对称图形的两个部分也是全等图形,轴对称(轴对称图形)对应线段相等,对应角相等.考点三、利用轴对称设计图案的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格例3 (2020吉林)图①、图②、图③都是33点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB 重合的线段MN ,使MN 与AB 关于某条直线对称,且M ,N 为格点.(2)在图②中,画一条不与AC 重合的线段PQ ,使PQ 与AC 关于某条直线对称,且P ,Q 为格点.(3)在图③中,画一个DEF ∆,使DEF ∆与ABC ∆关于某条直线对称,且D ,E ,F 为格点.【答案】(1)(2)(3)见解析.【解析】(1)如图①,MN 即为所求;(2)如图②,PQ 即为所求;(3)如图③,△DEF 即为所求.【名师点睛】本题考查了轴对称的性质,熟练掌握轴对称性质是解本题的关键.考点四、图形的剪拼例4 (2020武汉一模)小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .【答案】22.5︒【解析】在解本题的过程中,可以找一张正方形的纸片进行如题操作,通过测量,来得到答案,也可以利用图形的轴对称的性质,直接得到AOB ∠的度数是22.5︒.【名师点睛】关键是要理解折叠的过程,得到关键信息,能够通过折叠理解角之间的对称关系是解题的关键. 考点五、轴对称与最小值例5 (2020荆门)在平面直角坐标系中,长为2的线段CD (点D 在点C 右侧)在x 轴上移动()0,2A ,()0,4B ,连接AC 、BD ,则AC BD +的最小值为( )A.B.C.D.【答案】B【解析】设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴∴要求AC+BD的最小值,相当于在x轴上找一点P(n,0),使得点P到M(0,2)和N(-2,4)的距离和最小,如图1中,作点M关于x轴的对称点Q,连接NQ交x轴P/,连接MP/,此时P/M+P/N的值最小.∵N(-2,4),Q(0,-2)P/M+P/N的值最小值=P/N+P/=∴AC+BD的最小值为故选:B.【名师点睛】本题考查对称轴—最短问题,坐标与图形的性质,两点间距离公式等知识,解题的关键是学会利用参数解决问题,学会利用数形结合的思想思考问题,学会用转化的思想解决问题,属于中考选择题中的压轴题.考点六、线段垂直平分线的性质例6 (2020枣庄)如图,在ABCBC=,5AC=,∆中,AB的垂直平分线交AB于点D,交BC于点E,连接AE,若6则ACE∆的周长为()A.8B.11C.16D.17【答案】B【解析】DE 垂直平分AB ,AE BE ∴=,ACE ∴∆的周长AC CE AE =++AC CE BE =++AC BC =+56=+11=,故选B .【名师点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.考点七、坐标与图形变化--对称例7 (2020济南)如图,在平面直角坐标系中,△ABC 的顶点都在格点上如果将△ABC 先沿y 轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B 的对应点B'的坐标为( )A .(1,7)B .(0,5)C .(3,4)D .(-1,2)【答案】C 【解析】由坐标系可得B (-1,1),将△ABC 先沿y 轴翻折得到B 点对应点(3,1)再向上平移3个单位长度,点B 的对应点/的坐标为(3,1+3),即(3,4),故选:C.【名师点睛】本题考查了坐标与图形变化--对称和平移,熟练掌握点的坐标的变化规律是解题的关键.考点八、等腰三角形的性质例8 (2020齐齐哈尔)等腰三角形的两边长分别为3,4,其这个等腰三角形周长是 .【答案】10或11.【解析】由题意知,应分两种情况:(1)当腰长为3时,三角形三边长为3,3,4,334+>,能构成三角形;周长=3+3+4=10,(2)当腰长为4时,三角形三边长为3,4,4,周长=3+4+4=11,故答案为:10或11.【名师点睛】本题考查了等腰三角形的性质,熟记等腰三角形的性质是解题的关键.考点九、等腰三角形的判定例9 (2020黄冈模拟)如图,已知∠C =∠D =90°,BC 与AD 交于点E ,AC =BD ,求证:AE =BE .【答案】见解析【解析】证明:∵∠C =∠D =90°,∴△ACB 和△BDA 是直角三角形,在Rt △ACB 和Rt △BDA 中,{AB =BA AC =BD, ∴Rt △ACB ≌Rt △BDA (HL ),∴∠ABC =∠BAD ,∴AE =BE .【名师点睛】本题考查了全等的判定与性质,等腰三角形的判定,熟记掌握等腰三角形的判定定理,证明三角形全等是解题的关键.考点十、等边三角形的性质例10 (2020常州)如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B= °.【答案】30【解析】∵EF 垂直平分BC ,∴BF=CF ,∴∠B=∠BCF ,∴△ACF 为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°,故答案为:30.【名师点睛】此题主要考查了等边三角形的性质,垂直平分线的性质,三角形外角的性质,利用垂直平分线的性质求出∠B=∠BCF 是解本题的关键.考点十一、等边三角形的性质与判定例11 (2020宜昌)如图,在一个池塘两旁有一条笔直小路(B ,C 为小路端点)和一棵小树(A 为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC= 米.【答案】48【解析】∵∠ABC=60°,∠ACB=60°,∴∠BAC=60°,∴△ABC 是等边三角形,∵BC=48米,∴AC=48米.故答案为:48.【名师点睛】本题考查了等边三角形的判定与性质,解题的关键是得到△ABC 是等边三角形.考点十二、含30度角的直角三角形例12 (2020黔西南州)如图,在Rt△ABC中,∠C=90°点D在线段BC上,且∠B=30°,∠ADC=60°,,则BD的长度为.【答案】.【解析】∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=12 AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵∴,∴∴故答案为:【名师点睛】本题考查了含30°角的直角三角形的性质,直角三角形30°所对的直角边等于斜边一半的性质,属于基础题,速记性质是解题的关键.1.(2020宜昌)下面四幅图是摄影爱好者抢拍的一组照片.从对称美的角度看,拍得最成功的是()A.B.C.D.2.将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=120°,∠A=26°,则∠A′DB的度数是()A.100°B.104°C.108°D.112°3.(2020潜江模拟)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°4.(2019·广西北部湾)如图,在△ABC中AC=BC,∠A=40°,观察图中尺规作图的痕迹可知∠BCG的度数为()A. 40°B. 45°C.50°D.60°5.(2020大连)平面直角坐标系中,点P(3,1)关于x轴的对称的点的坐标是()A.(3,1)B.(3,−1)C.(−3,1)D.(−3,−1)6.(2020毕节)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长()A.13 B. 17 C. 13或17 D.13或107.(2020聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120° B. 130° C. 145° D.150°8.(2020武汉东西湖模拟)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条9.(2020成都一模)如图,△ABC中,∠ABC、∠ACB的平分线相交于O,MN过点O且与BC平行.△ABC的周长为20,△AMN的周长为12,则BC的长为()A.10 B.16 C.8 D.410.如图,在△ABC 中,AB =AC =11,∠BAC =120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点E ,则DF 的长为( )A .4.5B .5C .5.5D .611.(2020温州模拟)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角。

轴对称知识点概念总结

轴对称知识点概念总结

轴对称知识点概念总结一、轴对称的概念轴对称是指平面上的任意一点到某条直线的距离等于它的对称点到同一条直线的距离。

这条直线就称为轴对称的轴线。

在轴对称的变换中,图形关于轴线对称,即通过某条直线进行对称变换后,两个图形完全重合。

轴对称变换是一种保持图形形状和大小不变的变换,即如果原图形关于轴对称,则对称后的图形大小、形状和位置都不变。

在平面几何中,轴对称是指通过一条直线,将一个图形对称折叠,并使得折叠后的两部分完全重合。

在三维空间中,轴对称是指通过一个平面,将一个立体图形对称折叠,并使得折叠后的两部分完全重合。

而对于更高维度的空间,轴对称的概念也有相应的推广。

二、轴对称的性质1. 图形经过轴对称变换后仍然保持不变,即大小、形状和位置都不变。

2. 轴对称的轴线可取任意直线,轴对称的性质不随轴线的选取而改变。

3. 轴对称是一种对称变换,它保持了图形的对称性质。

4. 轴对称变换是一种保角变换,保持了图形的内角和外角不变。

5. 如果一个图形关于一条直线轴对称,那么它关于这条直线的对称轴线的对称关系也是轴对称的。

6. 如果两个图形分别关于两条无交点的直线轴对称,那么这两个图形的对称关系也是轴对称的。

7. 如果两个图形分别关于同一条直线轴对称,那么它们之间的对称关系也是轴对称的。

轴对称的性质是轴对称变换在数学、物理和工程等领域中应用的基础,是轴对称图形和轴对称函数等概念的重要基础。

三、轴对称的应用1. 在几何学中,轴对称是通过对称折叠和对称变换等方法,研究图形的性质、构造和证明等问题的基本手段。

2. 在物理学中,轴对称是通过对称抽象和对称分析等方法,研究物理系统的对称性、守恒律和相互作用等问题的基本工具。

3. 在工程学中,轴对称是通过对称设计和对称加工等方法,研究零件的制造、组装和检测等问题的基本技术。

4. 在数学分析和代数中,轴对称是通过对称函数和对称方程等方法,研究函数的性质、解的性质和对称结构等问题的基本手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 轴对称的性质(一)
一、课标要求:
通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。

二、教学目标:
1、知道线段的垂直平分线的概念,知道“成轴对称的两个图形全等,对称轴是对称
点连线的垂直平分线”等性质。

2、会画已知点关于已知直线的对称点,会画已知线段的对称线段,会画已知三角
形的对称三角形。

3、经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力
三、教学重点与难点
准确理解成轴对称的两个图形的基本性质并会简单应用这个基本性质解决一些实际问
题。

四、设计思路
本节课的设计主要让学生在经历画点、折纸、扎孔等操作活动的过程中,进一步体会轴对称的基本特征,并使学生清晰地观察到点和折痕之间的位置关系,以及对应线段之间的大小关系,从而引导学生得出线段垂直平分线的概念;然后由师生互动、生生互动,来说明图形的对称归根到底是点的对称,用同样的方法可以观察到对称的线段和对称的三角形与折痕的关系;最后让学生能从图形中直观地、自主地探索得到轴对称图形的两条基本性质。

五、教学过程
(一) 创设氛围,激发求知的欲望
情境一:提出问题――――上一节课我们研究了轴对称和轴对称图形的基本特征,并会找出它们的对称轴和成轴对称的两图形上的一些对称点。

试问:成轴对称的两个图形具有哪些
性质呢?它们的大小和位置有什么关系?
【设计说明:让学生温故而知新,从以前看过的图形中找出新的东西,激发学习兴趣;在解决问题中的过程中,创设学生们互相讨论,合作交流的氛围。


情境二:(给出一些图形图形)同学们,你们看这些图形美吗?为什么我们看这些图形会感觉特别的美呢?今天我们就来探索一下它们美的奥秘。

【设计说明:从美开始入手,提高孩子鉴赏美的能力,同时激发学生们探索新知的欲望。


(二) 展开活动,点燃探究新知的热情
活动一操作“画点、折纸、扎孔”。

【设计说明:这里其实就是课本中第10页的“画点、折纸、扎孔”操作,一定要让学生真正动手操作,同时教师要引导学生通过观察、分析、发现、归纳得出相应的结论,努力让学生用自己的语言说清道理:即折痕为什么垂直平分?课本中从轴对称的特性-----重合出发。

给了有根有据的说明,这有利于加强在活动中对学生进行有条理地说理和表达的训练。

】活动二继续进行“画点、折纸、扎孔”的操作活动,自主探索成轴对称的线段、三角形的
性质。

【设计说明:提高学生的合作学习意识,由“学数学”向“做数学”过渡,重在提高学生“做数学”
的兴趣和能力。


问题1 图1-8(2)中,线段与有什么关系? 与呢?线段与有什么关系? 与呢?说说
你的理由。

问题2 图1-8(2)中, 与有什么关系? 与呢? 与有什么关系?为什么?
问题3 轴对称有哪些性质?
【设计说明:连续不断的提问使问题不断的深化,促使学生不断的思考,点燃学生探究的热情,让学生感受教材、解决问题的过程中增加自信,合理的进行思考和讨论是解决这一串问题的关键。


(三) 例题示范,加速新知的领悟进程
例题1 用针扎重叠的纸得到下面关于成轴对称的两个图案: (1) 找出它的两对对称点,两条对称线段;
用测量的方法验证你找到的对称点所连线段被对称轴垂直平分。

相关文档
最新文档