八年级数学下册第一章知识点

合集下载

北师大版八年级数学(下)第一章 等腰三角形

北师大版八年级数学(下)第一章 等腰三角形

1.1等腰三角形一、知识点梳理1.等腰三角形的性质定理:①等腰三角形的两底角相等(等边对等角)②等腰三角形的两腰相等(定义)③等腰三角形等角的平分线、底边上的中线及地边上的高线互相重合(三线合一)2.等边三角形的性质定理:①等边三角形的三条边都相等②等边三角形的三个内角都相等,并且每个角都等于60°3.等腰三角形的判定定理:①有两条边相等的三角形是等腰三角形(定义)②有两个角相等的三角形是等腰三角形(等角对等边)4.等边三角形的判定定理:①三条边都相等的三角形是等边三角形(定义)②三个角都相等的三角形是等边三角形③有一个角等于60°的等腰三角形是等边三角形5.反证法:证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法成为反证法。

6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

7.直角三角形斜边的中线等于斜边的一半8.作图要求:掌握尺规作图用两条已知线段做等腰三角形二、经典题型总结题型一:利用等腰三角形的性质求角题型二:利用等腰三角形的性质求线段长度题型三:用反证法证明简单证明题题型四:利用等腰三角形的判定定理进行证明题型五:动点与等腰三角形题型题型六:与等腰三角形相关的综合提升题三、解题技巧点睛1.在做等腰三角形类问题时可以随时“标图”,把相等的角或者相等的边用相同的小符号标注,便于我们清晰的读图。

2.若题目中需要证明两条线段相等,通常会想到:①两条线段所在的两个三角形“全等”②两条线短可以平移为某个“等腰三角形”的两个腰3.在图形中如果涉及到求边长问题,我们通常首先想到:根据欲求边构建直角三角形运用“勾股定理”4.在求角度的题目中,若思路不清晰,则本着两个计算原则去列式:①三角形内角和等于180°②三角形的外角等于与它不相邻的两个内角的和5.特别注意几个特殊角:75°、105°、120°、135°、150°,若图形题中出现了这几个特殊角并且涉及到求线段,则很有可能需要我们做辅助线把75°角分成45°角和30°角;而把105°角分成60°角和45°角;把120°角分成90°角和30°角或两个60°角;把135°角分成90°角和45°角;把150°角分成90°角和60°角。

人教版八年级下册数学课本

人教版八年级下册数学课本

人教版八年级下册数学课本第一章:实数1.1 实数的概念和性质1.2 实数的运算1.3 实数的应用第二章:一元一次方程2.1 一元一次方程的概念2.2 一元一次方程的解法2.3 一元一次方程的应用第三章:不等式3.1 不等式的概念3.2 一元一次不等式的解法3.3 一元一次不等式的应用第四章:二元一次方程组4.1 二元一次方程组的概念4.2 二元一次方程组的解法4.3 二元一次方程组的应用第五章:一次函数5.1 一次函数的概念5.2 一次函数的图像5.3 一次函数的应用第六章:平行线与相交线6.1 平行线的性质6.2 相交线的性质6.3 平行线与相交线的应用第七章:三角形7.1 三角形的性质7.2 三角形的全等7.3 三角形的相似7.4 三角形的应用第八章:四边形8.1 四边形的性质8.2 四边形的全等8.3 四边形的相似8.4 四边形的应用第九章:圆9.1 圆的性质9.2 圆的全等9.3 圆的相似9.4 圆的应用第十章:概率与统计10.1 概率的概念10.2 概率的计算10.3 统计的基本概念10.4 统计的应用第十一章:立体几何11.1 立体几何的基本概念11.2 立体几何的计算11.3 立体几何的应用第十二章:解析几何12.1 解析几何的基本概念12.2 解析几何的计算12.3 解析几何的应用第十三章:数列13.1 数列的概念13.2 等差数列13.3 等比数列13.4 数列的应用第十四章:函数14.1 函数的概念14.2 函数的图像14.3 函数的应用第十五章:不等式组15.1 不等式组的概念15.2 不等式组的解法15.3 不等式组的应用第十六章:反比例函数16.1 反比例函数的概念16.2 反比例函数的图像16.3 反比例函数的应用第十七章:二次函数17.1 二次函数的概念17.2 二次函数的图像17.3 二次函数的应用第十八章:勾股定理18.1 勾股定理的概念18.2 勾股定理的证明18.3 勾股定理的应用第十九章:统计与概率19.1 统计的基本概念19.2 概率的基本概念19.3 统计与概率的应用第二十章:数学建模20.1 数学建模的概念20.2 数学建模的方法20.3 数学建模的应用人教版八年级下册数学课本的内容涵盖了实数、一元一次方程、不等式、二元一次方程组、一次函数、平行线与相交线、三角形、四边形、圆、概率与统计、立体几何、解析几何、数列、函数、不等式组、反比例函数、二次函数、勾股定理、统计与概率以及数学建模等知识点。

苏科版八下数学第一章

苏科版八下数学第一章

苏科版八下数学第一章第一章:图形的认识一、图形的概念图形在我们生活中无处不在,从日常生活中的各种物体到数学课本中的各种图形,都能见到图形的存在。

图形是由一条或多条线段组成的形状,根据线段的不同排列方式,可以分成不同的种类,如直线、封闭图形等。

二、图形的分类1. 直线:直线是由无限多个点构成的,延伸方向上不会结束的线段。

直线有无数种不同的形态,如水平直线、垂直直线等。

2. 封闭图形:封闭图形是由若干个线段组成的,形成一个封闭的区域,如三角形、矩形、圆等。

3. 多边形:多边形是指由若干个边和角组成的图形,最常见的多边形有三角形、四边形、五边形等。

4. 圆形:圆形是一个封闭的形状,由一个圆心和一条半径构成,圆形有无限多个点,且所有点到圆心距离相等。

5. 弧形:弧形是圆周上的一部分,由圆心、半径和夹角决定,弧形可以分为圆弧、扇形等。

三、图形的性质1. 直线的性质:直线有方向性,可以上下左右斜向任意延伸,直线上的所有点到另一点的距离相等。

2. 封闭图形的性质:封闭图形的周长是各边的长度之和,面积是图形内部的面积,封闭图形底部和高的关系可以用来计算面积。

3. 多边形的性质:多边形的周长是各边的长度之和,多边形的面积可以通过划分成小三角形、矩形等简单图形,然后计算各个简单图形的面积最后求和得到。

4. 圆形的性质:圆的周长是圆周长,面积是圆的内部面积,圆弧、扇形的问题可以通过角度和半径关系来计算。

综上所述,图形是数学中重要的概念之一,通过对图形的认识和性质的了解,可以更好地应用数学知识解决实际问题。

在学习数学的过程中,要注重对图形的认知和理解,提高解决问题的能力和思维水平。

八年级下册数学知识点总结归纳

八年级下册数学知识点总结归纳

⼋年级下册数学知识点总结归纳 为了⽅便同学们进⾏2020年中考数学考试复习备考,下⾯是⼩编为⼤家整理的关于⼋年级下册数学知识点总结,希望对您有所帮助。

欢迎⼤家阅读参考学习! 第1章分式 ⼀.知识框架 ⼆.知识概念 1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。

其中A叫做分式的分⼦,B叫做分式的分母。

2.分式有意义的条件:分母不等于0 3.约分:把⼀个分式的分⼦和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这⼀过程叫做通分。

分式的基本性质:分式的分⼦和分母同时乘以(或除以)同⼀个不为0的整式,分式的值不变。

⽤式⼦表⽰为:A/B=A_/B_ A/B=A÷C/B÷C (A,B,C为整式,且C≠0) 5.最简分式:⼀个分式的分⼦和分母没有公因式时,这个分式称为最简分式.约分时,⼀般将⼀个分式化为最简分式. 6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分⼦相加减.⽤字母表⽰为:a/c±b/c=a±b/c 2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进⾏计算.⽤字母表⽰为:a/b±c/d=ad±cb/bd 3.分式的乘法法则:两个分式相乘,把分⼦相乘的积作为积的分⼦,把分母相乘的积作为积的分母.⽤字母表⽰为:a/b _c/d=ac/bd 4.分式的除法法则:(1).两个分式相除,把除式的分⼦和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc (2).除以⼀个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b_/c 7.分式⽅程的意义:分母中含有未知数的⽅程叫做分式⽅程. 8.分式⽅程的解法:①去分母(⽅程两边同时乘以最简公分母,将分式⽅程化为整式⽅程);②按解整式⽅程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式⽅程化为整式⽅程的过程中,扩⼤了未知数的取值范围,可能产⽣增根). 分式和分数有着许多相似点。

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。

一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。

定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。

基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。

八年级下册数学北师大版第一章

八年级下册数学北师大版第一章

八年级下册数学北师大版第一章1. 中心对称定义:如果一个图形绕某一点旋转180度,能与另一个图形重合,则这两个图形为中心对称图形。

性质:中心对称图形必定是旋转180度后重合的图形。

2. 中心对称图形定义:一个图形绕某一点旋转180度能够与自身重合,则这个图形叫做中心对称图形。

性质:中心对称图形的所有点都关于某一点对称。

3. 轴对称与轴对称图形定义:如果一个图形沿着某条直线对折,两侧的图形能完全重合,则这个图形称为轴对称图形。

性质:轴对称图形的对称轴两侧的图形是全等的。

4. 轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

如果两个图形关于某直线对称,那么它们的对应线段(或延长)相等。

如果两个图形关于某直线对称,那么它们的对应角相等。

5. 全等三角形定义:两个三角形能够完全重合,则这两个三角形称为全等三角形。

性质:全等三角形的对应边相等,对应角相等。

6. 三角形全等的判定边边边(SSS):如果两个三角形的三边分别相等,那么这两个三角形全等。

边角边(SAS):如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等。

角边角(ASA):如果两个三角形的两角及其夹边分别相等,那么这两个三角形全等。

角角边(AAS):如果两个三角形的两角及其对边分别相等,那么这两个三角形全等。

7. 直角三角形全等的判定斜边直角边(HL):如果两个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等。

8. 角的平分线性质角的平分线上的点到这个角的两边的距离相等。

9. 平行四边形定义:两组相对边平行或相等的四边形叫做平行四边形。

性质:对边平行、对角相等、对角线互相平分。

10. 矩形、菱形、正方形定义:有一个角是直角的平行四边形叫做矩形;一组邻边相等的平行四边形叫做菱形;有一个角是直角的菱形叫做正方形。

性质:矩形、菱形、正方形都是特殊的平行四边形,它们都具有平行四边形的所有性质,此外还有各自特殊的性质。

初二数学下册知识点归纳

初二数学下册知识点归纳

初二数学下册知识点归纳初二数学下册知识点归纳篇1第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分数的乘除乘定律:分数乘以分数,分子的乘积作为乘积的分子,分母的乘积作为乘积的分母。

除法定律:分数被分数除,除数的分子和分母颠倒后,再乘以除数。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;在同一个底边上有两个等角的梯形是等腰梯形。

初二数学下册全部知识点

初二数学下册全部知识点

数学八年级下册全册知识点汇总(北师大版)第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

八年级下数学第一章(三角形的证明)-讲义

八年级下数学第一章(三角形的证明)-讲义

知识点一全等三角形的性质及判定1、全等三角形的对应边相等、对应角相等。

2、判定两三角形全等的方法有:SSS、SAS、AAS、ASA、HL。

例:如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?知识点二等腰三角形的性质和判定1、等腰三角形的两个底角相等(简称“等边对等角”)2、等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,简称“三线合一”。

3、等腰三角形两腰上的中线、两腰上的高、两底角的平分线长度均相等。

4、有两个角相等或两条边相等的三角形是等腰三角形。

例:已知等腰三角形一腰上的高与另一腰的夹角是50º,则这个等腰三角形的底角是。

例:在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个三角形周长分为15和12两部分,则这个等腰三角形的底边长。

例:如图,在ABA 1中,∠B=20º,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C 上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为。

知识点三等边三角形的性质和判定1、三条边都相等的三角形是等边三角形。

2、三个角都相等,且都等于60º.3、有一个角等于60º的等腰三角形是等边三角形;三个角或三条边都相等的三角形是等边三角形。

例:如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.M C B A 例:如图1,已知:∠MON=30º,点A 1、A 2、A 3……在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为 .图1 图2例:如图2,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60º,得到△BAE ,连接ED ,若BC=10,BD=9,则△AED 的周长是 。

湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

感悟新知
知1-练
解题秘方:利用直角三角形的性质与判定证明即可 .
证明: ∵∠ ACB=90°,∴∠ A+ ∠ B=90° . ∵∠ ACD= ∠ B,∴∠ A+ ∠ ACD=90° . ∴△ ACD 为直角三角形,且∠ CDA=90° . ∴ CD ⊥ AB.
感悟新知
拓展 满足下列条件的三角形也是直角三角形: (1)在三角形中,两个内 角之和等于第三个内角; (2)在三角形中,两个内角之差等于第三个内角.
知2-讲
感悟新知
特别提醒
知2-讲
◆直角三角形斜边上的中线把直角三角形分成两个
面积相等的等腰三角形.
◆应用这个性质时要注意“直角三角形” 这一前提,
切不可忽略这一前提而在其他任意三角形中生搬
硬套 .
感悟新知
知2-讲
2. 拓展:如果三角形一边上的中线等于这条边的一半,那么 这个三角形是直角三角形 . 数学语言: 如图 1.1-5,在△ ABC 中,
∵ CD=BD=AD=12 AB, ∴∠ ACB=90°,即△ ABC 是直角三角形 .
感悟新知
知2-练
例4 如图 1.1-6, BD, CE 是△ ABC 的两条高, M, N 分别是 BC, DE 的中点 . 求证: MN ⊥ DE.
感悟新知
知2-练
解题秘方:紧扣“N 为 DE 的中点”这一条件和 “MN ⊥ DE”这一结论,建立等腰三 角形“三线合一”模型, 结合直角三 角形斜边上中线的性质求解 .
在 Rt △ CDB 中,∵ M 为斜边 BC 的中点,

DM=
1 2
BC.

Rt

BEC
中,∵
M

八年级下册数学目录

八年级下册数学目录

八年级下册数学目录第一章代数与方程1.1 一元一次方程1.1.1 解一元一次方程的基本步骤1.1.2 一元一次方程的应用1.2 平方根与二次根式1.2.1 平方根的性质1.2.2 二次根式的性质1.2.3 平方根与二次根式的应用1.3 二次方程1.3.1 标准形式二次方程的解法1.3.2 一元二次方程的判别式1.3.3 二次方程的应用1.4 不等式与不等关系1.4.1 一元一次不等式的解集与图像1.4.2 二次不等式的解集与图像 1.4.3 不等关系的性质及应用第二章几何2.1 三角形与相似2.1.1 三角形的性质与分类2.1.2 相似三角形的判定条件2.1.3 相似三角形的性质应用2.2 二次根式与勾股定理2.2.1 直角三角形与勾股定理2.2.2 二次根式与勾股定理的应用2.3 圆的基本性质2.3.1 圆的定义与基本术语2.3.2 圆心角与弧度制2.3.3 角平分线与弦的性质2.3.4 弧长与扇形面积计算2.4 平移、旋转和翻转2.4.1 平移的定义与平移变换2.4.2 旋转的定义与旋转变换2.4.3 翻转的定义与翻转变换2.4.4 平移、旋转和翻转的组合变换第三章数据与统计3.1 连续统计3.1.1 连续统计的基本概念3.1.2 频率直方图的制作与解读3.1.3 频率分布表的制作与解读3.1.4 数据的分析与统计3.2 课题研究与折线图3.2.1 课题研究的提出与设定3.2.2 折线图的制作与解读3.2.3 数据的比较与分析3.3 概率与事件3.3.1 实验、样本空间和事件的定义 3.3.2 随机事件的概率计算3.3.3 事件的相互关系与应用3.4 等可能性与互斥事件3.4.1 样本空间的等可能性3.4.2 互斥事件的概率计算3.4.3 等可能性与互斥事件的应用第四章分析与应用4.1 函数的概念4.1.1 函数的定义与性质4.1.2 函数的表示与应用4.2 函数的图像与变换4.2.1 函数图像的基本性质4.2.2 函数的平移与翻转4.2.3 函数的伸缩与压缩4.3 线性函数与一次函数4.3.1 线性函数与斜率的关系4.3.2 一次函数的图像与性质4.3.3 一次函数的应用4.4 指数与对数函数初步4.4.1 指数函数的概念与性质4.4.2 对数函数的概念与性质4.4.3 指数函数与对数函数的应用总结通过本教材的学习,学生将对八年级下册数学的重要知识点进行全面的了解和掌握。

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。

每章节都包括基本概念、计算方法和应用场景等内容。

阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。

八下数学第一章知识点总结

八下数学第一章知识点总结

八下数学第一章知识点总结第一章等比数列等比数列是指一个数列中,任意相邻两项的比等于同一个固定的非零数的数列。

即对于数列 {an},如果存在一个常数 q ,使得任意的正整数 n ,都有 an = an-1 * q ,那么 {an} 就是一个等比数列。

1. 等比数列的通项公式对于等比数列 {an},若首项为 a1,公比为 q,则 {an} 的通项公式可表示为 an = a1 * q^(n-1) 。

2. 等比数列的性质(1)等比数列的任意三项间的关系对于等比数列 {an},若 a1,a2,a3 为数列中的三项,则有 a2/a1 = a3 / a2 = q 。

(2)等比数列的前n项和公式对于等比数列 {an},其前 n 项和 Sn 可表示为 Sn = a1 * (q^n - 1) / (q - 1) 。

3. 等比数列应用等比数列在数学中有着广泛的应用,尤其是在工程、金融、物理等领域。

例如在金融领域,利率为一定比例的等比数列,而在物理领域,许多自然现象的规律也可以用等比数列来描述。

第二章平面直角坐标系中的直线1. 直线的方程平面上的一条直线可以用方程 y = kx + b 来表示,其中 k 为直线的斜率,b 为直线在 y 轴上的截距。

当直线与 x 轴相交时,直线的方程可表示为 y = 0x + b ,即 y = b 。

2. 直线的性质(1)斜率直线的斜率 k 定义为直线上任意两点的纵坐标之差与横坐标之差的比值,即 k = (y2 - y1) / (x2 - x1) 。

(2)截距直线在 y 轴上的截距 b 定义为直线与 y 轴的交点的纵坐标值。

3. 直线的平行和垂直关系若两条直线的斜率相等,则它们平行;若两条直线的斜率乘积为 -1,则它们垂直。

第三章不等式1. 绝对值不等式对于实数 a,其绝对值表示为 |a| ,且有如下性质:(1)|a| ≥ 0 ,且 |a| = 0 当且仅当 a = 0 ;(2)|ab| = |a| * |b| ;(3)|a + b| ≤ |a| + |b| 。

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。

八年级下册数学全章知识点

八年级下册数学全章知识点

八年级下册数学全章知识点八年级下册数学包括7个章节:利用数据统计、平面图形的认识、角的认识、三角形的认识、相似形的认识、比例和文字题及解方程。

下面将逐一介绍每个章节的知识点。

一、利用数据统计1. 数据的集中趋势数据的中位数、众数、平均数及其间的关系。

2. 数据的分散程度数据的极差、四分位数及其间的关系。

3. 经验概率试验次数较多时,事件发生的频率近似为一定值,即经验概率。

用频率估计概率的方法。

二、平面图形的认识1. 相似和全等的概念图形的相似、全等、对称及轴对称。

2. 平面直角坐标系平面直角坐标系的建立,坐标、向量的概念及其坐标表示法。

3. 平面图形的坐标表示法平面图形的坐标表示法,直线的方程及其应用。

三、角的认识1. 角的基本概念角的定义、度数、正弦、余弦、正切的概念及其应用。

2. 角的比较大小角度的比较,角度的加减、乘除及其应用。

四、三角形的认识1. 三角形的基本概念三角形的定义、分类、特殊角和特殊边。

2. 三角形的面积三角形面积公式及其应用。

五、相似形的认识1. 相似形的基本概念相似的概念及其性质。

2. 图形的相似变换由相似的概念引入“相似变换”的概念。

六、比例和文字题1. 比例的基本概念比例的定义,比例例题的求解方法。

2. 文字题的常见解法小学常见的问题以及解决方法。

七、解方程1. 解一次方程一元一次方程的定义及解题方法。

2. 解方程的应用应用题的分析和解答方法。

以上就是八年级下册数学全章的知识点。

当然,这只是一份简要的概述,各个知识点都有很多细节需要掌握,希望同学们能够认真学习,踏实练习,从基础打好数学的基础,为未来的发展打下坚实的基础。

八年级下册数学第一章知识点总结

八年级下册数学第一章知识点总结

八年级下册数学第一章知识点总结数学是一门需要用心学习的学科,而八年级下册数学第一章则是数学学习中最基础的知识点之一。

这一章主要涉及整式的基本知识和运算、多项式的因式分解等内容。

以下是对这些知识点的详细总结。

一、整式的基本知识和运算1、整式整式是指由常数、变量和它们的乘积、积和次数的和构成的一种代数式,例如:2a²b+3ab²+c。

2、同类项同类项指拥有相同变量和次数的项,例如:2a²b和3a²b就是同类项。

3、加法运算对于相同的变量和次数,将系数相加即可,例如:2a²b+3a²b=5a²b4、减法运算减法运算可以转化为加法运算,例如:2a²b-3a²b=2a²b+(-3a²b)=-a²b5、乘法运算可以利用乘法分配律来进行运算,例如:(2a+3)(4a-5)=8a²-10a+12a-15=8a²+2a-156、除法运算由于整式没有除法的定义,因此我们一般将它们转化为分数来进行运算。

二、多项式因式分解1、多项式多项式是指由多个单项式相加或相乘而成的代数式。

例如:3x²+6x+92、因式分解因式分解是将一个多项式表示成若干个单项式的乘积。

例如:3x²+6x+9=3(x²+2x+3)3、试除法试除法是一种将多项式分解的方法,它的步骤是:先找到一个能够整除多项式的单项式,然后将这个单项式除以多项式中的单项式,最后将其余部分继续进行分解。

4、公式法公式法是将多项式运用到一般公式中去,从而达到分解的目的。

例如:完全平方公式就可以用于分解形如 a²-2ab+b²的多项式。

以上就是八年级下册数学第一章的全部知识点。

如果想要更好地掌握这些知识,不仅需要认真学习课本,而且还要多做习题,加深对知识点的理解,从而提高自己的数学水平。

八年级下册数学各章节知识点总结

八年级下册数学各章节知识点总结

八年级下册数学各章节知识点总结第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c bc a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为a bx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b) 一元一次不等式解集 图示叙述语言表达⎩⎨⎧>>b x ax x>bba 两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找 ⎩⎨⎧><bx ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。

八下数学第一章知识点总结

八下数学第一章知识点总结

八下数学第一章知识点总结In the first chapter of eighth grade mathematics, the key points include numerical computation, prime factorization, and number system conversion.在八年级数学的第一章中,重点包括数字计算、素因数分解和数制转换。

Numerical computation involves addition, subtraction, multiplication, and division of whole numbers, integers, fractions, and decimals. It also includes calculating percentages, ratios, and proportions.数字计算涉及整数、整数、分数和小数的加法、减法、乘法和除法。

它还包括计算百分比、比率和比例。

Prime factorization is the process of breaking down a composite number into its prime factors. This is important for simplifying fractions and finding the greatest common factor of numbers.素因数分解是将合数分解成其素因数的过程。

这对于简化分数和找到数的最大公因数至关重要。

Number system conversion involves understanding and converting between different number systems, such as decimal, binary, octal,and hexadecimal. This is important for computer science and understanding how different systems represent numbers.数制转换涉及理解和转换不同的数制,比如十进制、二进制、八进制和十六进制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第一章复习要点
重点、难点:
重点:有平方根、立方根的概念及意义和点的坐标。

难点:平方根、立方根等概念的理解、简单实数运算及无理数大小的比较。

一、知识框架图:
二、重要知识点
一)、知识点提示:
1、平方根、算术平方根、立方根、无理数、实数等概念的理解,举例说明。

2、实数怎样分类?
3、如何在产面直角坐标系中,说出点的坐标及根据坐标找点。

4、在实数范围内找一个数的绝对值、倒数、相反数、及各种运算的运算顺序。

二)知识点
平方根:
1、概念:如果有一个数r,使得a
r=2,那么我们把r叫作a的一个平方根。

①、一个正数的平方根有两个,它们互为相反数; ②、负数没有平方根;
③、0的平方根有且只有一个(它就是0)
④、a的正平方根叫作a的算术平方根,记作a
2、求一个非负数的平方根,叫作开平方。

一个正.数先开平方再2次方等于它本身;
一个正.数先2次方再开平方也等于它本身。

立方根
1、概念:如果有一个数b,使得a
b=2,那么我们把b叫作a的一个立方根。

①、一个正数有一个立方根,它是正数;②、负数有一个负的立方根;
③、0的平方根有且只有一个(它就是0)
④、a的立方根记作3a。

2、求立方根号a,叫作开立方。

一个数先开立方再3次方等于它本身;
一个数先3次方再开立方也等于它本身。

实数:
1、有理数和无理数统称为实数。

2、实数的分类
3、数轴上的点与实数一一对应。

4、实数大小的比较。

无理数:无限不循环小数。

有效数字:从左边第一个不为0的数字起,到时精确到的数位止共有几个数
字则这个数的有效数字就是几位。

平而直角坐标系:
1、能写出点的坐标和根据点的坐标描点。

2、 关于y 轴的轴反射公式:(x 的坐标不变,y 坐标变为它的相反数)
3、 关于x 轴的轴反射公式:(x 的坐标变为它的相反数,y坐标不变)
4、 平移公式:左右平移则x 的坐标值减小或增加,上下平移则y的坐标增加或减小。

5、 会用方位角和距离描述点的位置。

6、 平面直角坐标系上的点与有序实数对一一对应。

第一章复习题
一、填空题:(本题共10小题,每小题2分,共20分)
1、4的平方根是________,算术平方根是_________,81的算术平方根是_________。

2、点A到x 轴的距离为2,到y 轴的距离是1,则A 点坐标是=________。

3、坐标平面上的点与一一对应,数轴上的点与一一对应。

4、8的立方根是_________。

-8的立方根是_________。

5、3233-=_________。

6、近似数0.03050有______个有效数字。

7、一个正数有______个平方根,它们______________。

8、22=________,2
)2(-=_________。

9、列举三个无理数=________。

10、点(1,-2)关于x 轴的轴反射点的坐标是____,关于y 轴的轴反射点的坐标___。

二、选择题:(本题共10小题,每小题3分,共30分) 11、一个数的平方等于它本身,这个数是( )。

A 、 0 B、0和1 C 、-1和1 D 、0和-1
12、41
的算术平方根是( )。

A、 161 B 、21 C 、21- D 、2
1
±
13下列说法正确的是…………………………………………()
A 有理数只是有限小数
B 无理数是无限小数
C 无限小数是无理数 D 3
π
是分数 14、下列式子中,无意义的是( )。

A 、3- B 、3- C 、
()23-
D 、33
1-
15、16的平方根是( )。

A 、4
B 、±4
C 、2
D 、±2
16、如果一个数的立方根等于它本身,这个数是( )。

A、0,±1 B 、0 C、1 D 、-1 17、下列结论中正确的是………………………………()
A 数轴上任一点都表示唯一的有理数
B 数轴上任一点都表示唯一的有理数
C 两个无理数之和一定是无理数
D 数轴上任意两点之间还有无数个点 18、
-27
A 0
B 6 C 0 或-6 D -12或6 19、给出四个数,2,3 ,3.14,π其中无理数共有( )。

A 、1个
B 、2个
C 、3个
D 、4个 20、下列叙述正确的是( )。

A 、正数的平方根不可能是负数
B 、无限小数是无理数
C 、实数与数轴上的点一一对应 D、带根号的数是无理数
三、解答题:(本题共5小题,每小题6分,共30分) 21、64
17
1
22、()23--
23、计算(保留三位有效数字)
23、27.65+0.02856-3.41424、25x 2
-49=0
25、25x2-49=026、(x-2)3+0.216=027、(x+1)2-0.01=0
28、估算与5最接近的两个整数。

四、综合应用:(本题共2小题,每小题10分,共20分)
29、如图△ABC:
1)、写出△ABC的三个顶点A、B、C的坐标。

2)、画出△ABC在关于y轴的轴反射下的象△DEF。

相关文档
最新文档