2014年高考真题解析分类汇编纯word可编辑-数学理-L单元 算法初步与复数
(word完整版)2014年高考全国卷1理科数学试题及答案-(word版),推荐文档
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I 卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效 3. 回答第n 卷时,将答案写在答题卡上,答在本试题上无效 4. 考试结束,将本试题和答题卡一并交回•第I 卷•选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 2已知集合A={ x |x 2x 30} , B={ x | — 2< x V 2=,则 A B =2. 3. A .[-2,-1]C .[-1,1]D .[1,2)(1 i)3 (1 i)2A .1 iB .1 iC .D . 1 i设函数f(x) , g(x)的定义域都为 R , 且f (x)时奇函数,g(x)是偶函数,则下列结论正确的是A . f (x) g(x)是偶函数B .| f (x) |g(x)是奇函数C . f (x) |g(x) |是奇函数D .| f (x) g(x)是奇函数 4.已知F 是双曲线C : x 2 my 2 3m(m 0)的一个焦点,则点 F 到C 的一条渐近线的距离为A . 3B .3C . ■3mD . 3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率AlB .8 C.86.如图,圆 O 的半径为1, A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线 OP ,过点P 作直线OA 的垂线,垂足为 M , 将点M 至U 直线OP 的距离表示为x 的函数f (x),贝U y = f (x)在[0,]上的图像大致7 5A .B .C .3D .22 21,若f (x)存在唯一的零点x °,且x ° >0,则a 的取值范围为A . (2, +s)B . (-g, -2)C . (1, +s)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为a,b,k 分别为1,2,3,则输出的 AB .C .352(o‘2),(0,—),且 tanA ■ 3B .22C .3-D .215』,则cos9.不等式组y 2y 的解集记为 4D •有下面四个命题:Pi:(x,y) D,x 2y 2,P 2 :(x,y) D,x 2y 2 B :(x, y) D, x 2y 3, P 4 :(x,y)D, x 2y其中真命题是A . p 2, l~3B . P 1, P 4C . P 1, P 2D . P 1,P 310.已知抛物线C : UUUT4FQ , Q 是直线PF 与C 的一个焦点,uuu 若FP 则 | QF |= 3211.已知函数f(x)=ax 3x若输入的7.执行下图的程序框图,8.设 F ,准线为,P 是I 上一点,y 28x 的焦点为A.6 2 B .4 2 C.6 D .4本卷包括必考题和选考题两个部分。
2014年高考真题——理科数学(全国大纲卷)解析版 Word版含解析
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设103i z i=+,则z 的共轭复数为 ( )A .13i -+B .13i --C .13i +D .13i -2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =I ( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-3.设sin 33,cos55,tan 35,a b c =︒=︒=︒则 ( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>4.若向量,a b r r 满足:()()1,,2,a a b a a b b =+⊥+⊥r r r r r r r 则b =r ( )A .2B .2C .1D .225.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F 3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43C 的方程为 ( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=7.曲线1x y xe-=在点(1, 1)处切线的斜率等于( ) A .2e B .e C .2 D .18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( )A .814πB .16πC .9πD .274π 【答案】A .【解析】考点:1.球的内接正四棱锥问题;2. 球的表面积的计算.9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( )A .14B .13C .24D .23 10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )图2A .6B .5C .4D .311.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 ( )A .14B 2C 3D .12【答案】B.【解析】12.函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 8y x 的展开式中22x y 的系数为 . 【答案】70.14.设,x y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为.15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 .2l的夹角的正切值:12124 tan13k kk kθ-==+.考点:1.直线与圆的位置关系(相切);2.两直线的夹角公式.16.若函数()cos2sinf x x a x=+在区间(,)62ππ是减函数,则a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)ABC∆的内角A,B,C的对边分别为a,b,c,已知3cos2cosa C c A=,1tan3A=,求B.18. (本小题满分12分)等差数列{}na的前n项和为nS,已知110a=,2a为整数,且4nS S≤.(I )求{}n a 的通项公式; (II )设11n n n b a a +=,求数列{}n b 的前n 项和n T . 19. (本小题满分12分) 如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===. (I )证明:11AC A B ⊥; (II )设直线1AA 与平面11BCC B 31A AB C --的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3人需使用设备的概率;(II)X表示同一工作日需使用设备的人数,求X的数学期望.21.(本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (I )求C 的方程;(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【答案】(I )24y x =;(II )直线l 的方程为10x y --=或10x y +-=.22. (本小题满分12分)函数()()()ln 11ax f x x a x a=+->+. (I )讨论()f x 的单调性;(II )设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+. 【答案】(I )(i )当12a <<时,()f x 在()21,2a a --上是增函数,在()22,0a a -上是减函数,在()0,+∞上是增函数;(ii )当2a =时,()f x 在()1,-+?上是增函数;(iii )当2a >时,()f x 在是()1,0-上是增函数,在()20,2a a -上是减函数,在()22,a a -+∞上是增函数;(II)详见试题分析.1n k=+时有2333kak k<?++,结论成立.根据(i)、(ii)知对任何n N*Î结论都成立.考点:1.利用导数研究函数的单调性;2.利用数学归纳法证明数列不等式.。
2014年高考真题——理科数学(全国大纲卷)精校版 Word版含解析(2014高考)
2014年普通高等学校统一考试(大纲)理科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设103iz i=+,则z 的共轭复数为 ( )A .13i -+B .13i --C .13i +D .13i - 【答案】D .2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]- 【答案】B.3.设sin33,cos55,tan35,a b c =︒=︒=︒则 ( )A .a b c >>B .b c a >>C .c b a >>D .c a b >> 【答案】C .4.若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( )A .2BC .1D .2【答案】B .5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种 【答案】C .6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为 ( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 【答案】A .7.曲线1x y xe -=在点(1,1)处切线的斜率等于 ( )A .2eB .eC .2D .1 【答案】C .8.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814πB .16πC .9πD .274π【答案】A .9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( )A .14 B .13 C .4 D .3【答案】A .10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3 【答案】C .11.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为( )A .14 B.4C.4 D .12 【答案】B.12.函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =-- 【答案】D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.8⎛⎫的展开式中22x y 的系数为 .(用数字作答) 【答案】70.14.设,x y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5.15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 . 【答案】43. 16.若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 . 【答案】(],2-∞.三、解答题 :解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知3cos 2cos a C c A =,1tan 3A =,求B .解:由题设和正弦定理得13sin cos 2sin cos ,3tan cos 2sin .tan ,cos 2sin ,3A C C A A C C A C C =\==\= ()()1tan tan tan ,tan tan 180tan 1,2tan tan 1A C CB AC A C A C +轾\=\=?+=-+==-臌-又0180,135B B?<癨? .18. (本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤. (I )求{}n a 的通项公式; (II )设11n n n b a a +=,求数列{}n b 的前n 项和n T . 解:(I )由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数.又4n S S ≤,故450,0,a a ≥≤于是1030,1040d d +≥+≤,解得10532d -#-,因此3d =-,故数列{}n a 的通项公式为133n a n =-.(II )()()11111331033103133n b n n n n ⎛⎫==- ⎪----⎝⎭,于是()12111111111137104710313331031010103n n n T b b b n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥----⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(I )证明:11AC A B ⊥;(II )设直线1AA 与平面11BCC B 1A AB C --的大小.1解:解法一:(I )1A D ^平面ABC ,1A D Ì平面11AA C C ,故平面11AA C C ^平面ABC .又BC AC ^,BC \^平面11AA C C .连结1A C ,∵侧面11AA C C 为菱形,故11AC AC ^,由三垂线定理得11AC A B ^;(II )BC ^平面11,AAC C BC Ì平面11BCC B ,故平面11AA C C ^平面11BCC B .作11,A E CC E ^为垂足,则1A E ^平面11BCC B .又直线1AA ∥平面11BCC B ,因而1AE 为直线1AA 与平面11BCC B 的距离,1A E=1A C 为1ACC Ð的角平分线,故11A D A E ==.作,DF AB F ^为垂足,连结1A F ,由三垂线定理得1A F AB ^,故1AFD Ð为二面角1A ABC --的平面角.由1AD =得D 为AC 的中点,111tan 2A DAC BCDF A FD AB DF´=??=∴二面角1A AB C --的大小为1解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 长为单位长,建立如图所示的空间直角坐标系C xyz -.由题设知1A D 与z 轴平行,z 轴在平面11AA C C 内. (I)设()1,0,A a c,由题设有()()2,2,0,0,0,1,a A B £则()()()()()11112,1,0,2,0,0,2,0,,4,0,,,1,.AB AC AA a c AC AC AA a c BA a c =-=-=-=+=-=-由12AA =得2,即2240a a c -+=(①).于是22111140,AC BA a a c AC A B ?-+=\^.(II )设平面11BCC B 的法向量(),,,m x y z =则1,,m CB m BB ^^即10,0m CBm BB ??.()0,1,0,CB =()112,0,,BB AA a c ==-故0y =,且()20a x cz -+=.令x c =,则()2,,0,2z a m c a =-=-,点A到平面11BCC B 的距离为c o s ,C A m C A mC A c m×?==.又依题设,点A 到平面11BCC B的距离为,c \=3a =(舍去)或1a =.于是(11,0AA =-.设平面1ABA 的法向量(),,n p q r =,则1,n AA n AB ^^,即10,0,n AA n AB p r ??\-=,故且20p q -+=.令p =则1,q r ==()3,23n =.又()0,0,1p =为平面ABC 的法向量,故1cos ,4n p n p n p⋅==⋅,∴二面角1A AB C --的大小为1arccos 4. 20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I )求同一工作日至少3人需使用设备的概率;(II )X 表示同一工作日需使用设备的人数,求X 的数学期望.解:记i A 表示事件:同一工作日乙、丙恰有i 人需使用设备,0,1,2i =;B 表示事件:甲需使用设备;C 表示事件:丁需使用设备;D 表示事件:同一工作日至少3人需使用设备. (I )122D A B C A B A B C =⋅⋅+⋅+⋅⋅,又()()()()220.6,0.4,0.5,0,1,2.ii P B P C P A C i P D ===⨯=∴=()()()()()()()()()()()()1221221220.31.P A B C A B A B C P A B C P A B P A B C P A P B P C P A P B P A P B P C ⋅⋅+⋅+⋅⋅=⋅⋅+⋅+⋅⋅=++=(II )X 的可能取值为0,1,2,3,4.()()()()()()()200010.60.510.40.06P X P B A C P B P A P C ==⋅⋅==-⨯⨯-=,()()()()()()()()()()()200100110.60.5P X P B A C B A C B A C P B P A P C P B P A P C P B P A P C ==⋅⋅+⋅⋅+⋅⋅=++=⨯()()()()()()22210.410.60.50.410.620.510.40.25,4P X P A B C ⨯-+-⨯⨯+-⨯⨯⨯-===⋅⋅=()()()()()()()(220.50.60.40.06,340.25,210P A P B P C P X P D P X P X P X =⨯⨯===-====-=()()()13410.060.250.250.060.38.P X P X P X -=-=-==----=∴数学期望()()()()()00112233440.2520.3830.2540.062.EX P XP XP XP XP X=?+?+?+?+?=+???21. (本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (I )求C 的方程;(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 解:(I )设()0,4Q x ,代入22y px =,得00888,,.22p p x PQ QF x p p p=\==+=+.由题设得85824p p p+= ,解得2p =-(舍去)或2p =,∴C 的方程为24y x =;(II )由题设知l 与坐标轴不垂直,故可设l 的方程为()10x my m =+ ,代入24y x =得2440y my --=.设()()1122,,,,A x y B x y 则124,y y m +=124y y =-.故AB 的中点为()()221221,2,41D m m AB y m +=-=+.又l ¢的斜率为,m l ¢-\的方程为2123x y m m=-++.将上式代入24y x =,并整理得()2244230y y m m+-+=.设()()3344,,,,M x y Bx y 则()234344,423y y y y m m+=-=-+.故MN的中点为(223422412223,,m E m MN y mmm+骣÷ç++-=-=÷ç÷ç桫 由于MN 垂直平分线AB ,故,,,A M B N 四点在同一圆上等价于12AE BE MN ==,从而22211,44AB DE MN +=即()()()2222222244121224122m m m m m m m ++骣骣鼢珑+++++=鼢珑鼢珑桫桫,化简得210m -=,解得1m =或1m =-.所求直线l 的方程为10x y --=或10x y +-=.22. (本小题满分12分)函数()()()ln 11axf x x a x a=+->+. (I )讨论()f x 的单调性;(II )设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+. 解:(I )()f x 的定义域为()()()()()2221,,1x x a a f x x x a ⎡⎤--⎣⎦'-+∞=++.(i )当12a <<时,若()21,2x a a ∈--,则()()0,f x f x '>在()21,2a a --上是增函数;若()22,0,x a a ∈-则()()0,f x f x '<在()22,0aa -上是减函数;若()0,,x ∈+∞则()()0,f x f x '>在()0,+∞上是增函数. (ii )当2a =时,()()0,0f x f x ⅱ?成立当且仅当()0,x f x =在()1,-+ 上是增函数.(iii )当2a >时,若()1,0x ?,则()()0,f x f x '>在是()1,0-上是增函数;若()20,2x a a ∈-,则()()0,f x f x '<在()20,2a a -上是减函数;若()22,x a a ∈-+∞,则()()0,f x f x '>在()22,a a -+∞上是增函数.(II )由(I )知,当2a =时,()f x 在()1,-+ 是增函数.当()0,x ? 时,()()00f x f >=,即()()2ln 102xx x x +>>+.又由(I )知,当3a =时,()f x 在[)0,3上是减函数;当()0,3x Î时,()()00f x f <=,即()()3l n 1033xx x x +<<<+.下面用数学归纳法证明2322n a n n <++. (i )当1n =时,由已知1213a <=,故结论成立;(ii )假设当n k =时结论成立,即2322k a k k <++.当1n k =+时,()()112323223322ln 1ln 1,ln 1ln 12323232322k k k k k k a a a a k k k k k k ++创骣骣++鼢珑=+>+>==+?<=鼢珑鼢珑桫桫++++++++,即当1n k =+时有2333k a k k <++,结论成立.根据(i )、(ii )知对任何n N *Î结论都成立.。
2014年高考理科数学解析WORD版(新课标II卷)
2014年普通高等学校招生全国统一考试理科数学(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合0,1,2M ={},2{|320}N x x x =-+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}【答案】D【曹亚云·解析】直接检验法把0,1,2M ={}中的数,代入不等式2320x x -+≤,经检验1,2x =满足。
2.设复数12,z z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A .5- B .5 C .4i -+ D .4i --【答案】A 【曹亚云·解析】12z i =+,12,z z 在复平面内的对应点关于虚轴对称,22z i ∴=-+。
12415z z ∴=--=-。
3.设向量,a b 满足||10a b +=,||6a b -=,则a b ⋅=( )A .1B .2C .3D .5 【答案】A【曹亚云·解析】由||10a b +=两边平方得,22210a b a b ++⋅=。
由||6a b -=两边平方得,2226a b a b +-⋅=。
联立方程解得,1a b ⋅=。
4.钝角三角形ABC 的面积是12,1AB =,2BC =,则AC =( ) A .5 B . C .2 D .1 【答案】A【曹亚云·解析】因为111sin 21sin 222ABCSac B B ==⨯⨯⨯=,所以2sin 2B =,所以4B π=,或34B π=。
当4B π=时,经计算ABC 为等腰直角三角形,不符合题意,舍去。
所以34B π=,使用余弦定理,得2222cos b a c ac B =+-5=。
5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是075.,连续两天优良的概率是06.,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .08.B .075.C .06.D .045. 【答案】A【曹亚云·解析】设某天的空气质量为优良,则随后一天的空气质量为优良的概率是p 。
2014年高考数学分类汇编(高考真题+模拟新题)算法初步与复数 理
L单元算法初步与复数L1 算法与程序框图3.[2014·某某卷] 如图11所示,程序框图(算法流程图)的输出结果是( )图11A.34 B.53 C.78 D.893.B [解析] 由程序框图可知,变量的取值情况如下:第一次循环,x=1,y=1,z=2;第二次循环,x=1,y=2,z=3;第三次循环,x=2,y=3,z=5;第四次循环,x=3,y=5,z=8;第五次循环,x=5,y=8,z=13;第六次循环,x=8,y=13,z=21;第七次循环,x=13,y=21,z=34;第八次循环,x=21,y=34,z=55,不满足条件,跳出循环.4.[2014·卷] 当m=7,n=3时,执行如图11所示的程序框图,输出的S值为( )图11A.7 B.42C.210 D.8404.C [解析] S=1×7×6×5=210.5.[2014·某某卷] 阅读如图13所示的程序框图,运行相应的程序,输出的S的值等于( )图13A.18B.20C.21D.405.B [解析] 输入S=0,n=1,第一次循环,S=0+2+1=3,n=2;第二次循环,S=3+22+2=9,n=3;第三次循环,S=9+23+3=20,n=4,满足S≥15,结束循环,输出S=20.13.[2014·某某卷] 设a是一个各位数字都不是0且没有重复数字的三位数.将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851).阅读如图12所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=13.495 [解析] 取a1=815⇒b1=851-158=693≠815⇒a2=693;由a2=693⇒b2=963-369=594≠693⇒a3=594;由a3=594⇒b3=954-459=495≠594⇒a4=495;由a4=495⇒b4=954-459=495=a4⇒b=495.6.[2014·某某卷] 执行如图11所示的程序框图.如果输入的t∈[-2,2],则输出的S属于( )A.[-6,-2] B.[-5,-1]C.[-4,5] D.[-3,6]6.D [解析] (特值法)当t=-2时,t=2×(-2)2+1=9,S=9-3=6,所以D正确.7.[2014·某某卷] 阅读如图13所示的程序框图,运行相应的程序,则程序运行后输出的结果为( )图13A.7 B.9 C.10 D.11.13.299 [解析] 当x =9时,y =5,则|y -x |=4;当x =5时,y =113,则|y -x |=43;当x =113时,y =299,则|y -x |=49<1.故输出y =299.7.[2014·新课标全国卷Ⅰ] 执行如图12所示的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )图12A.203 B.165 C.72 D.1587.D [解析] 逐次计算,依次可得:M =32,a =2,b =32,n =2;M =83,a =32,b =83,n=3;M =158,a =83,b =158,n =4.此时输出M ,故输出的是158.7.[2014·新课标全国卷Ⅱ] 执行如图12所示的程序框图,如果输入的x ,t 均为2,则输出的S =( )A.4 B.5 C.6 D.77.D [解析] 逐次计算,可得M=2,S=5,k=2;M=2,S=7,k=3,此时输出S=7.11.[2014·某某卷] 执行如图12所示的程序框图,若输入的x的值为1,则输出的n 的值为____.图1211.3 [解析] x=1满足不等式,执行循环后,x=2,n=1;x=2满足不等式,执行循环后,x=3,n=2;x=3满足不等式,执行循环后,x=4,n=3;x=4不满足不等式,结束循环,输出的n的值为3.4.[2014·某某卷] 根据如图11所示的框图,对大于2的整数N,输出的数列的通项公式是( )图11A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -14.C [解析] 阅读题中所给的程序框图可知,对大于2的整数N ,输出数列:2,2×2=22,2×22=23,2×23=24,…,2×2N -1=2N ,故其通项公式为a n =2n .5.,[2014·某某卷] 执行如图11所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图11A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.3.[2014·某某卷] 阅读如图11所示的程序框图,运行相应的程序,输出S 的值为( )图11A.15B.105C.245D.9453.B [解析] 第1次循环,i=1,T=3,S=1×3;第2次循环,i=2,T=5,S=1×3×5;第3次循环,i=3,T=7,S=1×3×5×7.执行完后,这时i变为4,退出循环,故输出S=1×3×5×7=105.11.[2014·某某卷] 若某程序框图如图13所示,当输入50时,则该程序运行后输出的结果是________.11.6 [解析] 第一次运行,S=1,i=2;第二次运行,S=4,i=3;第三次运行,S =11,i=4;第四次运行,S=26,i=5;第五次运行,S=57,i=6,此时S>n,输出i=6.5.[2014·某某卷] 执行如图11所示的程序框图,若输出k的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >455.C [解析] 第一次循环结束,得s =1×910=910,k =8;第二次循环结束,得s =910×89=45,k =7;第三次循环结束,得s =45×78=710,k =6,此时退出循环,输出k =6.故判断框内可填s >710.L2 基本算法语句 L3 算法案例L4 复数的基本概念与运算1.[2014·某某卷] 复平面内表示复数i(1-2i)的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1.A [解析] i(1-2i)=2+i ,其在复平面内对应的点为(2,1),位于第一象限.2.、[2014·某某卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A.1.[2014·全国卷] 设z =10i3+i,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i1.D [解析] z =10i 3+i =10i (3-i )(3+i )(3-i )=10(1+3i )10=1+3i ,根据共轭复数的定义,其共轭复数是1-3i.1.[2014·某某卷] 设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i+i ·z-=( )A .-2B .-2iC .2D .2i1.C [解析] 因为z =1+i ,所以z i+i ·z -=(-i +1)+i +1=2.9.[2014·卷] 复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________.9.-1 [解析] ⎝ ⎛⎭⎪⎫1+i 1-i 2=⎣⎢⎡⎦⎥⎤(1+i )2(1-i )(1+i )2=⎝ ⎛⎭⎪⎫2i 22=-1.1.[2014·某某卷] 复数z =(3-2i)i 的共轭复数z 等于( )A .-2-3iB .-2+3iC .2-3iD .2+3i1.C [解析] 由复数z =(3-2i)i =2+3i ,得复数z 的共轭复数z =2-3i. 2.[2014·某某卷] 已知复数z 满足(3+4i)z =25,则z =( ) A .-3+4i B .-3-4i C .3+4i D .3-4i2.D[解析] 本题考查复数的除法运算,利用分母的共轭复数进行求解. 因为(3+4i)z =25,所以z =253+4i =25(3-4i )(3-4i )(3+4i )=3-4i.1.[2014·某某卷] i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( )A .-1B .1C .-iD .i1.A [解析] ⎝ ⎛⎭⎪⎫1-i 1+i 2=-2i 2i =-1.故选A. 1.[2014·某某卷] 满足z +iz=i(i 为虚数单位)的复数z =( )A.12+12iB.12-12iC .-12+12iD .-12-12i1.B [解析] 因为z +i z =i ,则z +i =z i ,所以z =i i -1=i (-1-i )(i -1)(-1-i )=1-i2.1.[2014·某某卷] z -是z 的共轭复数,若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( )A .1+iB .-1-iC .-1+iD .1-i1.D [解析] 设z =a +b i(a ,b ∈R ),则z -=a -b i ,所以2a =2,-2b =2,得a =1,b =-1,故z =1-i.2.[2014·某某卷] 设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i2.A[解析] 由(z -2i)(2-i)=5,得z -2i =52-i ,故z =2+3i.2.[2014·新课标全国卷Ⅰ] (1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i2.D [解析] (1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=2i (1+i )-2i=-1-i. 2.[2014·新课标全国卷Ⅱ] 设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( )A .-5B .5C .-4+iD .-4-i2.A [解析] 由题知z 2=-2+i ,所以z 1z 2=(2+i)(-2+i)=i 2-4=-5.1.[2014·某某卷] 已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i1.D [解析] 因为a -i 与2+b i 互为共轭复数,所以a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.故选D.11.[2014·某某卷] 复数2-2i1+i =________.11.-2i [解析]2-2i 1+i =2(1-i )2(1+i )(1-i )=-2i.1.[2014·某某卷] i 是虚数单位,复数7+i3+4i =( )A .1-iB .-1+i C.1725+3125i D .-177+257i1.A [解析] 7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i )=25-25i 32+42=1-i.L5 单元综合2.[2014·某某质检] 已知复数z =3+4i ,z 表示复数z 的共轭复数,则⎪⎪⎪⎪⎪⎪z i =( ) A. 5 B .5C. 6 D .6 2.B [解析] 因为|z|=|z|=5,所以⎪⎪⎪⎪⎪⎪z i =5. 4.[2014·闽南四校期末] 已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.D [解析] 由题意知,z =1-2i ,故其所对应的点(1,-2)在第四象限.9的值是( )A .4B .5C .6D .79.A [解析] 运行程序框图可知,输出k 的值为4.10.[2014·某某名校调研] 运行如图G123所示的程序框图,若输出的S =120,则判断框内应为( )A .k >4?B .k >5?C .k >6?D .k >7?10.B [解析] ∵S =1,k =1;k =2,S =4;k =3,S =11;k =4,S =26;k =5,S =57;k =6,S =120.故选B.12.[2014·某某部分重点中学期末] 若z =sin θ-35+i ⎝⎛⎭⎪⎫cos θ-45是纯虚数,则tan θ的值为( )A.34B.43 C .-34 D .-4312.C [解析] 由题意知sin θ=35,cos θ≠45,所以cos θ=-45,所以tan θ=-34.14.[2014·某某模拟] 如图G127所示的四个程序框图都是为了计算S =1+13+15+17+19的值,其中,错误的算法是( )图G12714.C [解析] 根据程序框图,易知选项A ,B ,D 正确;对于选项C ,由该框图可知当i =1时,S =1;当i =7时,S =1+13+15+17,程序结束,不符合题意.。
2014年全国高考真题(理科数学)分类汇编三、算法初步(逐题详解)
1.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为A.7B.9C.10D.112.根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n Aa n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=3.阅读下边的程序框图,运行相应的程序,输出S 的值为A.15B.105C.245D.9454.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 76.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1587执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .38.【2014年湖南卷(理06)】 执行如图1所示的程序框图. 如果输入的]2,2[-∈t ,则输出的S 属于A. ]2,6[--B. ]1,5[--C. ]5,4[-D. ]6,3[-【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈ 时,则(][][]2,63,13,6S ∈---=- ,故选D.9.【2014年福建卷(理05)】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )A . 18B . 20C . 21D .40【答案】B【解析】由程序框图知:算法的功能是求S=21+22+…+2n +1+2+…+n 的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B10.【2014年安徽卷(理03)】如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89【答案】B【解析】本程序涉及“斐波拉切数列”即:2、3、5、8、13、21、34、55、89…,并输出第一个大于50的数11.【2014年重庆卷(理05)】执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( ) A.12s > B.35s > C.710s > D.45s >【答案】C【解析】由已知当6k =时98771109810s =⨯⨯⨯=对选项逐一验证知答案为C第II 部分12.【2014年山东卷(理11)】执行下面的程序框图,若输入的x 的值为1,则输出的n 的值为 。
2014年全国高考数学理科(解析几何部分)解析汇编
= (4k 2 + 2)2 − 4 + 16k 2 + 16 = 16(k 2 + 1)2
同理可得MN2=
16(m 2 + 1) 2 (2m 2 + 1) k4
【北京市·第 19 题】已知椭圆C:x2+2y2=4。 (1)求椭圆 C 的离心率; (2)设O为原点,若点A在椭圆C上,点B在直线y=2 上,且OA⊥OB,求直线AB与圆x2+y2=2 的位置关系,并证 明你的结论
c 2 3c 2
3 4
b ) a
2
∴OA=OF1+F1A= ∴点 N( −
3c 3c ,-1)或( − ,1) 2 2
b2 a
9c 2 1 + =1 4a 2 b 2 将 c 2 = a 2 − b 2 代入上式得:
代入 C 方程得:
2 ∴ tan ∠MF1 F2 = MF2 = b = 3 F1 F2 2ac 4
2014 年全国高考数学理科——解析几何部分——解析汇编
【天津市·第 18 题】设椭圆
x2 y 2 + = 1 (a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知 a 2 b2
|AB|= 3 |F1F2|. 2
(1)求椭圆的离心率; (2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l 的斜率 解: (1)∵A(a,0) ,B(0,b) ∴|AB|= a 2 + b 2 ∵|F1F2|= 2c = 2 a 2 − b 2 ∴EF1= ( − 2 c + c ) 2 + ( 2 c) 2 = 5 c 3 3 3 设直线 l 的方程为 y = kx ,即 kx − y = 0 则点 E 到直线 l 的距离为:
2014年高考全国卷I卷(理数)试题及答案详细解析
2014年普通高等学校招生全国统一考试理科数学 第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{}{}2230,22A x x x B x x =--≥=-≤<,则A B = ( )A .[]2,1--B .[)1,2-C .[]1,1-D .[)1,22.()()3211+-i i = ( )A .1i +B .1i -C .1i -+D .1i --3.设函数()(),f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()f x g x 是奇函数D .()()f x g x 是奇函数4.已知F 为双曲线()22:30C x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3C D .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A .18 B .38 C .58 D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π的图像大致为( )7.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A .203 B .72 C .165 D .1588.设0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭且1sin tan cos βαβ+=,则( ) A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=9.不等式组1,24x y x y +≥⎧⎨-≤⎩的解集记为D,有下面四个命题()()12:,,22,:,,22,p x y D x y p x y D x y ∀∈+≥-∃∈+≥()()34:,,23,:,,21,p x y D x y p x y D x y ∀∈+≤∃∈+≤-其中的真命题是( )A .23,p pB .12,p pC . 14,p pD .13,p p10.已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF =( )A .72 B .3 C . 52D .2 11.已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .()2,+∞B .()1,+∞C . (),2-∞-D .(),1-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .B .6C .D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年高考试题理科数学真题及答案(新课标II)Word版解析
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。
所以选D.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5C. - 4+ iD. - 4 - i【答案】A 【解析】.,5-4-1-∴,2-,2212211A z z i z z z i z 故选关于虚轴对称,与==+=∴+=3.设向量a,b 满足|a+b|a-b|=,则a ⋅b = ( ) A. 1 B. 2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 1【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A. 0.8B. 0.75C. 0.6D. 0.45【答案】A【解析】.,8.0,75.06.0,Appp故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027D.13【答案】C【解析】..2710π54π34-π54π.342π944.2342π.546π96321Cvv故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π7.执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A. 4B. 5C. 6D. 7【答案】 D【解析】8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=A. 0B. 1C. 2D. 3【答案】D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(Daffxaxfxaxxf故选联立解得且==′=∴+=′∴+=9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】 B 【解析】..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938 C. 6332 D. 94【答案】 D【解析】..49)(4321.6),3-2(23),32(233-4322,343222,2ΔOAB D n m S n m n m n n m m n BF m AF B A 故选,解得直角三角形知识可得,,则由抛物线的定义和,分别在第一和第四象限、设点=+••=∴=+∴=+=•=+•===11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.30D.2【答案】 C 【解析】..10305641-0θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。
2014年高考真题——理科数学(山东卷)解析版 Word版含
绝密★启用前2014年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科 类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需 改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相 应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案; 不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中, 只有一个选项符合题目要求的。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a A .i 45- B .i 45+ C .i 43- D .i 43+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B AA .[0,2]B .(1,3)C . [1,3)D .(1,4) 3.函数1)(log 1)(22-=x x f 的定义域为A .)210(, B . )2(∞+,C .),2()210(+∞ ,D . )2[]210(∞+,, 4.用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是 A .方程02=++b ax x 没有实根 B .方程02=++b ax x 至多有一个实根0舒张压/kPa频率 / 组距0.360.240.160.08171615141312 C .方程02=++b ax x 至多有两个实根 D .方程02=++b ax x 恰好有两个实根 5.已知实数y x ,满足)10(<<<a a a y x ,则下列关系式恒成立的是A .111122+>+y x B .)1ln()1ln(22+>+y x C .y x sin sin > D .33y x >6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为 A .22 B .24 C .2 D .47.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单 位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分 别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组 与第二组共有20人,第三组中没有疗效的有6人, 则第三组中有疗效的人数为A .6B .8C .12D .188.已知函数12)(+-=x x f ,kx x g =)(.若方程)()(x g x f =有两个不相等的实根,则实数k 的取值范围是A .)210(, B .)121(,C .)21(, D .)2(∞+, 9.已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为 A .5 B .4 C .5 D .210.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 A .02x =±y B .02=±y x C .02y x =± D .0y 2x =±第Ⅱ卷(共100分)二.填空题:本大题共5小题,每小题5分,共25分。
2014年高考真题(理科数学)全国卷 纯Word版解析可编辑
2014·全国卷(理科数学)1.[2014·全国卷] 设z =10i3+i,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 1.D [解析] z =10i 3+i =10i (3-i )(3+i )(3-i )=10(1+3i )10=1+3i ,根据共轭复数的定义,其共轭复数是1-3i.2.、[2014·全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.3.[2014·全国卷] 设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b3.C [解析] 因为b =cos 55°=sin 35°>sin 33°,所以b >a .因为cos 35°<1,所以1cos 35°>1,所以sin 35°cos 35°>sin 35°.又c =tan 35°=sin 35°cos 35°>sin 35°,所以c >b ,所以c >b >a .4.[2014·全国卷] 若向量a ,b 满足:|a|=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2 B. 2 C .1 D.224.B [解析] 因为(a +b )⊥a ,所以(a +b )·a =0,即|a|2+b·a =0.因为(2a +b )⊥b ,所以(2a +b )·b =0,即2a·b +|b|2=0,与|a|2+b·a =0联立,可得2|a|2-|b|2=0,所以|b|=2|a|= 2. 5.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种5.C [解析] 由题意,从6名男医生中选2名,5名女医生中选1名组成一个医疗小组,不同的选法共有C 26C 15=75(种).6.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.7.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( ) A .2e B .e C .2 D .17.C [解析] 因为y ′=(x e x -1)′=e x -1+x e x -1,所以y =x e x -1在点(1,1)处的导数是y ′|x =1=e 1-1+e 1-1=2,故曲线y =x e x -1在点(1,1)处的切线斜率是2.8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π48.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝⎛⎭⎫942=81π4. 9.[2014·全国卷] 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.239.A [解析] 根据题意,|F 1A |-|F 2A |=2a ,因为|F 1A |=2|F 2A |,所以|F 2A |=2a ,|F 1A |=4a .又因为双曲线的离心率e =ca =2,所以c =2a ,|F 1F 2|=2c =4a ,所以在△AF 1F 2中,根据余弦定理可得cos ∠AF 2F 1=|F 1F 2|2+|F 2A |2-|F 1A |22|F 1F 2|·|F 2A |=16a 2+4a 2-16a 22×4a ×2a=14. 10.[2014·全国卷] 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .310.C [解析] 设数列{a n }的首项为a 1,公比为q ,根据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎨⎧a 1=16125,q =52,所以a n =a 1qn -1=16125×⎝⎛⎭⎫52n -1=2×⎝⎛⎭⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝⎛⎭⎫4×52=4. 11.[2014·全国卷] 已知二面角α-l -β为60°,AB ⊂α,AB ⊥l ,A 为垂足,CD ⊂β,C ∈l ,∠ACD =135°,则异面直线AB 与CD 所成角的余弦值为( )A.14B.24C.34D.1211.B [解析] 如图所示,在平面α内过点C 作CF ∥AB ,过点F 作FE ⊥β,垂足为点E ,连接CE ,则CE ⊥l ,所以∠ECF =60°.过点E 作DE ⊥CE ,交CD 于点D 1,连接FD 1.不妨设FC =2a ,则CE =a ,EF =3a .因为∠ACD =135°,所以∠DCE =45°,所以,在Rt △DCE 中,D 1E =CE =a ,CD 1=2a ,∴FD 1=2a ,∴cos ∠DCF =4a 2+2a 2-4a 22×2a ×2a=24.12.[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )12.D [解析] 设(x 0,y 0)为函数y =f (x )的图像上任意一点,其关于直线x +y =0的对称点为(-y 0,-x 0).根据题意,点(-y 0,-x 0)在函数y =g (x )的图像上,又点(x 0,y 0)关于直线y =x 的对称点为(y 0,x 0),且(y 0,x 0)与(-y 0,-x 0)关于原点对称,所以函数y =f (x )的反函数的图像与函数y =g (x )的图像关于原点对称,所以-y =g (-x ),即y =-g (-x ).13.[2014·全国卷] ⎝⎛⎭⎫x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 13.70 [解析] 易知二项展开式的通项T r +1=C r 8⎝⎛⎭⎫x y 8-r ⎝⎛⎭⎫-y x r=(-1)r C r 8x 8-3r 2y 3r 2-4.要求x 2y 2的系数,需满足8-3r 2=2且3r 2-4=2,解得r =4,所以T 5=(-1)4C 48x 2y 2=70x 2y 2,所以x 2y 2的系数为70.14.[2014·全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5. 15.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.15.43 [解析] 如图所示,根据题意,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43, 即l 1与l 2的夹角的正切值等于43.16.、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].17.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .17.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C .因为tan A =13,所以cos C =2sin C ,所以tan C =12.所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).19.、[2014·全国卷] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 AB C 的大小.19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1. 作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3.因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 AB C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1D DF =15,所以cos ∠A 1FD =14. 所以二面角A 1 AB C 的大小为arccos 14.方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B .(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为|CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c .又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3).设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1). 又p =(0,0,1)为平面ABC 的法向量,故 cos 〈n ,p 〉=n ·p |n ||p |=14.所以二面角A 1 AB C 的大小为arccos 14.20.、[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.20.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )= P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )= 0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C ) =P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,所以 EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.21.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.21.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1). 又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22= 4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0. 22.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数.(iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2.当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n=k+1时,有2k+3<a k+1≤3k+3,结论成立.根据(i)(ii)知对任何n∈N*结论都成立.。
2014年高考数学试题分类汇编_L算法初步与复数
数学L单元算法初步与复数L1 算法与程序框图3.[2014·安徽卷] 如图1-1所示,程序框图(算法流程图)的输出结果是()A.34 B.53 C.78 D.893.B4.[2014·北京卷] 当m=7,n=3时,执行如图1-1所示的程序框图,输出的S值为()图1-1A.7 B.42C.210 D.8404.C5.[2014·福建卷] 阅读如图1-3所示的程序框图,运行相应的程序,输出的S的值等于()图1-3A.18B.20C.21D.405.B13.[2014·湖北卷] 设a是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a =815,则I(a)=158,D(a)=851).阅读如图1-2所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=图1-213.4956.[2014·湖南卷] 执行如图1-1所示的程序框图.如果输入的t∈[-2,2],则输出的S 属于()A.[-6,-2] B.[-5,-1]C.[-4,5] D.[6.D7.[2014·江西卷] 阅读如图1-3所示的程序框图,运行相应的程序,则程序运行后输出的结果为()图1-3A .7B .9C .10D .11.13.2997.[2014·新课标全国卷Ⅰ] 执行如图1-2所示的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )图1-2A.203B.165C.72D.1587.D 7.[2014·新课标全国卷Ⅱ] 执行如图1-2所示的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 7.D11.[2014·山东卷] 执行如图1-2所示的程序框图,若输入的x 的值为1,则输出的n 的值为____.图1-211.34.[2014·陕西卷] 根据如图1-1所示的框图,对大于2的整数N,输出的数列的通项公式是()图1-1A.a n=2nB.a n=2(n-1)C.a n=2nD.a n=2n-14.C5.,[2014·四川卷] 执行如图1-1所示的程序框图,如果输入的x,y∈R,那么输出的S 的最大值为()图1-1A.0 B.1 C.2 D.35.C3.[2014·天津卷] 阅读如图11所示的程序框图,运行相应的程序,输出S的值为()图1-1A.15B.105C.245D.9453.B11.[2014·浙江卷] 若某程序框图如图1-3所示,当输入50时,则该程序运行后输出的结果是________.11.65.[2014·重庆卷] 执行如图1-1所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A .s >12B .s >35C .s >710D .s >455.C9.(2013·临沂高一检测)画出计算1+错误!未找到引用源。
2014年高考数学理解析(全国大纲卷)word解析版
2014年普通高等学校招生全国统一考试理科数学解析(必修+选修Ⅱ)【名师简评】该套试卷整体上来说与往年相比,比较平稳,试题中没有偏题和怪题,在考查了基础知识的基础上,还考查了同学们灵活运用所学知识的解决问题的能力。
题目没有很多汉字的试题,都是比较简约型的。
但是不乏也有几道创新试题,像选择题的第12题,填空题的16题,解答题第22题,另外别的试题保持了往年的风格,入题简单,比较好下手,但是出来不是那么很容易。
整体上试题由梯度,由易到难,而且大部分试题适合同学们来解答体现了双基,考查了同学们的四大思想的运用,是一份比较好的试卷。
1选择题1.复数131ii-+=+A .2i+B .2i-C .12i+D .12i-答案C【命题意图】本试题主要考查了复数的四则运算法则。
通过利用除法运算来求解。
【解析】因为13(13)(1)24121(1)(1)2i i i ii i i i -+-+-+===+++-2.已知集合{{},1,,A B m A B A==⋃=,则m =A .0B .0或3C .1D .1或3答案B【命题意图】本试题主要考查了集合的概念和集合的并集运算,集合的关系的运用,元素与集合的关系的综合运用,同时考查了分类讨论思想。
【解析】A B A⋃= B A ∴⊂,{{},1,A B m == m A ∴∈,故m =或3m =,解得0m =或3m =或1m =,又根据集合元素的互异性1m ≠,所以0m =或3m =。
3.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为A .2211612x y +=B .221168x y +=C .22184x y +=D .221124x y +=答案C【命题意图】本试题主要考查了椭圆的方程以及性质的运用。
通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。
【解析】因为242c c =⇔=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县22448a a c c =⇔==,所以222844b a c =-=-=。
2014年高考理科数学试题全国新课标Ⅰ逐题详解 (纯word解析版)
2014年高考理科数学试题全国新课标Ⅰ逐题详解 (纯word 解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
【2014年全国新课标Ⅰ(理01)】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A..【2014年全国新课标Ⅰ(理02)】32(1)(1)i i +-=A .1i +B .1i -C .1i -+D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i +=---,选D..【2014年全国新课标Ⅰ(理03)】设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.【2014年全国新课标Ⅰ(理04)】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d = A. .【2014年全国新课标Ⅰ(理05)】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种, 周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.【2014年全国新课标Ⅰ(理06)】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .【2014年全国新课标Ⅰ(理07)】执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M =. 选D.【2014年全国新课标Ⅰ(理08)】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B【2014年全国新课标Ⅰ(理09)】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.【2014年全国新课标Ⅰ(理10)】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72B .52C .3D .2【答案】:C【解析】:过Q 作QM ⊥直线L 于M ,∵4FP FQ = ∴34PQPF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM ==【2014年全国新课标Ⅰ(理11)】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
2014年高考真题——理科数学(四川卷)精校解析版 纯Word版含解析
2014年普通高等学校招生全国统一考试理科参考答案(四川卷)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到 4.若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a bd c->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否则,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有A .192种B .216种C .240种D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。
历年(2014)高考真题分类汇编(共14套)含答案精品打包下载
历年(2014)高考真题分类汇编(共14套)含答案精品打包下载.doc数学A单元集合与常用逻辑用语A1 集合及其运算1.A1[2014·北京卷] 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}1.C[解析] ∵A={0,2},∴A∩B={0,2}∩{0,1,2}={0,2}.15.A1、M1[2014·福建卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.15.6[解析] 若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4.若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4;若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2;综上所述,满足条件的有序数组的个数为6.1.A1[2014·广东卷] 已知集合M={-1,0,1},N={0,1,2,},则M∪N=()A.{0,1} B.{-1,0,2}C.{-1,0,1,2} D.{-1,0,1}1.C[解析] 本题考查集合的运算.因为M={-1,0,1},N={0,1,2},所以M∪N ={-1,0,1,2}.3.A1 A2[2014·湖北卷] U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.C[解析] 若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A∩B=∅,由维思图可知,一定存在C=A,满足A⊆C,B⊆∁U C,故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.故选C.1.A1[2014·辽宁卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}1.D[解析] 由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.2.A1、E3[2014·全国卷] 设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=() A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]2.B[解析] 因为M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.1.A1[2014·新课标全国卷Ⅰ] 已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B =()A.[-2,-1] B.[-1,2)B.[-1,1] D.[1,2)1.A[解析] 集合A=(-∞,-1]∪[3,+∞),所以A∩B=[-2,-1].1.A1[2014·新课标全国卷Ⅱ] 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N =()A.{1} B.{2} C.{0,1} D.{1,2}1.D[解析] 集合N=[1,2],故M∩N={1,2}.2.A1,B6[2014·山东卷] 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B =()A.[0,2] B.(1,3) C.[1,3) D.(1,4)2.C[解析] 根据已知得,集合A={x|-1<x<3},B={y|1≤y≤4},所以A∩B={x|1≤x <3}.故选C.1.A1[2014·陕西卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.[0,1) C.(0,1] D.(0,1)1.B[解析] 由M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|-1<x<1,x∈R},得M∩N =[0,1).1.A1[2014·四川卷] 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=() A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}1.A[解析] 由题意可知,集合A={x|-1≤x≤2},其中的整数有-1,0,1,2,故A∩B ={-1,0,1,2},故选A.19.A1、D3、E7[2014·天津卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.1.A1[2014·浙江卷] 设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}1.B[解析] ∁U A={x∈N|2≤x<5}={2},故选B.11.A1[2014·重庆卷] 设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.11.{7,9}[解析] 由题知∁U A={4,6,7,9,10},∴(∁U A)∩B={7,9}.A2 命题及其关系、充分条件、必要条件2.A2[2014·安徽卷] “x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.B[解析] ln(x+1)<0⇔0<1+x<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所“x<0”是“ln(x+1)<0”的必要不充分条件.5.A2[2014·北京卷] 设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.D [解析] 当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.故选D.6.A2、H4[2014·福建卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.A [解析] 由直线l 与圆O 相交,得圆心O 到直线l 的距离d =1k 2+1<1,解得k ≠0. 当k =1时,d =12,|AB |=2r 2-d 2=2,则△OAB 的面积为12×2×12=12;当k =-1时,同理可得△OAB 的面积为12,则“k =1”是“△OAB 的面积为12”的充分不必要条件.3.A1 A2[2014·湖北卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.C [解析] 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由维思图可知,一定存在C =A ,满足A ⊆C ,B ⊆∁U C ,故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.故选C.8.A2[2014·陕西卷] 原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 8.B [解析] 设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.7.A2[2014·天津卷] 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 7.C [解析] 当ab ≥0时,可得a >b 与a |a |>b |b |等价.当ab <0时,可得a >b 时a |a |>0>b |b |;反之,由a |a |>b |b |知a >0>b ,即a >b .2.L4、A2[2014·浙江卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A. 6.A2[2014·重庆卷] 已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q6.D [解析] 根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.A3 基本逻辑联结词及量词 5.A3[2014·湖南卷] 已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④5.C [解析] 依题意可知,命题p 为真命题,命题q 为假命题.由真值表可知p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假.5.A3、F1[2014·辽宁卷] 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q ) 5.A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.9.E5、A3[2014·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2, p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.A4 单元综合2.[2014·福州期末] 已知全集U =R ,集合A ={1,2,3,4,5},B =[3,+∞),则图X11中阴影部分所表示的集合为(A .{0,1,2}B .{0,1}C .{1,2}D .{1}2.C [解析] 由题意,阴影部分表示A ∩(∁U B ).因为∁U B ={x |x <3},所以A ∩(∁U B )={1,2}.4.[2014·湖南十三校一联] 下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x 20+x 0-1<0”的否定是“∀x ∈R ,x 2+x -1>0” C .命题“若x =y ,则sin x =sin y ”的逆否命题为假命题 D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题4.D [解析] A 中否命题应为“若x 2≠1,则x ≠1”;B 中否定应为“∀x ∈R ,x 2+x -1≥0”;C 中原命题为真命题,故逆否命题为真命题;易知D 正确.6.[2014·郑州质检] 已知集合A ={x |x >2},B ={x |x <2m },且A ⊆(∁R B ),则m 的值可以是( )A .1B .2C .3D .46.A [解析] 易知∁R B ={x |x ≥2m },要使A ⊆(∁R B ),则2m ≤2,∴m ≤1,故选A.9.[2014·湖北八市联考] 已知集合M =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪y -3x -2=3,N ={(x ,y )|ax +2y +a =0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-29.A [解析] 易知集合M 中的元素表示的是过(2,3)点且斜率为3的直线上除(2,3)点外的所有点.要使M ∩N =∅,则N 中的元素表示的是斜率为3且不过(2,3)点的直线,或过(2,3)点且斜率不为3的直线,∴-a2=3或2a +6+a =0,∴a =-6或a =-2.11.[2014·吉林实验中学模拟] 已知集合A ={1,2a },B ={a ,b }.若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B=____________.11.{-1,12,1} [解析] ∵A ∩B =12,∴2a =12,∴a =-1,∴b =12,∴A =⎩⎨⎧⎭⎬⎫1,12,B=-1,12,∴A ∪B ={-1,12,1}.12.[2014·杭州一模] “λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的____________条件.12.充分不必要 [解析] ∵{a n }为递增数列⇔a n +1>a n ⇔2n +1-2λ>0⇔2n +1>2λ⇔3>2λ⇔λ<32,∴“λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的充分不必要条件.数 学B 单元 函数与导数B1 函数及其表示 6.B1[2014·安徽卷] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-126.A [解析] 由已知可得,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝⎛⎭⎫-π6=sin 5π6=12.2.B1、B3[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)2.A [解析] 由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.7.B1、B3、B4[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.D [解析] 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞). 2.B1[2014·江西卷] 函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1] B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞) 2.C [解析] 由x 2-x >0,得x >1或x <0.3.B1,B7[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝⎛⎭⎫0,12 B .(2,+∞)C. ⎝⎛⎭⎫0,12∪(2,+∞)D. ⎝⎛⎦⎤0,12∪[2,+∞) 3.C [解析] 根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C.B2 反函数 12.B2[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )12.D [解析] 设(x 0,y 0)为函数y =f (x )的图像上任意一点,其关于直线x +y =0的对称点为(-y 0,-x 0).根据题意,点(-y 0,-x 0)在函数y =g (x )的图像上,又点(x 0,y 0)关于直线y =x 的对称点为(y 0,x 0),且(y 0,x 0)与(-y 0,-x 0)关于原点对称,所以函数y =f (x )的反函数的图像与函数y =g (x )的图像关于原点对称,所以-y =g (-x ),即y =-g (-x ).B3 函数的单调性与最值 2.B1、B3[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)2.A [解析] 由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.7.B1、B3、B4[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.D [解析] 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).21.B3、B12[2014·广东卷] 设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示). 12.B3[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________.12.1 [解析] 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1. 15.B3,B14[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (a 0)=b -g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1 (x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确. 21.B3,B12[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).B4 函数的奇偶性与周期性7.B1、B3、B4[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.D [解析] 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞). 3.B4[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .33.C [解析] 因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1. 3.B4[2014·新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数3.C [解析] 由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.15.B4[2014·新课标全国卷Ⅱ] 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________.15.(-1,3) [解析] 根据偶函数的性质,易知f (x )>0的解集为(-2,2),若f (x -1)>0,则-2<x -1<2,解得-1<x <3.B5 二次函数16.B5、C6[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a的取值范围是________.16.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].B6 指数与指数函数 4.B6、B7、B8[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.3.B6[2014·江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( ) A .1 B .2 C .3 D .-13.A [解析] g (1)=a -1,由f [g (1)]=1,得5|a -1|=1,所以|a -1|=0,故a =1.3.B6、B7[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a3.C [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .2.A1,B6[2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4) 2.C [解析] 根据已知得,集合A ={x |-1<x <3},B ={y |1≤y ≤4},所以A ∩B ={x |1≤x <3}.故选C.5.B6,B7,E1[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.7.B6[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12 B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D.11.B6[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.11.10 [解析] 由4a =2,得a =12,代入lg x =a ,得lg x =12,那么x =1012 =10.B7 对数与对数函数 5.B6,B7,E1[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.3.B1,B7[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞) 3.C [解析] 根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C.4.B6、B7、B8[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.13.D3、B7[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.13.50 [解析] 本题考查了等比数列以及对数的运算性质.∵{a n }为等比数列,且a 10a 11+a 9a 12=2e 5,∴a 10a 11+a 9a 12=2a 10a 11=2e 5,∴a 10a 11=e 5, ∴ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)= ln(a 10a 11)10=ln(e 5)10=ln e 50=50.3.B6、B7[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a3.C [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .4.B7[2014·天津卷] 函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)4.D [解析] 要使f (x )单调递增,需有⎩⎪⎨⎪⎧x 2-4>0,x <0,解得x <-2.7.B7、B8[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )AC D图1-2 图1-27.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数,故选D.12.B7[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.12.-14 [解析] f (x )=log 2 x ·log 2(2x )=12log 2 x ·2log 2(2x )=log 2x ·(1+log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14,所以当x =22时,函数f (x )取得最小值-14.B8 幂函数与函数的图像 4.B6、B7、B8[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.10.B8[2014·湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 10.B [解析] 因为当x ≥0时,f (x )=12()||x -a 2+||x -2a 2-3a 2,所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ;当a 2<x <2a 2时,f (x )=12()x -a 2+2a 2-x -3a 2=-a 2;当x ≥2a 2时,f (x )=12()x -a 2+x -2a 2-3a 2=x -3a 2.综上,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B. 8.B8[2014·山东卷] 已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A. ⎝⎛⎭⎫0,12B. ⎝⎛⎭⎫12,1 C. (1,2) D. (2,+∞) 8.B [解析] 画出函数f (x )的图像,如图所示.若方程f (x )=g (x )有两个不相等的实数,则函数f (x ),g (x )有两个交点,则k >12,且k <1.故选B.7.B7、B8[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )AC D图1-2 图1-27.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数,故选D.B9 函数与方程10.B9、B14[2014·湖南卷] 已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e) B .(-∞,e)C.⎝⎛⎭⎫-1e ,eD.⎝⎛⎭⎫-e ,1e10.B [解析] 依题意,设存在P (-m ,n )在f (x )的图像上,则Q (m ,n )在g (x )的图像上,则有m 2+e -m -12=m 2+ln(m +a ),解得m +a =ee -m -12,即a =ee -m -12-m (m >0),可得a ∈(-∞,e).14.B9[2014·天津卷] 已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.14.(0,1)∪(9,+∞) [解析] 在同一坐标系内分别作出y =f (x )与y =a |x -1|的图像如图所示.当y =a |x -1|与y =f (x )的图像相切时,由⎩⎪⎨⎪⎧-ax +a =-x 2-3x ,a >0,整理得x 2+(3-a )x+a =0,则Δ=(3-a )2-4a =a 2-10a +9=0,解得a =1或a =9.故当y =a |x -1|与y =f (x )的图像有四个交点时,0<a <1或a >9.6.B9[2014·浙江卷] 1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >96.C [解析] 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11,则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3, ∴6<c ≤9,故选C.B10 函数模型及其应用 8.B10[2014·湖南卷] 某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-18.D [解析] 设年平均增长率为x ,则有(1+p )(1+q )=(1+x )2,解得x =(1+p )(1+q )-1. 10.B10[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图1-2A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x10.A [解析] 设该三次函数的解析式为y =ax 3+bx 2+cx +d .因为函数的图像经过点(0,0),所以d =0,所以y =ax 3+bx 2+cx .又函数过点(-5,2),(5,-2),则该函数是奇函数,故b =0,所以y =ax 3+cx ,代入点(-5,2)得-125a -5c =2.又由该函数的图像在点(-5,2)处的切线平行于x 轴,y ′=3ax 2+c ,得当x =-5时,y ′=75a +c =0.联立⎩⎪⎨⎪⎧-125a -5c =2,75a +c =0,解得⎩⎨⎧a =1125,c =-35.故该三次函数的解析式为y =1125x 3-35x .B11 导数及其运算 18.B11、B12[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 18.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 21.B11、M3、D5[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p .①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c p a 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c p a -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0.由(1)中的结论得⎝⎛⎭⎫a k +1a k p =⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p · 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n <1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p .①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p ),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.20.B11、B12[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,e x>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .10.B11、H7[2014·广东卷] 曲线y =e -5x +2在点(0,3)处的切线方程为________. 10.y =-5x +3 [解析] 本题考查导数的几何意义以及切线方程的求解方法.因为y ′=-5e -5x ,所以切线的斜率k =-5e 0=-5,所以切线方程是:y -3=-5(x -0),即y =-5x +3.13.B11[2014·江西卷] 若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.13.(-ln 2,2) [解析] 设点P 的坐标为(x 0,y 0),y ′=-e -x .又切线平行于直线2x +y +1=0,所以-e -x 0=-2,可得x 0=-ln 2,此时y =2,所以点P 的坐标为(-ln 2,2).18.B11、B12[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 18.解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x ,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19. 7.B11[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .17.C [解析] 因为y ′=(x e x -1)′=e x -1+x e x -1,所以y =x e x -1在点(1,1)处的导数是y ′|x =1=e 1-1+e 1-1=2,故曲线y =x e x -1在点(1,1)处的切线斜率是2.8.B11[2014·新课标全国卷Ⅱ] 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .38.D [解析] y ′=a -1x +1,根据已知得,当x =0时,y ′=2,代入解得a =3.21.B11,B12,E8,M3[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x,g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0.。
2014年高考真题——理科数学(四川卷)解析版(部分) Word版含解析
2014年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。
满分150分。
考试时间120分钟。
考试结束后,将本试题卷和答题卡上一并交回。
第Ⅰ卷 (选择题 共50分)注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
一、选择题.1、已知集合2{20}A x x x =--≤,集合B 为整数集,则AB =( )(A ){1,0,1,2}- (B ){2,1,0,1}-- (C ){0,1} (D ){1,0}-2、在6(1)x x +的展开式中,含3x 的系数为( )(A )30 (B )20 (C )15 (D )103、为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图像上所有的点( ) (A )向左平行移动12个单位长度 (B )向右平行移动12个单位长度 (C )向左平行移动1个单位长度 (D )向右平行移动1个单位长度4、若设0,0a b c d >><<,则一定有( )(A )a b c d > (B )a b c d < (C )a b d c > (D )a b d c<5、执行如右图的程序框图,如果输入的,x y R ∈, 那么输出的S 的最大值为( )(A )0 (B )1 (C )2 (D )36、六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )(A )192 (B )216 (C )240 (D )2887、平面向量(1,2),(4,2),()c m m R ===+∈a b a b ,且c 与a 的夹角等于c 与b 的夹角,则m =(A )2- (B )1- (C )1 (D )28、如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点,设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )(A )1⎤⎥⎦ (B )1⎤⎥⎦ (C ) (D )1,⎤⎥⎦9、已知()()()()1111f x ln x ln x ,x ,=+--∈-,现有下列命题:○1()()f x f x ;-=- ○2()2221x f f x ;x ⎛⎫=⎪+⎝⎭○3()2f x x .≥ 其中的所有正确命题的序号是( )(A )○1○2○3 (B )○2○3 (C )○1○3 (D )○1○210、已知F 为抛物线2y x =的焦点,点A,B 在该抛物线上且位于x 轴的两侧,2OA OB =(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )(A )2 (B )3 (C (D第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学L单元算法初步与复数L1 算法与程序框图3.[2014·安徽卷] 如图1-1所示,程序框图(算法流程图)的输出结果是()图1-1A.34 B.53 C.78 D.893.B[解析] 由程序框图可知,变量的取值情况如下:第一次循环,x=1,y=1,z=2;第二次循环,x=1,y=2,z=3;第三次循环,x=2,y=3,z=5;第四次循环,x=3,y=5,z=8;第五次循环,x=5,y=8,z=13;第六次循环,x=8,y=13,z=21;第七次循环,x=13,y=21,z=34;第八次循环,x=21,y=34,z=55,不满足条件,跳出循环.4.[2014·北京卷] 当m=7,n=3时,执行如图1-1所示的程序框图,输出的S值为()图1-1A.7 B.42C.210 D.8404.C[解析] S=1×7×6×5=210.5.[2014·福建卷] 阅读如图1-3所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.405.B[解析] 输入S=0,n=1,第一次循环,S=0+2+1=3,n=2;第二次循环,S=3+22+2=9,n=3;第三次循环,S=9+23+3=20,n=4,满足S≥15,结束循环,输出S=20.13.[2014·湖北卷] 设a是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a =815,则I(a)=158,D(a)=851).阅读如图1-2所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=13.495[解析] 取a1=815⇒b1=851-158=693≠815⇒a2=693;由a2=693⇒b2=963-369=594≠693⇒a3=594;由a3=594⇒b3=954-459=495≠594⇒a4=495;由a4=495⇒b4=954-459=495=a4⇒b=495.6.[2014·湖南卷] 执行如图1-1所示的程序框图.如果输入的t∈[-2,2],则输出的S 属于()A.[-6,-2] B.[-5,-1]C.[-4,5] D.[-3,6]6.D[解析] (特值法)当t=-2时,t=2×(-2)2+1=9,S=9-3=6,所以D正确.7.[2014·江西卷] 阅读如图1-3所示的程序框图,运行相应的程序,则程序运行后输出的结果为()图1-3A.7 B.9 C.10 D.11.13.299 [解析] 当x =9时,y =5,则|y -x |=4;当x =5时,y =113,则|y -x |=43;当x =113时,y =299,则|y -x |=49<1.故输出y =299. 7.[2014·新课标全国卷Ⅰ] 执行如图1-2所示的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )图1-2A.203B.165C.72D.1587.D [解析] 逐次计算,依次可得:M =32,a =2,b =32,n =2;M =83,a =32,b =83,n =3;M =158,a =83,b =158,n =4.此时输出M ,故输出的是158.7.[2014·新课标全国卷Ⅱ] 执行如图1-2所示的程序框图,如果输入的x ,t 均为2,则输出的S =( )A.4 B.5 C.6 D.77.D[解析] 逐次计算,可得M=2,S=5,k=2;M=2,S=7,k=3,此时输出S =7.11.[2014·山东卷] 执行如图1-2所示的程序框图,若输入的x的值为1,则输出的n的值为____.图1-211.3[解析] x=1满足不等式,执行循环后,x=2,n=1;x=2满足不等式,执行循环后,x=3,n=2;x=3满足不等式,执行循环后,x=4,n=3;x=4不满足不等式,结束循环,输出的n的值为3.4.[2014·陕西卷] 根据如图1-1所示的框图,对大于2的整数N,输出的数列的通项公式是()图1-1A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -14.C [解析] 阅读题中所给的程序框图可知,对大于2的整数N ,输出数列:2,2×2=22,2×22=23,2×23=24,…,2×2N -1=2N ,故其通项公式为a n =2n .5.,[2014·四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图1-1A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.3.[2014·天津卷] 阅读如图11所示的程序框图,运行相应的程序,输出S 的值为( )图1-1A.15B.105C.245D.9453.B[解析] 第1次循环,i=1,T=3,S=1×3;第2次循环,i=2,T=5,S=1×3×5;第3次循环,i=3,T=7,S=1×3×5×7.执行完后,这时i变为4,退出循环,故输出S=1×3×5×7=105.11.[2014·浙江卷] 若某程序框图如图1-3所示,当输入50时,则该程序运行后输出的结果是________.11.6[解析] 第一次运行,S=1,i=2;第二次运行,S=4,i=3;第三次运行,S=11,i=4;第四次运行,S=26,i=5;第五次运行,S=57,i=6,此时S>n,输出i=6.5.[2014·重庆卷] 执行如图1-1所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A .s >12B .s >35C .s >710D .s >455.C [解析] 第一次循环结束,得s =1×910=910,k =8;第二次循环结束,得s =910×89=45,k =7;第三次循环结束,得s =45×78=710,k =6,此时退出循环,输出k =6.故判断框内可填s >710.L2 基本算法语句 L3 算法案例L4 复数的基本概念与运算 1.[2014·重庆卷] 复平面内表示复数i(1-2i)的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1.A [解析] i(1-2i)=2+i ,其在复平面内对应的点为(2,1),位于第一象限. 2.、[2014·浙江卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件2.A [解析] 由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A.1.[2014·全国卷] 设z =10i3+i,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 1.D [解析] z =10i 3+i =10i (3-i )(3+i )(3-i )=10(1+3i )10=1+3i ,根据共轭复数的定义,其共轭复数是1-3i.1.[2014·安徽卷] 设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i ·z-=( )A .-2B .-2iC .2D .2i1.C [解析] 因为z =1+i ,所以z i+i ·z -=(-i +1)+i +1=2.9.[2014·北京卷] 复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________.9.-1 [解析] ⎝ ⎛⎭⎪⎫1+i 1-i 2=⎣⎢⎡⎦⎥⎤(1+i )2(1-i )(1+i )2=⎝⎛⎭⎫2i 22=-1.1.[2014·福建卷] 复数z =(3-2i)i 的共轭复数z 等于( )A .-2-3iB .-2+3iC .2-3iD .2+3i1.C [解析] 由复数z =(3-2i)i =2+3i ,得复数z 的共轭复数z =2-3i. 2.[2014·广东卷] 已知复数z 满足(3+4i)z =25,则z =( ) A .-3+4i B .-3-4i C .3+4i D .3-4i2.D [解析] 本题考查复数的除法运算,利用分母的共轭复数进行求解. 因为(3+4i)z =25,所以z =253+4i =25(3-4i )(3-4i )(3+4i )=3-4i.1.[2014·湖北卷] i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( )A .-1B .1C .-iD .i1.A [解析] ⎝ ⎛⎭⎪⎫1-i 1+i 2=-2i 2i =-1.故选A. 1.[2014·湖南卷] 满足z +iz=i(i 为虚数单位)的复数z =( )A.12+12iB.12-12i C .-12+12i D .-12-12i1.B [解析] 因为z +i z =i ,则z +i =z i ,所以z =ii -1=i (-1-i )(i -1)(-1-i )=1-i 2.1.[2014·江西卷] z -是z 的共轭复数,若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( )A .1+iB .-1-iC .-1+iD .1-i1.D [解析] 设z =a +b i(a ,b ∈R ),则z -=a -b i ,所以2a =2,-2b =2,得a =1,b =-1,故z =1-i.2.[2014·辽宁卷] 设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i2.A [解析] 由(z -2i)(2-i)=5,得z -2i =52-i,故z =2+3i.2.[2014·新课标全国卷Ⅰ] (1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i2.D [解析] (1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=2i (1+i )-2i=-1-i.2.[2014·新课标全国卷Ⅱ] 设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( )A .-5B .5C .-4+iD .-4-i2.A [解析] 由题知z 2=-2+i ,所以z 1z 2=(2+i)(-2+i)=i 2-4=-5. 1.[2014·山东卷] 已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i1.D [解析] 因为a -i 与2+b i 互为共轭复数,所以a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.故选D.11.[2014·四川卷] 复数2-2i1+i =________.11.-2i [解析] 2-2i 1+i =2(1-i )2(1+i )(1-i )=-2i.1.[2014·天津卷] i 是虚数单位,复数7+i3+4i =( )A .1-iB .-1+i C.1725+3125i D .-177+257i 1.A [解析] 7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i )=25-25i32+42=1-i.L5 单元综合第11 页共11 页。