Aspen 物料衡算与能量衡算
化工原理物料衡算和热量衡算
化工原理物料衡算和热量衡算引言化工工程涉及许多物料的处理和转化过程,同时也需要考虑热量的平衡。
物料衡算和热量衡算是化工原理的重要内容,对于工程实践和过程优化具有重要的意义。
本文将介绍化工原理中的物料衡算和热量衡算的基本原理和计算方法。
物料衡算物料衡算是指对于化工工程中物料流动和转化过程的计算和分析。
在化工工程中,物料的流动和转化是实现各种反应和分离操作的基础,因此正确的物料衡算是保证工程设计和操作的关键。
在物料衡算中,我们通常需要考虑以下几个方面: 1. 物料的质量衡算:即对物料的质量输入和输出进行计算和分析。
对于物料的质量衡算,我们需要注意物料流动的平衡原则,即质量的输入必须等于输出。
2. 物料的能量衡算:即对物料的能量输入和输出进行计算和分析。
能量的输入和输出会影响物料的温度和相变过程,因此在能量衡算中需要考虑物料的热力学性质。
3. 物料的流动速度衡算:即对物料流动速度进行计算和分析。
物料的流动速度决定了反应和分离操作的效率,因此在物料衡算中需要合理地确定流量和速度的关系。
4. 物料的浓度衡算:即对物料中组分浓度的计算和分析。
物料的浓度会影响其反应和分离的速率和效果,因此在物料衡算中需要考虑不同组分浓度的变化规律。
物料衡算通常使用质量守恒和能量守恒等基本原理进行计算。
同时,还可以利用化学反应平衡的原理和质量流动的平衡原则进行衡算过程中的参数确定。
热量衡算热量衡算是化工工程中热力学过程的计算和分析。
在化工工程中,热量的平衡是保证反应和分离操作能够正常进行的基础。
热量衡算需要考虑以下几个方面: 1. 热量的输入和输出:即对于热量的输入和输出进行计算和分析。
在化工工程中,我们通常需要对热量的输入和输出进行平衡,以保证工程操作的稳定性。
2. 热量的传递和转化:即对于热量的传递和转化过程进行计算和分析。
热量的传递可以通过传导、对流和辐射等方式进行,因此在热量衡算中需要考虑传热方式的影响。
3. 热平衡的计算:即对于反应和分离过程中热量平衡的计算和分析。
化工设计物料衡算与能量衡算
(2)元素平衡法:
• 利用进出系统各元素的原子数目不变的性质进行计算。
• 例:丙烷脱氢可以生产丙稀。可惜由于副反应使产物中含 有轻烃,且在催化剂表面有炭沉积。若在一反应器内,纯 丙烷被转化成以下气体混合物(以mol%计):丙烷45、丙 稀20、乙烷6、乙烯1、甲烷3、氢25以及少量沉积的炭。设 反应器可以按比例扩大到处理58.2mol/d丙烷,计算所期望 的积炭速率?
• 输入空气则用于氢气燃烧的氧为:19.14-16.24-2.44=0.46mol,
• 故燃料中含氢0.46×2=0.92mol
• 燃料气中H2/ CH4=0.92/8.12=0.113,进料中(CH4+ H2) /空气
第三节 反应过程的能量衡算
❖ 能量衡算的意义:
三、物料衡算的基本步骤
1.确定衡算的对象和范围,并画出计算 对象的草图。
循环流
放空
进料
①
反应器
②
旁路
分离系统
③
产品 副产物或残渣
包括求解系统、衡算范围、衡算边界
2.确定计算任务; 3.确定过程所涉及的组分; 4.对物流流股进行编号,并标注物流变量; 5.收集数据资料:
化工设计第3章物料衡算与能量衡算
化工设计第3章物料衡算与能量衡算在化工设计中,物料衡算与能量衡算是非常重要的步骤。
物料衡算主要是指对化工过程中所使用的各种原材料的进出量进行计算,能够帮助工程师了解原料的使用情况,为后续的工艺设计提供依据。
而能量衡算则是对化工过程中的能量转化进行计算,可以获得能量消耗和产生的数据,有助于优化能源利用,提高生产效益。
物料衡算的主要步骤包括:确定物料流程图、编制原料清单、计算物料进出量和考虑损失。
首先,需要根据工艺流程确定物料的流向,画出物料流程图,明确物料的进出口。
然后,根据物料流程图编制原料清单,列出每种原料及其使用量。
接下来,根据反应方程式和化学平衡计算物料的进出量。
最后,要考虑到物料的损失情况,例如挥发、流失和反应损失等,并对损失量进行合理估计。
能量衡算的主要步骤包括:确定能量流程图、计算能量损失和能量转化。
首先,需要根据工艺流程确定能量的流向,画出能量流程图,明确能量的进出口。
然后,根据各个过程单元的热平衡计算能量的损失,例如由于传热而损失的热量。
接着,需要计算能量的转化,例如燃料的燃烧、蒸汽的产生等。
最后,通过能量衡算可以得到能量的消耗和产生数据,为能源优化提供依据。
物料衡算和能量衡算的结果可以互相影响。
例如,在物料衡算中,如果其中一种原料的进出量大幅增加,会导致能量的消耗也增加。
而在能量衡算中,如果能源的利用率提高,能够减少原料的消耗。
因此,在进行物料衡算和能量衡算时,需要综合考虑两者的关系,以达到优化生产效益的目的。
总之,物料衡算和能量衡算是化工设计过程中非常重要的环节。
通过对物料和能量的计算和衡算,可以获得关键数据,为后续的工艺设计和能源优化提供依据,提高生产效益,降低成本。
因此,对于化工工程师来说,掌握物料衡算和能量衡算的方法和技巧非常重要。
化工中物料衡算和热量衡算公式
化工中物料衡算和热量衡算公式一、物料衡算公式1.物料总量计算公式物料总量计算公式可以根据物质的密度(ρ)和体积(V)来计算。
公式如下:物料总量=密度×体积2.物料质量计算公式物料质量计算公式可以根据物质的密度(ρ)、体积(V)和物质的质量(m)之间的关系得出。
公式如下:质量=密度×体积3.物料浓度计算公式物料浓度计算公式可以根据溶质的质量(m)和溶液的体积(V)来计算。
公式如下:浓度=质量/体积4.溶液的重量和体积之间的关系溶液的重量可以根据溶液的密度(ρ)和溶液的体积(V)相乘得到。
公式如下:重量=密度×体积1.热量传递计算公式热量传递计算公式可以用于计算传热功率(Q)和传热面积(A)之间的关系。
公式如下:Q=h×A×ΔT其中,h为传热系数,ΔT为温差。
2.物料的热量计算公式物料的热量计算公式可以根据物料的质量(m)、比热容(Cp)和温度变化(ΔT)来计算。
公式如下:热量=质量×比热容×温度变化3.水的蒸发热计算公式水的蒸发热计算公式可以根据水的质量(m)和蒸发热(ΔHvap)来计算。
热量=质量×蒸发热三、补充说明1. 密度(ρ)是物质单位体积的质量,常用的单位有千克/立方米(kg/m^3)或克/立方厘米(g/cm^3)。
2. 比热容(Cp)是物质单位质量的热容量,表示单位质量物质温度升高1℃所需的热量,常用的单位是千焦/千克·℃(kJ/kg·°C)或焦/克·℃(J/g·°C)。
3.传热系数(h)是衡量热传导性能的参数,表示单位面积上的热量流入或流出的速率,常用的单位是瓦特/平方米·℃(W/m^2·°C)。
4.温度变化(ΔT)是物质的温度差,常用的单位是摄氏度(℃)或开尔文(K)。
5. 蒸发热(ΔHvap)是物质从液态转变为气态所需的热量,常用的单位是焦耳/克(J/g)或千焦/千克(kJ/kg)。
化工设计物料衡算与能量衡算
化工设计物料衡算与能量衡算1. 引言在化工工程领域,进行物料衡算和能量衡算是设计过程中必不可少的一部分。
物料衡算和能量衡算的准确性对于化工工程的安全运行和高效生产至关重要。
本文将介绍化工设计中的物料衡算和能量衡算的基本原理和方法。
2. 物料衡算2.1 物料平衡原理物料平衡是化工设计中的一项基本工作,它基于质量守恒定律和能量守恒定律。
物料平衡的目的是确定进料、出料和中间流程中物料的流量和组成。
物料平衡的计算可以用以下公式表示:$$ \\text{进料量} = \\text{出料量} + \\sum\\text{反应物料量} + \\sum \\text{中间流程物料量} $$2.2 物料平衡计算步骤进行物料平衡计算时,需要按照以下步骤进行:1.确定系统边界:将化工系统划分为进料、出料和中间流程三个部分,并确定它们之间的物料流动关系。
2.收集物料数据:收集进料和出料的物料流量和组成数据,以及反应物料和中间流程物料的数据。
3.建立物料平衡方程:根据物料平衡原理,建立物料平衡方程。
4.解方程:根据已知数据和已建立的物料平衡方程,解方程求解未知量。
5.检查计算结果:检查计算结果是否符合物料平衡原理,如有差异则进一步分析和调整。
2.3 物料平衡实例分析下面以酯化反应过程为例,进行物料平衡计算。
2.3.1 系统边界划分将酯化反应系统划分为进料、出料和中间流程三部分。
进料包括酸和醇,出料为酯。
中间流程包括未反应的酸和醇。
2.3.2 物料数据收集收集进料和出料的物料流量和组成数据,以及反应物料和中间流程物料的数据。
假设进料中的酸的流量为100 kg/h,醇的流量为50 kg/h,反应物料中未反应的酸的流量为10 kg/h,未反应的醇的流量为5 kg/h。
2.3.3 建立物料平衡方程根据物料平衡原理,建立物料平衡方程。
酸的平衡方程:100 kg/h = 10 kg/h + 出料量醇的平衡方程:50 kg/h = 5 kg/h + 出料量2.3.4 解方程根据已知数据和已建立的物料平衡方程,解方程求解未知量。
Aspen物料衡算与能量衡算
(4)确定计算任务。根据工艺流程示意图和化学反应方程式, 分析物流热流经过每一过程、每一设备在数量、组成、及物流 热流走向所发生的变化。
南
京 工
(5)画出工艺流程示意图。着重考虑物流热流的流向,对设
业 大
备的外形、尺寸、比例等并不严格要求,与物料、能量衡算有
学 关内容必须无一遗漏,所有物流热流管线均须画出。
学 件中的电解质向导,确认体系中的真实组分、表观组分、结晶
包 宗
化合物。
宏
16/40
2.1.4 用软件进行物料衡算与能量衡算的要点
(4)熟悉模块功能及其计算方法。软件中的模块本质上是计算 方法的图形显示,有的一个模块仅对应一种算法,有的一个模 块可包含几种算法,可根据运算操作者意愿选择运行。熟悉软 件的模块功能,可快速正确地建立起物料衡算的模拟流程。
醛醛醛醛
酮酮 酮酮
酯酯酯
酮酮酮酮
酯酯酯
醇醇醇醇
二二醇二醇二醇醇
水水水水
11
含极性物质
PR, LK-PLOCK,
PR-BM, PKS, RKSBM及其衍生方程
模拟 体系
南
京
不含极性物质
工
业
大
学
包 宗 宏
全是真实组分
CHAO-SEA, GRAYSON, BK10
P>0.1MPa
含虚拟组分 真空
BK10, IDEAL
(5)了解软件对物性术语的缩写。ASPEN PLUS是全英文软
件,操作界面上的指令都用英文全名表示,易于理解。但物流
的物性均用缩略语表示,很难记忆。在编制物料平衡表时,需
南 京
要同时列出各物流的物性,这就要向软件提出输出特定物性数
化工中的物料衡算和能量衡算
化工中的物料衡算和能量衡算化72 王琪2007011897 在化工原理的绪论课上,戴老师曾强调过化工原理的核心内容是“三传一反”即传质、传动、传热和反应,而物理三大定律——质量守恒、动量守恒、能量守恒正是三传的核心与实质,因此这三大定律在化工中统一成一种核心的方法:衡算。
正是衡算,使原本复杂的物理定律的应用变得简单,实用性强,更符合工程学科的特点。
为此化工中的物料衡算和能量衡算很重要,本文将分别从物料衡算、能量衡算讨论化工中的衡算问题,然后将讨论二者结合的情况。
物料衡算在台湾的文献中称为“质量平衡”,它反映生产过程中各种物料之间量的关系,是分析生产过程与每个设备的操作情况和进行过程与设备设计的基础。
一般来说物料衡算按下列步骤进行,为表示直观,做成流程图。
绘制流程图时应注意:1.用简洁的长方形来表达一个单元,不必画蛇添足;2.每一条物质流线代表一个真实的流质流动情况;3.区别开放与封闭的物质流4.区别连续操作与分批操作(间歇生产)5.不必将太复杂的资料写在物质流线上确定体系也比较重要,对于不同体系,衡算基准和衡算关系会有不同。
合适的基准对于衡算问题的简化很重要,根据过程特点通常有如下几种:1.时间基准:连续生产,选取一段时间间隔如1s,1min,1h,1d;间歇生产以一釜或一批料的生产周期为基准,对于非稳态操作,通常以时间微元dt为基准。
2.质量基准,对于固相、液相体系,常采用此基准,如1kg,100kg,1t,1000lb等。
3.体积基准(质量基准衍生):适用于气体,但要换成标准体积;适用于密度无变化的操作。
4.干湿基准:水分算在内和不算在内是有区别的,惯例如下:烟道气:即燃烧过程产生的所有气体,包括水蒸气,往往用湿基;奥氏分析:即利用不同的溶液来相继吸收气体试样中的不同组分从而得到气体组分,往往用干基。
化肥、农药常指湿基,而硝酸、盐酸等则指干基。
选取基准后,就要确定着眼物料了。
通常既可从所有物料出发,也可根据具体情况,从某组分或某元素着眼。
物料衡算和能量衡算概述
物料衡算和能量衡算概述物料衡算和能量衡算是工程和科学领域中常用的方法,用于描述和研究物质和能量的流动。
物料衡算关注物质的进出和转化过程,而能量衡算关注能量的转化和利用情况。
本文将对物料衡算和能量衡算进行概述,并介绍其在不同领域中的应用。
1. 物料衡算物料衡算是对物质的进出和转化过程进行量化和分析的方法。
它主要基于质量守恒定律,即不可创造或破坏物质。
物料衡算通常涉及以下几个方面的内容:1.1 进料和出料物料衡算中的进料和出料是指物质从系统的外部进入或离开系统的过程。
进料和出料可以是固体、液体或气体,可以通过不同的方式进行,如输送带、管道或容器。
衡算这些进料和出料的数量和质量可以帮助我们了解物质的流动情况和系统的整体效率。
1.2 转化和反应物料衡算还涉及物质的转化和反应过程。
在这些过程中,我们可以追踪和量化物质的变化,以及转化或生成的产物。
这对于研究化学反应、工艺过程和生态系统中的物质转化至关重要。
物料衡算可以帮助我们优化转化过程,提高反应效率,并监测环境中的物质循环。
1.3 混合和分离物料衡算还涉及物质的混合和分离过程。
在这些过程中,不同组分的物质可以混合在一起,或者通过特定的方法进行分离。
衡算混合物和分离物的组分和比例可以帮助我们优化混合和分离过程,并控制产品的质量和纯度。
1.4 废物和排放物料衡算还关注废物和排放物的产生和处理。
在生产和工艺过程中,废物和排放物可能对环境造成负面影响。
通过衡算废物和排放物的产生量和组分,我们可以找到减少和处理这些废物的方法,以减少对环境的影响。
2. 能量衡算能量衡算是对能量的转化和利用过程进行量化和分析的方法。
它基于能量守恒定律,即能量既不能创造也不能破坏,只能从一种形式转化为另一种形式。
能量衡算通常涉及以下几个方面的内容:2.1 能量流动能量衡算关注能量的流动。
能量可以通过传导、传热、传质和传动等方式在系统中传递和转移。
衡算能量流动的路径、速度和效率可以帮助我们了解能量转化的过程和系统的能量利用效率。
化工生产过程物料衡算和能量衡算
化工生产过程物料衡算和能量衡算一、物料衡算物料衡算主要是对物料在生产过程中的流动进行定量分析和计算。
它包括物料的进出口流量、过程中的转化和损失等方面。
物料衡算的目的是确定物料的流动情况,以控制和优化生产过程。
物料衡算通常涉及以下几个方面:1.原料的输入和产物的输出:从化工生产过程的角度来看,物料衡算的第一步是确定原料的输入和产物的输出。
这可以通过物料的质量或体积以及流量来衡量。
2.过程中的转化:化工生产过程中,原料经过一系列的化学反应、物理过程和分离步骤,转化成所需的产物。
物料衡算需要确定过程中每个反应、过程或分离步骤涉及的物料流量和转化率,以及产物的纯度和收率。
3.丢失与损耗:化工生产过程中常常存在物料的丢失和损耗,如挥发、固体颗粒的落地损失等。
物料衡算需要考虑这些损耗,并尽量减少它们的发生。
物料衡算的重要性在于通过对物料流动的定量分析,可以帮助工程师了解和控制生产过程中的物料转化、损耗和产物生成情况,从而优化生产过程。
二、能量衡算能量衡算是对化工生产过程中能量转换的定量分析和计算。
它涉及到能源的输入与输出以及能量的转化。
能量衡算可用于改善能源效率,减少能源消耗和废弃物的排放。
能量衡算主要包括以下几个方面:1.能源输入:能源是化工生产过程中的重要驱动力之一,常见的能源包括电能、燃料、蒸汽等。
能量衡算需要确定能源的类型、质量或热值、消耗量和运用效率。
2.能量转化:化工生产过程中会发生能量的转化,如化学反应产生的热能、电能转化为机械能等。
能量衡算需要考虑这些能量转化过程,并计算能量的转化率和损耗。
3.能源的输出:化工生产过程中也会有能源的输出,如废热、废气、废水等。
能量衡算需要确定这些能源输出的类型、质量或热值、排放量以及处理方式。
能量衡算的目的是优化能源的利用,提高能源效率,减少能源消耗和环境污染。
通过定量分析和计算能量流动,能量衡算可以帮助工程师了解和控制能源输入与输出,寻找能源转化和能耗的瓶颈,提出改进方案,提高生产过程的能量利用率。
化工中物料衡算和热量衡算公式
物料衡算和热量衡算物料衡算根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口处进行定量计算,称为物料衡算。
通过物料衡算可以计算原料与产品间的定量转变关系,以及计算各种原料的消耗量,各种中间产品、副产品的产量、损耗量及组成。
物料衡算的基础物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。
∑G1=∑G2+∑G3+∑G4∑G2:——输人物料量总和;∑G3:——输出物料量总和;∑G4:——物料损失量总和;∑G5:——物料积累量总和。
当系统内物料积累量为零时,上式可以写成:∑G1=∑G2+∑G3物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。
物料衡算的基准(1)对于间歇式操作的过程,常采用一批原料为基准进行计算。
(2)对于连续式操作的过程,可以采用单位时间产品数量或原料量为基准进行计算。
物料衡算的结果应列成原材料消耗定额及消耗量表。
消耗定额是指每吨产品或以一定量的产品(如每千克针剂、每万片药片等)所消耗的原材料量;而消耗量是指以每年或每日等时间所消耗的原材料量。
制剂车间的消耗定额及消耗量计算时应把原料、辅料及主要包装材料一起算入。
热量衡算制药生产过程中包含有化学过程和物理过程,往往伴随着能量变化,因此必须进行能量衡算。
又因生产中一般无轴功存在或轴功相对来讲影响较小,因此能量衡算实质上是热量衡算。
生产过程中产生的热量或冷量会使物料温度上升或下降,为了保证生产过程在一定温度下进行,则外界须对生产系统有热量的加入或排除。
通过热量衡算,对需加热或冷却设备进行热量计算,可以确定加热或冷却介质的用量,以及设备所需传递的热量。
热量衡算的基础热量衡算按能量守恒定律“在无轴功条件下,进入系统的热量与离开热量应该平衡”,在实际中对传热设备的衡算可由下式表示Q1+Q2+Q3=Q4+Q5+Q6(1—1)式中: Q1—所处理的物料带入设备总的热量,KJ;Q2—加热剂或冷却剂与设备和物料传递的热量(符号规定加热剂加入热量为“+”,冷却剂吸收热量为“-”),KJ;Q3—过程的热效率,(符号规定过程放热为“+”;过程吸热为“-”)Q4—反应终了时物料的焓(输出反应器的物料的焓)Q5—设备部件所消耗的热量,KJ;Q6—设备向四周散失的热量,又称热损失,KJ;热量衡算的基准可与物料衡算相同,即对间歇生产可以以每日或每批处理物料基准。
化工设计——第三章物料衡算和能量衡算
化工设计——第三章物料衡算和能量衡算在化工设计中,物料衡算和能量衡算是非常重要的步骤,能够帮助工程师确定所需的原料量和能量消耗,从而确保工艺的正常运行和产出的质量。
本章将介绍物料衡算和能量衡算的基本概念、方法和步骤,并结合实例进行说明。
物料衡算是指根据化工反应方程式和反应条件,计算出反应过程中所需的原料量和生成物的产量。
在进行物料衡算时,首先需要了解反应方程式和反应条件,然后确定产物的理论产量和选择适当的反应条件。
根据反应方程式可以计算出反应物的摩尔比例,从而推算出所需的原料量。
此外,还需要考虑反应物的纯度和反应的完全度,从而计算出实际需求的原料量。
在进行能量衡算时,需要考虑到反应过程中的热平衡问题。
热平衡是指在反应过程中吸热和放热的平衡状况。
反应过程中发生的放热或吸热会对反应速率和反应的完全度产生影响。
因此,在进行能量衡算时,需要计算出反应过程中的放热或吸热量,以及确定采取何种措施来保持反应的温度稳定。
物料衡算和能量衡算的步骤如下:1.确定反应方程式和反应条件。
根据反应方程式可以了解到反应物与产物之间的摩尔比例关系,从而推算出所需的原料量。
同时,还需要确定反应的温度、压力和反应时间等条件。
2.计算理论产量。
根据反应方程式和摩尔比例关系,可以计算出理论产量。
理论产量是指在完全反应情况下,根据所需原料的量计算得出的产物的量。
3.考虑反应的完全度和反应物的纯度。
反应过程中可能会有一些副反应或未完全反应的情况发生,从而影响到实际产量。
同时,还需要考虑到原料的纯度,因为原料的纯度不同也会影响到实际需求的原料量。
4.计算出实际需求的原料量和实际产物的产量。
根据前面的步骤计算出实际需求的原料量和实际产物的产量,并与理论值进行比较。
5.进行能量衡算。
根据反应过程中的吸热或放热情况,计算出反应过程中的热量变化。
根据所需的反应温度和反应热量,选择适当的降温或加热措施,以保持反应的温度稳定。
在进行物料衡算和能量衡算时,需要注意以下几点:1.实验数据的准确性和可靠性。
化工设计物料衡算和热量衡算
化工设计物料衡算和热量衡算化工设计物料衡算和热量衡算是化工工程设计中非常重要的内容。
物料衡算是指在化工工程中对物料的流动进行计算和衡量的过程,而热量衡算则是指对化工工程中的热量流动进行计算和衡量的过程。
下面将详细介绍这两个内容。
首先,物料衡算是化工工程设计中的一个必不可少的环节。
物料衡算要基于反应的化学反应原理或工艺流程,计算出物料的各项数据,如流量、摩尔质量、摩尔仓数等。
具体的衡算步骤包括:确定物料的基本特性,如摩尔质量、密度等;确定物料的流动量和流速;根据反应方程式和反应器的驱动力,计算出反应速率;进一步计算出反应器的物料应用时间(HRT),以衡量物料在反应器中的停留时间。
物料衡算的目的是为了选择合适的设备和工艺流程,以确保化工工程的安全运行。
通过物料衡算,可以计算出物料在不同设备中的流速和停留时间,从而判断是否需要增加搅拌装置或延长反应器的体积等改进措施。
此外,物料衡算还能帮助设计人员确定各种物料转移设备的大小和形式,以满足工艺流程的需求。
其次,热量衡算是物料衡算的重要组成部分,也是化工工程中的关键环节。
热量衡算要根据物料的热力学特性及其运动过程,计算出热量的流动和传递。
具体的衡算步骤包括:测定物料的初始和终止温度;计算物料的比热容和比焓;计算物料在设备中的热量传递和损失;计算过程中发生的温度变化和热量变化;计算设备的热损失和热水平;最终评估设备的热效率。
热量衡算的目的是为了保证化工工程的热平衡和能量效率。
通过热量衡算,可以计算出各个设备和工艺过程的热量损失和热交换,从而判断是否需要增加散热装置或回收热量等改进措施。
此外,热量衡算还能帮助设计人员确定各种热交换设备的大小和形式,以满足工艺流程的需求。
总结来说,物料衡算和热量衡算是化工工程设计中非常重要的内容。
物料衡算可以帮助设计人员选择合适的设备和工艺流程,确保化工工程的安全运行;热量衡算则可以保证化工工程的热平衡和能量效率。
通过物料衡算和热量衡算,设计人员可以更好地优化工艺流程,提高化工工程的效率和经济性。
化工设计第3章物料衡算与能量衡算
B-入口C3H8,mol。 共有6个未知量,因此必须列6个独立方程。
列元素平衡:
C平衡:3B=P
H2平衡:4B=Q O2平衡:0.21A=M+P+Q/2 N2平衡:0.79A=N 烟道气总量:M+N+P+Q=100
过剩氧量:0.21A*0.25/1.25=M
按照反应式的化学计量关系,还可以列出另外几个线性方程,但是都
100 mol烟道气*1mol空气/1.068 mol烟道气=93.6 mol
25
3.1 物料衡算
(三)基准:100 mol 烟道气
设: N-烟道气N2,mol;
M-烟道气中O2,mol; P-烟道气中CO2,mol; Q-烟道气中H2O,mol; A-入口空气,mol;
烟道气:氮气,二氧化碳,水蒸气,氧气
各种衡算基准
⑴ 时间基准 连续(小时,天……) 间歇(釜,批……)
⑵ 质量基准 kg,mol, kmol ……
⑶ 体积基准 m3(STP),Nm3
⑷ 干湿基准 干基(不含水),湿基(含水)
14
3.1 物料衡算
IV. 物料衡算的程序(步骤) 1. 搜集计算数据(物性参数与操作参数等) 2. 画出物料流程简图 3. 确定衡算体系 4. 写出化学反应方程式,包括主反应和副反应, 标出有用的分子量
3个未知量。
总物料衡算式:x+y+z=100
(1)
H2SO4衡算式:0.57x+0.93y=100×0.6=60 (2) HNO3衡算式:0.23x+0.90z=100×0.27=27 (3)
解(1)-(3)方程,得x=41.8 kg废酸,y=39 kg浓H2SO4,z=19.2 kg浓HNO3
Aspen 物料衡算与能量衡算(教学材料)
2.1.4 用软件进行物料衡算与能量衡算的要点
(2) 选择合适的物性计算方法。ASPEN PLUS软件把模拟计 算一个流程所需要的热力学性质与传递性质的计算方法与计算 模型都组合在一起,称之为性质方法,每种性质方法以其中主 要的热力学模型冠名,软件中共有80多种性质方法供操作者选 择使用。针对不同的模拟体系,选择合适的性质方法用于模拟 过程是获得正确计算结果的前提。
Case Study - Acetone Recovery
Correct choice of physical property models and accurate physical property parameters are essential for obtaining accurate simulation results.
包
Approach State Approach Model Approach
宗 宏
Predicted number of stages
11
7
42
required
专业课件
Approximate cost in dollars 520,000
2.1 衡算方法
2.1.1基本概念 物料平衡的理论依据是质量守恒定律,即在一个孤立体系中
不论物质发生任何变化(不包括核反应)它的质量始终保持不变。
在化工过程中,能量衡算是根据能量守恒定律,利用能量传
递和转化的规则,以确定能量比例和能量转变定量关系的过程。
能量衡算的理论依据是热力学第一定律,即体系的能量总变化
南 (ΔE)等于体系所吸收的热减去环境对体系所做的功。
京
工
业 大
简单化工操作单元的能量衡算可以手工进行,复杂化工流程的
年产25万吨苯乙烯项目.物料衡算及能量衡算表
年产25万吨苯乙烯项目物料衡算及能量衡算目录1.物料衡算 (1)1.1总述 (1)2.分工段物料衡算 (1)2.1轻烃裂解与吸收工段物料衡算 (1)2.2烷基化制乙苯工段物料衡算 (3)2.3乙苯脱氢与精制工段物料衡算 (4)3.主要设备的物料衡算 (5)3.1裂解炉系统物料衡算 (5)3.2催化精馏塔T-401物料衡算 (6)3.3三段绝热式固定床反应器物料衡算 (7)3.4苯乙烯粗馏塔物料衡算 (8)4.能量衡算 (9)4.1.总述 (9)4.2.能量衡算表 (9)4.2.1轻烃裂解与吸收工段能量衡算 (9)4.2.1.1裂解炉能量衡算 (9)4.2.2烷基化制乙苯工段能量衡算 (12)4.2.3乙苯脱氢与精制工段能量衡算 (17)4.2.4典型换热器(急冷换热器)能量衡算 (21)4.2.5典型泵(P-602)能量衡算 (21)4.2.6总结 (22)1.物料衡算1.1总述从原料入厂到产品输出,苯乙烯生产工艺流程分为三大工段:轻烃裂解与吸收工段,烷基化制乙苯工段和乙苯脱氢与精制工段。
物料衡算以Aspen Plus模拟的结果为依据进行计算。
项目的全流程模拟图如图5-1所示:图1-1项目全流程模拟图2.分工段物料衡算2.1轻烃裂解与吸收工段物料衡算轻烃裂解与吸收工段可以分为裂解炉、预分馏和气体精制三大部分,属于原料的处理与精制工段,该工段的流程模拟如图2-1所示:轻烃裂解与吸收工段烷基化制乙苯工段乙苯脱氢与精制工段图2-1轻烃裂解与吸收工段模拟流程图轻烃裂解与吸收工段的物料平衡表如表5-2所示:2.2烷基化制乙苯工段物料衡算烷基化制乙苯工段流程模拟如图5-3所示:图2-2烷基化制乙苯工段模拟流程图烷基化制乙苯工段流程模拟如表5-3所示:2.3乙苯脱氢与精制工段物料衡算乙苯脱氢与精制工段流程模拟如图5-4所示:图2-3乙苯脱氢与精制工段模拟流程图乙苯脱氢与精制工段流程模拟如表5-3所示:3.主要设备的物料衡算3.1裂解炉系统物料衡算图3-1裂解炉系统流程模拟图裂解炉系统物料衡算表如下:3.2催化精馏塔T-401物料衡算图3-2催化精馏塔模拟图催化精馏塔物料衡算表如下:。
化工设计之物料衡算及热量衡算
化工设计之物料衡算及热量衡算化工设计中的物料衡算和热量衡算是非常重要的步骤,可以帮助工程师确定所需的原料数量和能源消耗。
本文将讨论物料衡算和热量衡算的原理、方法和应用。
一、物料衡算物料衡算是指根据化工过程的原理和条件,计算出所需原料的数量。
1.原料衡算的原理在化工过程中,根据反应式、反应的平衡常数、物料的摩尔平衡和原料的纯度等信息,可以得出原料的物质平衡方程。
2.原料衡算的方法(1)平衡更新法:根据反应式及其他物质平衡方程,利用线性方程组求解方法,逐步逼近平衡条件,得出原料数量的近似解。
(2)摩尔关系法:利用反应的摩尔比例来计算原料的摩尔数量。
根据反应的平衡常数和其他物质平衡方程,可以得到原料的摩尔数量。
3.原料衡算的应用物料衡算在化工过程中有广泛的应用。
例如,在合成反应中,根据反应需求,确定所需原料的摩尔数量;在萃取过程中,根据溶剂和溶质的摩尔比例,计算溶液中的溶质浓度。
二、热量衡算热量衡算是指根据化工过程的热力学原理和条件,计算出所需的能量消耗。
1.热量衡算的原理根据热力学定律,可以计算化学反应的焓变,并以此来确定反应所需的热量。
热量衡算也需要考虑其他因素,如物料的温度、压力变化等。
2.热量衡算的方法(1)焓变法:根据反应的焓变和反应的摩尔比例,计算出反应所需的热量。
焓变可以通过实验测量或热力学数据库来获取。
(2)能量平衡法:考虑物料流动和热交换等因素,通过能量平衡方程求解,计算出能量的输入和输出。
3.热量衡算的应用热量衡算在化工过程中的应用非常广泛。
例如,在高温燃烧反应中,需要计算反应所需的燃料气体的热量;在蒸汽发生器中,需要计算蒸汽的产生量和燃料的热量供应。
物料衡算和热量衡算是化工设计中不可或缺的两个步骤,可以帮助工程师确定原料的用量和能量消耗,从而优化过程设计、提高生产效率和节约能源。
在进行衡算时,需要准确地获取物料的性质数据,合理地选择计算方法,并考虑到实际操作条件的变化,以保证设计结果的可靠性和实用性。
化工生产过程物料衡算和能量衡算
其中:对硝基乙苯 1999.9×0.5=1000kg
邻硝基乙苯
1999.9×0.44=880kg
间硝基乙苯
1999.9×0.06=120kg
废酸量
其中: 已反应硝酸
1404.6 63 833.5kg 106.17
生成水
1404.6 18 238.1kg 106.17
剩余硝酸 891.9-833.5=58.4kg
CH4,0.25kmol/h H2O(g),1.50 kmol/h CO,0.50 kmol/h
CO2,0.25 kmol/h H2,2.5 kmol/h
2.确定基准 以25℃为基准温度。
3.列出能量衡算方程 假设系统保温良好,Q损=0,根据题意,转化过程中需
向转化器提供的热量为: Q=△H
其中△H=∑Hi出-∑Hi入 Hi=ni△HFiθ+ niCP25-500△t= ni (△HFiθ+ CP25-500△t)
4.查取手册得到有关热力学数据
各组分的标准生成焓△HFiθ和25~500℃间的平均 摩尔定压热容CP,m见下表:
组分 △HFθ/(kJ·kmol) CP,m/(kJ·kmol·℃-1) △t/℃ △HFiθ+ CP25-500△t/(kJ·kmol)
CH4
-74.85×103
48.76
475
-51689
3.物料衡算
(1)碳元素平衡 nCH4入= nCO + nCO2 +nCH4出
即
1= nCO + nCO2 +0.25
nCO + nCO2=0.75
(1)
(2)氧元素平衡 nH2O入= nCO + 2nCO2 +nH2O出
化工中物料衡算和热量衡算公式
物料衡算和热量衡算物料衡算根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口处进行定量计算,称为物料衡算。
通过物料衡算可以计算原料与产品间的定量转变关系,以及计算各种原料的消耗量,各种中间产品、副产品的产量、损耗量及组成。
物料衡算的基础物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。
∑G1=∑G2+∑G3+∑G4∑G2:——输人物料量总和;∑G3:——输出物料量总和;∑G4:——物料损失量总和;∑G5:——物料积累量总和。
当系统内物料积累量为零时,上式可以写成:∑G1=∑G2+∑G3物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。
物料衡算的基准(1)对于间歇式操作的过程,常采用一批原料为基准进行计算。
(2)对于连续式操作的过程,可以采用单位时间产品数量或原料量为基准进行计算。
物料衡算的结果应列成原材料消耗定额及消耗量表。
消耗定额是指每吨产品或以一定量的产品(如每千克针剂、每万片药片等)所消耗的原材料量;而消耗量是指以每年或每日等时间所消耗的原材料量。
制剂车间的消耗定额及消耗量计算时应把原料、辅料及主要包装材料一起算入。
热量衡算制药生产过程中包含有化学过程和物理过程,往往伴随着能量变化,因此必须进行能量衡算。
又因生产中一般无轴功存在或轴功相对来讲影响较小,因此能量衡算实质上是热量衡算。
生产过程中产生的热量或冷量会使物料温度上升或下降,为了保证生产过程在一定温度下进行,则外界须对生产系统有热量的加入或排除。
通过热量衡算,对需加热或冷却设备进行热量计算,可以确定加热或冷却介质的用量,以及设备所需传递的热量。
热量衡算的基础热量衡算按能量守恒定律“在无轴功条件下,进入系统的热量与离开热量应该平衡”,在实际中对传热设备的衡算可由下式表示Q 1+Q 2+Q 3=Q 4+Q 5+Q 6 (1—1)式中: Q 1—所处理的物料带入设备总的热量,KJ;Q 2—加热剂或冷却剂与设备和物料传递的热量(符号规定加热剂加入热量为“+”,冷却剂吸收热量为“-”),KJ;Q 3—过程的热效率,(符号规定过程放热为“+”;过程吸热为“-”)Q 4—反应终了时物料的焓(输出反应器的物料的焓)Q 5—设备部件所消耗的热量,KJ;Q 6—设备向四周散失的热量,又称热损失,KJ;热量衡算的基准可与物料衡算相同,即对间歇生产可以以每日或每批处理物料基准。
Aspen物料衡算与能量衡算
WILS, NRTL, UNIQUAC
及其衍生方程 P<1MPa
有二元 交互作 用参数
液液 平衡
汽液 平衡
WILS-HF
六聚 有汽相
缔合
二聚 无汽相 缔合
南
京
工
业 大
含极性
学 物质
包 宗 宏
不含 电解质
含电 解质
UNIF-NTH, UNIF-HOC
无二元 交互作 用参数
包
Approach State Approach Model Approach
宗
宏 Predicted number of stages 11
7
42
required
Approximate cost in dollars 520,000
390,000
880,000
常见有机化合物极性增加顺序:
烃烃烃
醚 醚醚醚
OVHD
FEED
COLUMN
5000 lbmol/hr
10 mole % acetone
90 mole % water
BTMS
南
京 工
Specification: 99.5 mole % acetone recovery
业
大 学
Ideal
Equation of
Activity Coefficient
(2)选定计算基准。温度的因次可采用“℃”或“K”,压力 的因次可采用“kPa”、“atm” 或其它,压力基准可选用绝 对压力或表压。
物流量的计算基准可选质量基准、摩尔基准、体积基准。对
南 京
于连续生产,以“s、h、d”作为投料量或产品量的时间基准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南 京 工 业 大 学 包 宗 宏
6/40
(5)画出工艺流程示意图。着重考虑物流热流的流向,对设 备的外形、尺寸、比例等并不严格要求,与物料、能量衡算有 关内容必须无一遗漏,所有物流热流管线均须画出。
2.1.3 衡算的基本步骤 (6) 根据工艺流程图抽象出模拟流程。要充分理解基本工艺 路线,明ห้องสมุดไป่ตู้本流程的主干与枝干,选择软件中合适的模块、或 模块组合构成软件模拟流程,以反映流程的模拟需求。 (7)校核计算结果。当计算全部完成后,对计算结果进行整 理,编制物料热量平衡表或绘制物料流程图。通过物料热量平 衡表可以直接检查计算是否准确,分析结果组成是否合理,并 易于发现存在问题,从而判断其合理性,提出改进方案。
工 业 大 学
对于含电解质的过程,要考虑可能存在的离子反应,借助于软 件中的电解质向导,确认体系中的真实组分、表观组分、结晶 包 宗 化合物。
宏
16/40
2.1.4 用软件进行物料衡算与能量衡算的要点 (4)熟悉模块功能及其计算方法。软件中的模块本质上是计算 方法的图形显示,有的一个模块仅对应一种算法,有的一个模 块可包含几种算法,可根据运算操作者意愿选择运行。熟悉软 件的模块功能,可快速正确地建立起物料衡算的模拟流程。
宗 宏
5/40
2.1.3 衡算的基本步骤 (3)确定化学反应方程式。列出各个过程的主、副化学反应 方程式,明确反应和变化前后的物料组成及各个组分之间的定 量关系,若计算反应器大小,还需要掌握反应动力学数据。 (4)确定计算任务。根据工艺流程示意图和化学反应方程式, 分析物流热流经过每一过程、每一设备在数量、组成、及物流 热流走向所发生的变化。
8/40
2.1.4 用软件进行物料衡算与能量衡算的要点
(2) 选择合适的物性计算方法。ASPEN PLUS软件把模拟计 算一个流程所需要的热力学性质与传递性质的计算方法与计算 模型都组合在一起,称之为性质方法,每种性质方法以其中主 要的热力学模型冠名,软件中共有80多种性质方法供操作者选 择使用。针对不同的模拟体系,选择合适的性质方法用于模拟 过程是获得正确计算结果的前提。 几乎所有的单元操作模型都需要热力学性质与传递性质的计算, 南 其中主要有逸度系数、相平衡常数、焓、熵、Gibbs自由能、 京 工 密度、粘度、导热系数、扩散系数、表面张力等。 业
“Elecins”文件夹:综合过程数据包与电解质过程数据包,包含 93个电解质过程的“.bkp” 数据包文件;
“Datapkg” 文件夹:包含了15个综合化工过程的“.bkp” 数据包 文件。 18/40
2.1.4 用软件进行物料衡算与能量衡算的要点 (7)学会判断计算结果的正确性。当一个模拟过程运算正常收 敛后,软件状态栏上提示 “Results Available”,表示计算有了 结果,这并不表示结果正确。 结果是否正确,不能指望模拟软件提供结论, 而应依靠自己的 判断。判断的基础是运算操作者对模拟过程的细致了解、化工 专业知识的深刻领会、模拟过程工业背景的熟悉程度、工业装 置的现场操作数据等综合评价。
(5)了解软件对物性术语的缩写。ASPEN PLUS是全英文软 件,操作界面上的指令都用英文全名表示,易于理解。但物流 的物性均用缩略语表示,很难记忆。在编制物料平衡表时,需 南 京 要同时列出各物流的物性,这就要向软件提出输出特定物性数 工 业 据的要求,若能熟悉软件常用物性术语的缩写方式,则可方便 大 地输出物流的物性。 学
南 京 工 业 含极性 大 学 物质 包 宗 宏
不含 电解质 P>1MPa 含电 解质
无二元 交互作 用参数
液液 平衡
汽液 平衡
有汽相 缔合
UNIFAC 及其衍生方程
无汽相 缔合
2.1.4 用软件进行物料衡算与能量衡算的要点 若性质方法选择不当,只要模拟过程收敛,即使结果不合理, 软件也不会提示出错信息。 另一方面,即使性质方法选择正确,但使用不当也会产生错误 结果。因为性质方法计算的准确程度由模型方程式本身和它的 用法所决定,如热力学模型的使用往往涉及原始数据的合理选 取、模型参数的估计、从纯物质参数计算混合物参数时混合规 则的选择等问题,均需要正确处理。
醚 醚 醚 醚
醛 醛醛 醛
酮 酮 酮 酮
酯 酯酯
酮 酮 酮酮
酯 酯 酯
醇醇 醇 醇
二醇 二醇 二醇 二醇
水 水 水水
11
含极性物质
PR, LK-PLOCK, PR-BM, PKS, RKSBM及其衍生方程
模拟 体系
全是真实组分
CHAO-SEA, GRAYSON, BK10
南 京 工 业 大 学 包 宗 宏
大 学 包 没有任何一个热力学模型与传递模型能适用于所有的物系和所 宗 宏 有的过程。因此,性质方法的恰当选择和正确使用决定着计算
结果的准确性、可靠性和模拟成功与否。
9/40
Case Study - Acetone Recovery Correct choice of physical property models and accurate physical property parameters are essential for obtaining accurate simulation results.
京 工 业 大 学
简单化工操作单元的能量衡算可以手工进行,复杂化工流程的 能量衡算手工计算非常困难,而任何情况下使用模拟软件进行 包 宗 化工过程的能量衡算都是很方便的。
宏
3/40
2.1.2 衡算方程式 化工工艺计算中的物料平衡是指“在单位时间内进入衡算系 统的全部物料质量,必定等于离开该系统的全部物料质量、加 上损失掉与积累起来的物料质量。”
南 京 工 业 大 学 包 宗 宏
7/40
2.1.4 用软件进行物料衡算与能量衡算的要点 (1) 选择合适的因次模板。因次模板是ASPEN PLUS软件为 不同工艺过程编制的因次集,分为普通模拟过程与石油加工过 程两大类,每大类又含有若干套,每套都包含英制与公制两种 因次集,如表2-1。
南 京 工 业 大 学 包 宗 宏
南 京 工 业 大 学 包 宗 宏
19/40
2.2 简单物理过程 2.2.1 混合过程 多股物料的混合与一股物料分流成多股物料是化工生产中 常见的操作,其物料衡算可以用ASPEN PLUS 中的混合器与 分流器进行模拟。
南 京 工 业 大 学 包 宗 宏
OVHD FEED
COLUMN
5000 lbmol/hr 10 mole % acetone 90 mole % water 南 京 工 业 大 学
BTMS
Specification: 99.5 mole % acetone recovery
包 宗 宏 Predicted number of stages required
连续流动系统的总能量衡算式是柏努利方程式,即:
南 京 工 业 大 学
在进行设备的能量衡算时,位能变化、动能变化、外功等项 包 相对较小,可忽略不计,因此稳流系统总能量衡算可简化为热 宗 宏 量衡算。
4/40
2.1.3 衡算的基本步骤 (1)收集数据资料。一般需要收集的数据和资料包括生产规模 和生产时间(即年生产时数)、有关的定额、收率、转化率、原 料、辅助材料、产品、中间产品的规格、与过程计算有关的物 理化学常数等。 (2)选定计算基准。温度的因次可采用“℃”或“K”,压力 的因次可采用“kPa”、“atm” 或其它,压力基准可选用绝对压 力或表压。 物流量的计算基准可选质量基准、摩尔基准、体积基准。对 南 京 于连续生产,以“s、h、d”作为投料量或产品量的时间基准。 工 业 用模拟软件进行衡算时,以单位时间的投料量为起点进行计 大 学 算比较方便。当系统介质为固体或液体时,一般以质量为计算 包 基准,对气体物料进行计算时,一般选体积作为计算基准。
不含极性物质 P>0.1MPa
含虚拟组分
真空
BK10, IDEAL
P<1MPa
SR-POLAR, PRWS, RKSWS 及其衍生方程
不含电解质
有二元交互 作用参数 P>1MPa
含极性物质
南 京 工 业 大 学 包 宗 宏
模拟 体系
含电解质
无二元交互 作用参数
不含极性物质
ELECNRTL, PITZER 及其衍生方程
PSRK, PR, RKS 及其衍生方程
NRTL, UNIQUAC 及其衍生方程
含-HOC的衍生 活度系数方程
有二元 交互作 用参数
液液 平衡 汽液 平衡
WILS-HF
六聚
有汽相 缔合
二聚 无汽相 缔合
UNIFAC-LL
WILS, NRTL, UNIQUAC 及其衍生方程
P<1MPa
UNIF-NTH, UNIF-HOC
Approximate cost in dollars
Ideal Approach
11 520,000
Equation of State Approach
7 390,000
Activity Coefficient Model Approach
42 880,000
常见有机化合物极性增加顺序:
烃 烃烃
2/40
2.1 衡算方法 2.1.1基本概念 物料平衡的理论依据是质量守恒定律,即在一个孤立体系中 不论物质发生任何变化(不包括核反应)它的质量始终保持不变。 在化工过程中,能量衡算是根据能量守恒定律,利用能量传 递和转化的规则,以确定能量比例和能量转变定量关系的过程。 能量衡算的理论依据是热力学第一定律,即体系的能量总变化 (ΔE)等于体系所吸收的热减去环境对体系所做的功。 南