四面体的性质
正四面体知识
![正四面体知识](https://img.taocdn.com/s3/m/f44c343b02d8ce2f0066f5335a8102d276a261af.png)
正四面体知识
正四面体是一种三维几何体,由四个等边等角三角形组成。
以下是有关正四面体的一些基本知识:
1. 定义:正四面体是一种具有四个等边等角三角形为侧面的多面体。
它的四个顶点和六条棱之间都是等长的,每个内角都是完全相等的。
2. 基本特征:
- 顶点:正四面体有四个顶点,每个顶点都与其他三个顶点相连。
- 棱:正四面体有六条棱,每个顶点都与两条棱相连。
- 面:正四面体有四个面,每个面都是一个等边等角三角形。
- 角:正四面体有四个内角,每个内角都相等。
3. 对称性:正四面体具有多种对称性质:
- 旋转对称性:正四面体可以进行120度的旋转,使其中一个顶点重合于另一个顶点。
- 镜像对称性:正四面体可通过某个面进行镜像反射。
4. 其他性质:
- 高度:正四面体的高度是指从一个顶点到相对的面上的垂直距离。
- 体积:正四面体的体积可以通过公式V = (a³ * √2) / 12来计算,其中a为等边三角形的边长。
- 表面积:正四面体的表面积可以通过公式S = √3 * a²来计算,其中a为等边三角形的边长。
- 对角线:正四面体的对角线是指连接不相邻顶点的线段。
正四面体有四条对角线。
5. 应用:
- 几何学:正四面体是基本的多面体之一,对于研究几何学和立体几何具有重要意义。
- 物理学:正四面体的对称性被广泛应用于物理学中的结构分析和量子力学领域。
希望这些基本知识能够帮助你更好地理解正四面体。
正四面体常用结论
![正四面体常用结论](https://img.taocdn.com/s3/m/c91d55f05ebfc77da26925c52cc58bd63086937a.png)
正四面体常用结论
正四面体是一种具有四个等边三角形的三维几何体,其常用结论包括以下几个方面。
1. 正四面体的性质
正四面体的四个面都是等边三角形,四个顶点相互连通,其中每个顶点都是三个面的公共点,每条边都是两个面的公共边。
正四面体的底面中心、顶点以及每个面的重心三点共线,且共线比为1:3。
正四面体的每个内角都是70.53度,每个外角为109.47度。
2. 正四面体的体积公式
正四面体的体积公式为V=√2/12a³,其中a为正四面体的棱长。
这个公式可以通过正四面体的高度和底面积来推导得到,也可以通过计算四个棱锥的体积并相加得到。
3. 正四面体的表面积公式
正四面体的表面积公式为S=√3a²,其中a为正四面体的棱长。
这个公式可以通过将正四面体分解成四个等腰三角形和一个正三角形来推导得到。
4. 正四面体的对称性
正四面体具有旋转对称性和镜像对称性。
它有6个旋转对称轴,分
别为通过两个相邻顶点的轴,以及通过中心垂直于某个面的轴。
它也有6个镜像对称面,分别为通过两个相邻顶点和中心的面,以及通过棱中点和面中心的面。
5. 正四面体的嵌入
正四面体可以嵌入到三维空间中的不同形状中。
其中最著名的是嵌入到八面体中,也就是四面体与另外一个四面体共享一个顶点,中心分别连接形成六个正方形。
正四面体作为一种基本几何体,具有独特的性质和应用。
掌握正四面体的常用结论,可以帮助我们更好地理解三维几何空间中的形状和应用。
几何体的正四面体
![几何体的正四面体](https://img.taocdn.com/s3/m/bf5bfdf568dc5022aaea998fcc22bcd126ff42b7.png)
几何体的正四面体正四面体是一种特殊的几何体,具有很多独特的性质和特点。
在本文中,我将介绍正四面体的定义、属性以及一些有趣的应用。
一、正四面体的定义正四面体是一种具有四个等边等角面的多面体。
它的四个面都是等边三角形,每两个面之间的夹角都是一样的,也都是等于70.53°。
在正四面体中,任意两条边的长度和相等。
这些特点使得正四面体在几何学中有着重要的地位。
二、正四面体的性质1. 对称性:正四面体具有很高的对称性。
它有24个对称操作,包括旋转和翻转等。
这些对称性使得正四面体在立体几何中有广泛的应用,例如建筑设计和立体模型制作等。
2. 共面性:正四面体的四个顶点共面。
这意味着可以通过这四个顶点构成一个平面。
而且在这个平面上,正四面体可以被视为一个等边三角形。
3. 体积和表面积:正四面体的体积和表面积可以通过简单的公式计算得到。
其中,体积公式为V = (a³√2) / 12,表面积公式为S = a²√3,其中a表示正四面体一个面的边长。
4. 空间分割:正四面体可以将三维空间分割成四个完全相同的四面体。
这种空间分割在某些科学领域中非常有用,例如晶体结构的研究和分子模拟等。
三、正四面体的应用1. 立体几何学研究:正四面体是立体几何学中的一个基本概念,它的研究可以帮助我们理解和解决各种与几何学相关的问题,例如立体投影、体积计算等。
2. 建筑设计:正四面体的对称性和美观性使得它成为建筑设计中的常用元素。
例如,一些摩天大楼的外形可以采用正四面体的结构,使得建筑物更加稳定和美观。
3. 教育和娱乐:正四面体的独特性质和形状可以作为教学和娱乐的工具。
通过搭建正四面体模型或者使用虚拟现实技术,人们可以更直观地了解和体验正四面体的一些特点和性质。
总结:正四面体作为一种特殊的几何体,具有对称性、共面性以及特定的体积和表面积等性质。
它在几何学研究、建筑设计和教育娱乐等领域有着广泛的应用。
通过深入研究和探索正四面体,我们可以进一步拓展对几何学的理解和应用。
30.四面体
![30.四面体](https://img.taocdn.com/s3/m/19d07ff4f705cc1755270909.png)
四面体与平行六面体一、一般四面体的性质性质1.任意四面体六个二面角的平分面交于一点,这点到四面体四个面的距离相等,称该点为四面体内切球球心(简称四面体的内心)。
内切球与四面体四个面内切。
若四面体ABCD 的体积为V ,顶点A 所对的侧面面积为A S ,类似的有,,B C D S S S ,则内切球半径3A B C DVr S S S S =+++.性质2.任意四面体六条棱的垂直平分面交于一点,这点到四面体顶点的距离相等,该点称为四面体外接球球心(简称四面体外心)。
外接球通过四面体四顶点。
性质3.任意四面体的四条中线(每一顶点与其对面重心的连线)交于一点,而且该点是中线的四等分点。
性质4.四面体体积公式一:11113333A A B B C C D D V S h S h S h S h ==== 性质5.四面体体积公式之二:1||||sin ,6V AB CD d AB CD =⋅⋅⋅<> (其中d 为AB 、CD 距离)性质6.四面体体积公式二:2sin 2sin 2sin 2sin 2sin 2sin 333333C D AB A D BC A B CD B C DA B D AC A C BDS S S S S S S S S S S S V AB BC CD DA AC BDθθθθθθ======二、特殊四面体的性质(1) 正四面体:各边均相等;(2) (3) 等腰四面体:三组对边分别相等。
三、平行面体像平行四边形是平面图几何的基础一样, 平行六面体是立体几何的基本图形。
性质1.平行六面体的四条体对角线交于一点,且在这一点互相平分,称该点为平行六面体的中心; 性质2.平行六面体的所有体对角线的平方和等于所有棱的平方和。
推论1:平行六面体的所有侧面对角线的平方和等于其所有体对角线平方和的两倍。
推论2:平行六面体的每一侧棱的平方和等于等于与这一侧共面的两侧面四条对角线的平方减去与这一侧棱不共面而共端点的两条侧面对角线平方和所得差的14。
第22章一般四面体的性质及应用
![第22章一般四面体的性质及应用](https://img.taocdn.com/s3/m/229cefea4693daef5ef73d4a.png)
第二十二章一般四面体的性质及应用【基础知识】四面体是三角形在空间的直接推广,三角形的很多性质及其证法可以推广到四面体上去.四面体的许多性质可以借助于平行六面体来证.性质1任意四面体六个内二面角的平分面交于一点,这点到四面体四个面的距离相等,该点称为四面体的内切球球心(简称四面体的内心).内切球与四面体四个面内切. 若四面体ABCD 的体积为V ,顶点A 所对的侧面面积为A S ,类似地有B S ,C S ,D S (后面所设均同此),其内切球半径记为r ,则3A B C DVr S S S S =+++.性质2任意四面体六条棱的垂直平分面交于一点,这点到四面体四顶点的距离相等,该点称为四面体的外接球球心(简称四面体的外心).外接球通过四面体四顶点. 若四面体ABCD 的体积为V ,其三对对棱的长分别为1a ,a ;1b ,b ;1c ,c ,其外接球半径为R ,则1624Q R V V===注其中Q 即为以三对对棱乘积为边的三角形面积. 性质3任意四面体的四条中线(每一顶点与其对面重心的连线)交于一点,而且每条中线从各该顶点算起都被这点分为31∶之比,这点称为四面体的重心. 性质4任意四面体的共顶点的(二面角的棱共顶点)三个内二面角的平分面与另三个内二面角的补(或外)二面角的平分面交于一点,这点到四面体四个面的距离相等,该点称为四面体的旁切球球心(简称四面体的旁心),且一个四面体有四个旁心,旁切球与四面体的一个侧面外切,与其他三个侧面的延展面相切.若与四面体ABCD 的顶点A 所对的面外切,与其余三个侧面的延展面相切的旁切球半径记为A r ,类似地有B r ,C r ,D r ,其他记号同前,则 3A B C D A V r S S S S =++-,3B A C D B Vr S S S S =++-,3C A B D C V r S S S S =+++,3D A B C DVr S S S S =+++.性质5(射影定理)四面体任意一个侧面的面积等于其他三个侧面在这个侧面上的射影面积之和.即在四面体ABCD 中,若记AB θ为棱AB 所在的内二面角的大小,其余类同,则有 cos cos cos A B CD C BD D BC S S S S θθθ=⋅+⋅+⋅, cos cos cos B C AD D AC A CD S S S S θθθ=⋅+⋅+⋅, cos cos cos C D AB A BD B AD S S S S θθθ=⋅+⋅+⋅, cos cos cos D A BC B AC C AB S S S S θθθ=⋅+⋅+⋅.性质6(余弦定理)四面体任意一个侧面的面积的平方,等于其他三个侧面的面积的平方和减去这三个侧面中每两个面面积及其所夹二面角余弦之积的两倍之和.即在四面体ABCD 中,有22222cos 2cos 2cos A B C D B C AD C D AB B D AC S S S S S S S S S S θθθ=++-⋅⋅-⋅⋅-⋅,22222cos 2cos 2cos B C D A C D AB C A BD D A BC S S S S S S S S S S θθθ=++-⋅⋅-⋅⋅-⋅,22222cos 2cos 2cos C A B D A B CD A D BC B D AC S S S S S S S S S S θθθ=++-⋅⋅-⋅⋅-⋅,22222cos 2cos 2cos D A B C A B AB A C BD B C AD S S S S S S S S S S θθθ=++-⋅⋅-⋅⋅-⋅.注顺次用A S ,B S ,C S ,D S 去乘射影定理中各式并相加整理即得以上第一式,其余各式类同.性质7(体积公式一)四面体体积13=倍底面面积与底面上的高的乘积.即11113333A AB BC CD D v S h S h S h S h =⋅=⋅=⋅=⋅.性质8(体积公式二)四面体的体积等于它的任意两个面的面积及其所夹二面角正弦之积的三分之二,除以这两个面的公共棱长.即对四面体ABCD ,有2sin 2sin 2sin 2sin 3333C D AB A D BC A B CD B C DAS S S S S S S S V AB BC CD DAθθθθ⋅⋅⋅⋅⋅⋅⋅⋅====2sin 2sin 33B DAC A C BDS S S S AC BDθθ⋅⋅⋅⋅=. 注由2111sin sin 3332C C C AB C AB h AB V S h S h S AB θθ⋅⋅=⋅=⋅⋅=⋅⋅=⋅斜高斜高2sin 3C DAB S S ABθ⋅⋅等即证得. 性质9(体积公式三)四面体的体积等于共顶点的三条棱长乘积与该顶点三面角的特征值乘积的六分之一,即对于四面体ABCD ,若共顶点A 的三条棱长分别为a ,b ,c ,顶点A 处的三个面角分别为α,β,γ则有()1166v abc S A =⋅=16abc =()12ωαβγ=++.其中()S A =A的三面角的特征值. 注由111sin sin 332V S h ab C γβ=⋅=⋅⋅⋅⋅性质10(体积公式四)若记1P ,2P ,3P分别为四面体相对两棱(互为异面的两条棱)的积的平方,再乘以另外四条棱的平方和与这对棱的平方和的差所得的积;P 为四面体每个面上三条棱的积的平方和,则四面体的体积V性质11(正弦定理一)在四面体ABCD 中,有(1)sin sin sin sin C D AB A D BC B C DA B D ACAB BC DA ACS S S S S S S S θθθθ===⋅⋅⋅⋅⋅⋅⋅⋅2sin sin 3A B CD A C BD CD BD S S S S Vθθ===⋅⋅⋅⋅; (2)22sin sin sin sin sin sin 9A B C D AB CD AD BC AC BD S S S S AB CD AD BC AC BDVθθθθθθ⋅⋅⋅⋅⋅⋅===⋅⋅⋅;(3)若()sin A 表示顶点A 处的三棱中,任意两棱上的二面角的正弦与这两条棱夹角的正弦三者的积,余类同,则()()()()22sin sin sin sin 9C A B C D A B DS S S S S S S S A B C D V====.注此性质由性质8即证.性质12(正弦定理二)四面体中各个面上三条棱长的积与其所对三面角的特征值之比都相等,该比值等于六条棱长的积与体积的六倍之比,即对四面体ABCD ,有 ()()()()BC CD BD AC CD AD AB BD AD AB BC ACS A S B S C S D ⋅⋅⋅⋅⋅⋅⋅⋅===6AB BC CD BD AC ADV⋅⋅⋅⋅⋅=.注此性质由性质9即证,性质13(对棱所成角公式)四面体一对对棱所成角的余弦等于其他两对对棱平方和之差的绝对值与这对对棱乘积的二倍之比.即对四面体ABCD ,有 ()cos ,AB CD =()()22222BC AD AC BD AB CD+-+⋅;()cos ,BC AD =()()22222AB CD AC BD BC CD+-+⋅;()cos ,AC BD =()()22222BCAD AB DC AC BD+-+⋅;注其证明可参见第18章中例1或补成平行六面体,运用三角形余弦定理及平行四边形的对角线平方和等于四边平方和即证.性质14(对棱距离公式)若a 和1a ,b 和1b ,c 和1c 是四面体的三对对棱长,三对对棱之间的距离分别记为()1,d a a ,()1,d b b ,()1,d c c ,则 ()112,Vd a a =;()1,d b b =()1212,Vd c c =.注补成平行六面体证.性质15若四面体的一对对棱长分别为a ,1a ,这对对棱间的距离为d ,对棱所成的角为θ,则四面体的体积V 为11sin 6V aa d θ=⋅.性质16(二面角平分面定理)四面体二面角的内(或外)平分面分所对的棱得两条线段和这个二面角的两个面的面积对应成比例.性质17(空间张角公式)设过四面体ABCD 的棱BC 的截面EBC 交所对的棱AD 于E ,二面角A BC E --,E BC D --的大小分别为1θ,2θ,则()1212sin sin sin EBCDBC ABCS S S θθθθ+=+△△△. 性质18(空间莱布尼兹公式)设四面体ABCD 的六条棱长分别为a ,b ,c ,d ,e ,f ,G 为其重心,P 为空间中任一点,则()()2222222222211416PG PA PB PC PD a b c d e f =+++-+++++性质19(空间塞瓦定理)设E ,F ,G ,H ,M ,N 分别为四面体ABCD 的棱CD ,DB ,BC ,AD ,AB ,AC 上的点,若六个平面ABE ,ACF ,ADG ,BCH ,CDM ,DBN 共点,则 1CE DH AM BGED HA MB GC⋅⋅⋅= 性质20(空间梅涅劳斯定理)平面KLMN 交四面体ABCD 的棱AB ,BD ,CD ,AC 于K ,L ,M ,N ,则1AK BL DM CNKB LD MC NA⋅⋅⋅=.证明设四边形KLMN 是四面体ABCD 被平面α所截的截面,1AA ,1BB ,1CC ,1DD 是平面α的垂线(1A ,1B ,1C ,1D 分别为垂足).考察棱AB 与平面α相交的部分,显然11AA K BB K △△≌,则11AA AK KB BB =.同理,11BB BL LD DD =,11DD BM MC CC =,11CC CN NA AA =. 以上四式两边相乘即证.性质21(空间斯特瓦尔特定理)在四面体ABCD 中.AD BC ⊥,过棱BC 作截面BCE 交棱AD 于E ,则222214BCE ABC BCD DE AE S S S BC AE DE AD AD =⋅+⋅-⋅⋅△△△. EFBDC图22-1A证明如图221-,作AF BC ⊥于F ,连BF ,DF .注意到AD BC ⊥,知BC ⊥面ADF ,所以BC EF ⊥,BC EF ⊥.记AEF α∠=. 在AEF △中,由余弦定理,有 2222cos AF EF AE AE EF α=+-⋅⋅. 上式两边同乘以2BC 后,整理得222244cos 4BCE ABCBCES BC AE S AE BC S α+⋅-=⋅⋅△△△.同理在DEF △中,有222244cos 4BCE BCDBCES BE DE S DE BC S α+⋅--=⋅⋅△△△.由上述两式消去α,整理便证得结论.推论1当ABC BCD S S =△△时,有22214BCE ABCS S BC AE DE =-⋅⋅△△. 推论2当E 为AD 中点时,有222221112216BCE ABC BCD S S S BC AD =+-⋅△△△ 推论3当面BCE 平分二面角A BC D --时,有2214BCE ABC BCD S S S BC AE DE =⋅-⋅⋅△△△. 事实上,由ABC EABC BCD EBCD S V AE S V DE ==△△,有BCD ABC BCD S DE AD S S =+△△△,ABC ABC BCD S AECD S S =+△△△.由此即证. 推论4当AEk ED=时,有 ()222222111141BCE ABC BCD k k S S S AD BC k k k =+-⋅⋅⋅+++△△△. 性质22四面体ABCD 中,E ,F ,G ,H 分别在棱AB ,BC ,CD ,DA 上,且1AE EB λ=,2BFFCλ=,3CG GD λ=,4DHHA λ=,则内接四面体EFGH 的体积与四面体ABCD 的体积之间有关系式 ()()()()1234123411111EFGH ABCDV V λλλλλλλλ⋅⋅⋅-=⋅++++.证明连ED ,BG ,得四棱锥E FBDG -,G EBDH -.在CBD △,ABD △中,有 ()()33232311111CFG CBD S CF CG S CB CD λλλλλλ⋅==⋅=⋅++++△△, ()()11141411111AEH ABD S AF AH S AB AD λλλλλλ⋅==⋅=⋅++++△△, ()()23223111FBDG CBD CFG CBD CBD S S S S S λλλλλ-++==++△△△△, ()()14414111ABD AFH EBDH ABD ABD S S S S S λλλλλ-++==++△△△△. 又()()()2321231111G FBDG FBDG ACBD CBD V S BE V S AB λλλλλλ-++=⋅=+++△ ()()()1441341111G EBDH EBDH CABD ABD V S GD V S CD λλλλλλ-++=⋅=+++△, ()()13111EBDG BDG ABDC BDC V S BE DG BE V S AB DC AB λλ=⋅=⋅=++△△. 设六面体EGFBDH 的体积为V ',则()()()()124224142324241231411111E FBDG G EBDH EBDG V V V V λλλλλλλλλλλλλλλλλλ--+++++++'=+-=++++ 设六面体FHEACG 的体积为V '',则()()()()123134121334131231411111F GCAH H FCAE HACF V V V V λλλλλλλλλλλλλλλλλλ--+++++++'=+-=++++当B ,F 在平面EHG 的同侧时,有()EFGH ABCD V V V V '''=+-. 当C ,F 在平面EHG 的同侧时,有()EFGH ABCD V V V V '''==+. 综合,得()EFGH ABCD V V V V '''=-+.即证. 注由此性质可得E ,F ,G ,H 共面的充要条件是1AE BF CG DH EB FC GD HA⋅⋅⋅=. 【典型例题与基本方法】例1已知三棱锥S ABC -的底面是正三角形,A 点在侧面SBC 上的射影H 是SBC △的垂心,二面角H AB C --的平面角等于30︒,SA =S ABC -的体积.(1999年全国高中联赛题) FOCBE HS图22-2A解如图222-,由题设,知AH ⊥面SBC ,作BH SC ⊥于E ,则由三垂线定理知SC ⊥面ABE .设S 在面ABC 的射影为O ,则SO ⊥面ABC .由三垂线定理的逆定理,可知CO AB ⊥于F .同理,BO AC ⊥.故O 为ABC △的中心,从而SA SB SC ===又CF AB ⊥,CF 是EF 在面ABC 上的射影,由三垂线定理知EF AB ⊥,所以EFC ∠是二面角H AB C --的平面角,故30EFC ∠=︒,cos6030OC SC =⋅︒=︒,tan603SO OC =⋅︒=.又OC AB =,则3AB ==,所以,21333S ABC V -=⋅=例2证明:任意一个四面体总有一个顶点,由这个顶点出发的三条棱可以构成一个三角形的三边.(IMO 10-试题) 证明利用反证法来证,设四面体ABCD 中AB 是最长的棱,如果任意一个顶点出发的三条都不能构成一个三角形,则对由A 出发的三条棱,有AB AC AD +≥.又对由B 出发的三条棱,有BA BC BD +≥.两式相加,得2AB AC AD BC BD +++≥.()*但在ABC △与ABD △中,有AB AC BC <+,AB AD BD <+.此两式相加,有 2AB AC AD BC BD <+++. 上式与()*式矛盾,故原结论获证.注和这道试题类似的命题还有(1)任意四面体的三组对棱之和可以构成一个三角形的三边; (2)任意四面体的三组对棱之积可以构成一个三角形的三边;(波兰1975~1976年竞赛题)(3)任意四面体的三组对棱的平方和可以构成一个三角形的三边.例3若一个四面体恰有一棱之长大于1,求证这四面体的体积18V ≤.图22-3BC证明如图223-,设AB 是这个四面体的最长的棱,则ACD △,BCD △的边长不大于1.作BCD △的高BE 和ACD △的高AF,则BE ,AF 1a≤表示CD 的长度),四面体的高AO h AF =-≤111332BCD V h S a =⋅△≤()21424a a =-, 而()()()()22431213a a a a a -=---+-≤,故当1a =时,()24a a -取最大值3,故31248V =≤. 例4证明:在四面体中至多有一个顶点具有如下性质:该顶点处的任何两个平面角之和都大于180︒.(第22届莫斯科竞赛题)证明假定顶点A 和B 都具备所述的性质,则有180CAB DAB ∠+∠>︒及180CBA DBA ∠+∠>︒,但是作为CAB △和DAB △的全部6个内角之和也只有180180︒+︒,此为矛盾,从而原结论获证. 例5设d 是任意四面体的相对棱间距离的最小值,h 是四面体的最小高的长.证明2d h >.(第24届全俄竞赛题)图22-4H G lF EBDAC证明如图224-,为确定起见,假定h 是四面体ABCD 中由顶点A 所引出的高,而d 是棱AB 和CD 之间的距离.经过顶点B 引直线l CD ∥,过点A 作平面垂直于棱CD 交CD 于F ,交l 于E ,于是AEF △的高AH 和FG 就分别等于h 和d .由于AEF △的第三条高等于四面体ABCD 的某一条高,所以其值不小于h ,因此AF EF ≤,且2h AH AE AF FE d FG FE FE+==<≤,此即为所证. 例6试证:过四面体相对棱的中点的任一截面平分四面体的体积.(IMO 29-预选题)OF E P QNMA BCD图22-5证法1如图225-,设M 和P 分别是四面体ABCD 的棱AC 和BD 的中点,MNPQ 是四面体ABCD 的一个包含线段MP 的截面,因为P 为BD 的中点,则BCP CDP S S =△△,即有ABCP ACDP V V =.因此,要证截面MNPQ 将四面体ABCD 分成体积相等的两部分,只要证明AMNP V 与OMPQ V 相等就可以了.由N 和Q 分别作平面APC 的垂线,垂足分别为E ,F ,如图225-.因为M 为AC 的中点,则有APM CPM S S =△△,故要证AMNP CMPQ V V =,只要证NE FQ =即可.设MP 与NQ 交于点O ,易证E ,O ,F 三点共线.要证NE FQ =,只要证明NO OQ =就可以了(通过Rt Rt NEO QFO △△≌得到). 为此,考察两个平行平面,异面直线AB 和CD 分别在这两个平面上(如图226-).N OP M QBDCA图22-6因为MP 是连接AC ,BD 中点的线段,所以它在与上述两平面平行的平面上,这个平面到两已知平面的距离相等.由于线段NQ 与MP 相交于O ,所以O 等分线段NQ ,即有NO OQ =.故结论获证. 注上述证明中,没有对截面MNPQ 的形状进行讨论.若对其形状进行讨论,则有下述两种证法. 证法2如图227-,设M ,P 分别是四面体ABCD 的对棱AC ,BD 的中点.图22-7ADG当截面是平行四边形或特殊三角形时,证明比较简单(略). 当截面是一般四边形MNPQ 时. 由AM CM =,有A MNPQ C MNPQ V V --=又在ABC △中,对截线MNG 应用梅涅劳斯定理,有1AM CG BNMC GB NA⋅⋅=. 从而,有1CG BNGB NA⋅=. 同理,在BCD △中,有1BP DQ CG PD QC GB ⋅⋅=,即1DQ CGQC GB⋅=. 于是BN DQ NA QC =,得BN DQBA DC=. 又1C BPN Q APD V BN CDV BA QD--⋅==⋅,即C BPN Q APD V V --=. 故C MNPQ C BPN A MNPQ Q APD V V V V ---+=+一.证毕.证法3前面同证法2,下证截面为一般四边形MNPQ 时的情形.记A d 表示顶点A 到截面MNPQ 的距离(其余类同),设N 分AB 的比为m n ∶.则由M ,P 分别是AC ,BD 的中点,可知Q 点分CD 的比C A D B d d CQ AN mQD d d NB n====. 由A C d d =,有A MNPQ C MNPQ V V --=. 又13113APD Q APDQ APD C BPNBPN C APD S d V AB QD m n n V NB CD n m n S d ----⋅+==⋅=⋅=+⋅△.即Q APD C BPN V V --=.故C MNPQ C BPN A MNPQ Q APD V V V V ----+=+.例7如图228-,设四面体1234A A A A 的外接球与内切球的半径分别为R 与r ,则3R r ≥.图22-843A 2A证明设O 为四面体的外心,i A 所对的面的面积为(14)i S i ≤≤,球心O 到i A 所对的面的距离为(14)i d i ≤≤,四面体体积为V ,过顶点1A 的高11A H h =,则易知1111d OA d R h +=+≥,从而()111113S d R S h V +⋅=≥,即1111133S d S R V ⋅+⋅≥.同理2221133S d S R V ⋅+⋅≥,3331133S d S R V ⋅+≥, 4441133S d S R V +⋅≥. 以上四式相加,并注意()1122334413S d S d S d S d V ⋅+⋅++⋅=, 有4113i i V R S V =+⋅∑≥4,即419i i R S V =⋅∑≥.因4113i i V r S ==⋅∑,从而44113i i i i R S r S ==⋅⋅∑∑≥,即3R r ≥.例8在四面体1234A A A A 中,顶点i A 所对的面的面积为(14)i S i ≤≤,侧面面积为k S ,j S 的两侧面所夹的内二面角的大小记为,k j()14k j <≤≤,棱k j A A 的中点记为kj M ,含点kj M 与另两顶点(不含顶点k A ,j A )的三角形称为四面体的一个中线面(或一棱与对棱中点的面),这个中线面的面积记为kj S ()14k j <≤≤,则()22212cos ,4kj k j k j S S S S S k j =++⋅⋅,其中k ,j 满足14k j <≤≤.证明对四面体1234A A A A ,由性质6,有223434131423242cos 3,4cos 1,3cos 1,42,32,4S S S S S S S S S S S S +=⋅⋅++⋅+⋅⋅+⋅⋅+⋅⋅及221212131423242cos 1,2cos 1,3cos 1,4cos 2,3cos 2,4S S S S S S S S S S S S +=⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅. 亦即13142324cos 1,3cos 1,4cos 2,3cos 2,4S S S S S S S S ⋅⋅++⋅+⋅⋅+⋅⋅2212122cos 1,2S S S S =+-⋅⋅.对四面体13412A A A M 和四面体23412A A A M 分别运用性质6,有2222123423411112cos 3,44422S S S S S S =++-⋅⋅⋅-3242112cos 2,32cos 2,422S S S S ⋅⋅-⋅⋅⋅,2222123413411112cos 3,44422S S S S S S =++-⋅⋅⋅-3141112cos 1,32cos 1,422S S S S ⋅⋅⋅-⋅⋅⋅上述两式相加,并将前面结果代入,有()22222123412131412cos 1,3cos 1,42S S S S S S S S S =+++-⋅⋅-⋅-232434cos 2,3cos 2,4cos 3,4S S S S S S ⋅⋅-⋅⋅-⋅⋅2212131411cos 1,3cos 1,422S S S S S S =+-⋅⋅-⋅-232411cos 2,3cos 2,422S S S S ⋅⋅-⋅⋅()222212121212cos 1,22S S S S S S =+-+-⋅ ()2212121cos 1,22S S S S =++⋅. 故()22212121212cos 1,24S S S S S =++⋅⋅. 同理,得()22212cos ,4kj k j k j S S S S s k j =++⋅⋅. 注由性质5,有421412cos ,k j t k j i S S k j S =⋅⋅=∑∑≤≤≤,则推知()22214141412cos ,4kj k j k j k j k j k j S S S S S k j <<⎡⎤=++⋅⋅⎢⎥⎣⎦∑∑∑≤≤≤≤≤≤≤ 444222111134i i i i i i S S S ===⎛⎫=+= ⎪⎝⎭∑∑∑ 例9设G 为四面体1234A A A A 的重心,则222222221232434213143444GA A A A A A A GA A A A A A A +++=+++222222223121424412132344GA A A A A A A GA A A A A A A =+++=+++21434k j k j A A =∑≤≤≤.43图22-9证明如图229-,连A ,G 并延长交面234A A A 于点1G ,则1G 是234A A A △的重心,连21A G 并延长交34A A 于M ,则M 是34A A 的中点.连1A M ,对12A A M △及点1G 应用斯特瓦尔特定理,有2221121211212211AG A M A A MG A M A G A M A G MG ⋅=⋅+⋅-⋅⋅.而21121A G G M =∶∶,则2222111212122339AG A A A M A M =+-.()* 由三角形中线公式,有 ()224211212341124A M A A A A A A =+-,()222222324341124A M A A A A A A =+-, 并将其代入()*,有()()2222222111213142324341139AG A A A A A A A A A A A A =++-++. 从而()()222222232221111213142324342324343314164GA A G A A A A A A A A A A A A A A A A A A ⎛⎫==+++++-++ ⎪⎝⎭.故22222123243414344k j k j GA A A A A A A A A <+++=∑≤≤.同理可证其他三式均等于例10设R ,r 分别为四面体1234A A A A 的外接球半径与内切球半径,i h 为顶点i A 到所对面的距离,内切球切各顶点i A 所对的面于i A '(1234)i =,,,.求证: (Ⅰ)21416k j k j A A R <∑≤≤≤;(Ⅱ)4214194k j i k j i A A h <=∑∑≤≤≤(Ⅲ)422164i i h r =∑≥;(Ⅳ)141419nk j k j i k j k j i A A A A X <<=''∑∑∑≤≤≤≤≤.证明(Ⅰ)设O ,G 分别为四面体1234A A A A 的外心和重心,延长1A G ,交面234A A A 于1G ,则1G 为234A A A △的重心,连21A G 交34A A 于M 点,则M 点为34A A 中点,如图229-.由例9中证明,知2222222111213142324341[3()()]9AG A A A A A A A A A A A A =++-++. 同理,在四面体234OA A A 中,有222222212342324341[3()()]9OG OA OA OA A A A A A A =++-++.()222223243419R A A A A A A =-++ 由于G 为四面体重心,由性质3,知1131AG GG =.于是,在11AOG △中,对点G 应用斯特瓦尔特定理,有 ()222211111[433]16OG OG OA AG =+- 2222222121314232434116()()16R A A A A A A A A A A A A ⎡⎤=-++-++⎣⎦. 由于20OG ≥,故21416k j k j A A R <∑≤≤≤.(Ⅱ)显然11AG h ≥,则()()22222221121314232434139h A A A A A A A A A A A A ⎡⎤++-++⎣⎦≤. 同理,对2h ,3h ,3h 也有类似于上述的不等式. 此四式相加,得4214194k j i k j i A A h <=∑∑≤≤≤.(Ⅲ)由13i i V S h =()1,2,3,4i =,则有4411113ii i iSh V ===∑∑又由4113i i V S r ==⋅∑,则4111i ih r ==∑.由14411234114i i h h h h h =⎛⎫ ⎪⎝⎭∑≥,有()412344h h h h r ≥. 故()()()114222222212341234448h h h h h h h h r r ⎡⎤+++=⎣⎦≥≥4.(Ⅳ)四面体1234A A A A ''''的外接球半径记为R ',则214116k j k j R A A <'''∑≤≤≥. 又四面体1234A A A A ''''的外接球半径恰是四面体1234A A A A 的内切球半径,故R r '=.于是4222214119999166416k j i k j i R A A h r R <='=∑∑≤≤≥≥≥≥14k j k j A A <''∑≤≤.故214149k j kj k j k j A A R A A <<'''∑∑≤≤≤≤≥8≥. 例11四面体1234A A A A 中,外接球半径为R ,体积为V ,过顶点k A ,j A 的中线面为()14kj S k j <≤≤.试证:141k j kjS <∑≤≤ 证明设1d ,2d ,3d 与1θ,2θ,3θ分别为三对对棱12A A ,34A A ;13A A ,24A A ;14A A ,23A A 的距离与夹角,则由性质15,有1234111sin 6V A A A A d θ=⋅⋅⋅,亦即113346V d A A A A ⋅≤. 同理,有213246V d A A A A ⋅≤,314236Vd A A A A ⋅≥.取34A A 的中点M ,则121212112MA A S S A A d =⋅△≥,同理,可得关于kj S 的不等式,从而412113214323324234111111112k j kj S A A d A A d A A d A A d A A d A A d <⎛⎫+++++ ⎪⋅⋅⋅⋅⋅⋅⎝⎭∑1≤≤≤122141413k j k j k j k j A A A A V <<⎫⎪⎭∑∑≤≤≤≤≤)12216R 例12设四面体1234A A A A 的内心为I ,记k j A IA △的面积为kj S ',顶点i A 所对的面的面积为i S .试证:4141kji k j i S S <='∑≤≤ 证明过I 作1IA '⊥面234A A A 于1A ',作34IN A A ⊥于N ,若记面积为k S ,j S 的两侧面夹角为()14kj k j θ<≤≤,则易见11212A NI θ'∠=.设r 为四面体1234A A A A 的内切球半径,则在1Rt IA N '△中,有121sin 2rIN θ=,则34121212sin 2A A r S θ⋅'=. 由性质8,有1212342sin 3S S V A A θ⋅⋅=,于是消去34A A ,得12121221cos 32S V S S θ'⋅=⋅,注意到4113i i V S r ==⋅∑,则1212124121cos 2ii S S S S θ='''=⋅∑.对上述两边取∑,并用canchy 不等式,有1241414121cos 2kj k j k j ii S S θ<<=⎫'=⋅⎪⎭∑∑∑≤≤≤≤ 12241414121cos 2k j k j kj k j k j i i S S S S S θ<<=⎡⎤⎛⎫⎛⎫⋅⋅⋅⋅⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑∑≤≤≤≤≤.()* 注意到性质5,有1212313414cos cos cos S S S S θθθ=⋅+⋅+⋅,即42213121423411cos cos cos 2222i i S S S S θθθ==⋅+⋅+⋅∑, 对上式两边同乘以1S 后,再两边取∑,有241141cos 42kj i k j i k j S S S θ=<⎛⎫=⋅⋅ ⎪⎝⎭∑∑≤≤.又由对称平均不等式,有1421141146i k j i k j S S S =<⎛⎫=⋅ ⎪⎝⎭∑∑≤≤ 于是,由()*式(将上述结果代入()*式)即有414114kj i k j i S S <='∑≤≤.例13四面体1234A A A A 的三组对棱乘积的平方和不小于各侧面面积平方和的4倍,即若令12A A a =,34A A a '=,13A A b =,24A A b '=,14A A c =,23A A c '=,顶点i A 所对面的面积为()1234i S i =,,,,则 222222222212344()a a b b C C S S S S '''+++++≥,其中等号当且仅当各对棱的平方和相等.证明对234A A A △应用海伦一秦九韶公式,有()24442222221122216S a b c a b a c b c '''''''''=---+++ 同理,()24442222222122216S a b c a b a c b c '''=---+++, ()2444222223122216S a b c a b a c b c '''=---+++, ()24442222224122216S a b c a b a c b c '''=---+++. 以上四式相加并整理,得22221234S S S S +++=()()()()()()(){}2222222222222222222221416a a b b a a c c b b c c a a b b c c ⎡⎤⎡⎤⎡⎤'''''''''-+-+-+-+-+-++++⎣⎦⎣⎦⎣⎦()22222214a ab bc c '''++≤. 例14四面体1234A A A A 内一点P 到顶点i A 及i A 所对的面的距离分别为i l ,i d ,顶点i A 到所对的面的距离为()1234i h i =,,,,34k ≥ .求证:41423ki k i i i l h d =⎛⎫ ⎪+⎝⎭∑≥.证明先证一个结论:设()01,2,3,4i x i >=,41i i x a ==∑,则4143ki k i i x a x =⎛⎫ ⎪-⎝⎭∑≥.其中等号当且仅当1234x x x x ===时取得.事实上,由()443333()44i i i i x a x a x a x ⎡⎤+-⎛⎫-=⎢⎥ ⎪⎝⎭⎣⎦≤,有443343k kk i i k i x x a x a ⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭≥,从而 4434444433314114443343k k k kk ii i i k ki i i x x x a x a a ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪⋅=⎪ ⎪- ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑≥≥ 下证原题:设四面体1234A A A A 的体积为V ,如图2210-,作11A H ⊥面234A A A 于1H ,作11PE A H ⊥于E ,作1PD ⊥面234A A A 于1D ,则11A P l =,11PD d =,111A H h =.A 3A 4图22-10设i A 所对面的面积为(1234)i S i =,,,,则 ()1111111113S l S d S A E d S h V ⋅+⋅+==≥,从而2341133PA A A S l V V ⋅-≥.同理,1342233PA A A S l V V ⋅-≥,1243333PA A A S l V V ⋅-≥, 1234433PA A A S l V V ⋅-≥.从而()13412412322334493PA A A PA A A PA A A V S l S l S l V V V +++-+≥()234111632PA A A V V S h d =+=+,即111112233442l S l h d S l S l S l '+++≥. 同理,222221133442l S l h d S l S l S l +++≥,333331122442l S l h d S l S l S l +++≥,444441122332l S l h d S l S l S l +++≥. 令()1,2,3,4i i i x l R i =⋅=,由前述结论,得4411423kki i ki i i i i l x h d a x ==⎛⎫⎛⎫ ⎪ ⎪+-⎝⎭⎝⎭∑∑≥≥. 【解题思维策略分析】1.解四面体的有关问题时,要善于与三角形类比例15一个球内切于四面体,将每个切点与该点所在面的三顶点连结起来,这样形成的每面的三个角(以切点为顶点)组成一个集合.试证这四个集合是相等的.(第16届普特南竞赛题) 证明设四面体的顶点为()1234i P i =,,,,又设i Q 是正对着i P 的面与球相切的切点.用i ,j ,k ,l 表示{}1234,,,的不同元素,由于i j PQ 与i k PQ 是从同一顶点向球所作的切线,故i j i k PQPQ =. 同理,i j i k PQ PQ =,从而i j l i k l PQ p PQ P △△≌(边,边,边).于是i j l i k l PQ P PQ P ∠=∠, 并用il θ表示这种角,即有il li θθ=.由于以i Q 为顶点的三个角相加是2π,故有2334422πθθθ++=,3441132πθθθ++=,4112242πθθθ++=,1223312πθθθ++=.将这些等式的前两个相加减去后两个,且利用ij ji θθ=.得3412220θθ-=,即1234θθ=. 又由对称性,得ij kj θθ=.()*以1Q 为顶点的角是23θ,34θ,42θ,由()*式,它们分别等于以2Q 为顶点的三个角,即41θ,34θ,13θ. 由对称性,在所有四个面上的中心角都有同样的情形.证毕,注第26届IMO 由前苏联提供的预选题:“四面体ABCD 的内切球与面ABD 和DBC 分别相切于K 和M 点,证明:AKB DMC ∠=∠.”显然,这道试题是例15的特殊情形. 例16已知ABC △的面积力S △,外接圆半径为R ,过A ,B ,C 作平面ABC 的垂线,并在平面ABC 的同一侧的垂线分别取1A ,1B ,1C ,使1a AA h =,1b BB h =,1c CC h =,这里a h ,b h ,c h 分别表示边BC ,CA ,AB 边上的高.求四个平面11A B C ,11B C A ,11C A B ,ABC 所围成的四面体的体积.解求解此问题的关键是确定这个四面体的四个顶点的位置.设平面11A B C 与直线AB 相交于K 点,则点K 在11A B 上.由11AA BB ∥知11a b h AA KA b ACKB BB h a BC====.因此,K 是BCA ∠的外角平分线与BA 的交点,从而平面11A B C 与ABC 的交线是BCA ∠的外角平分线. 同理,类似可得:平面11B C A 与ABC 的交线是CAB ∠的外角平分线.上述两条外角平分线的交点是ABC △的旁心B I ,因此B I 就是平面11A B C ,11B C A 与ABC 的公共点,即为所求四面体的一个顶点.这样,旁心A I ,B I ,C I 是所求四面体的三个顶点.设第四个顶点为P ,则P 是平面11A B C 和11B C A 的公共点,因而在直线1B B I 上,P 在平面ABC 上的射影在B BI 上,也在A AI 上,因而P 的射影就是ABC △的内心I .由相似三角形,1PI AA ∥,且1A P 与AI 相交于A I ,可得1a A a A ar rII PI PI AA h AI r -===,其中r 为ABC △的内切圆半径,a r 为劳切圆半径.设ABC △的周长为2l ,则11221a a a a r r S S l a l PE h r a l l a---=⋅=⋅=-△. 由平面几何知识,易证A B C I I I △的面积为 ()1222a b c S a b c S S ar br cr l a l b l c ⎛⎫'=+++=+++ ⎪---⎝⎭△△△()()()2abc S l a l b l c ⋅=---△. 故所求体积()()()211332A B C PI I I S abc S V S PI l l a l b l c ⋅'=⋅=⋅⋅---△△△1433abc S R ==⋅△. 例17在四面体1234A A A A 中,顶点i A 所对的面的面积记为()1234i S i =,,,,以i j A A 为棱的二面角为il θ,则 (Ⅰ)2142cos 3ij k j θ<∑≤≤≥;(Ⅱ)6141cos 3ij k j θ<≤≤≤. 证明联想到在ABC △中,运用三角形射影定理并结合柯西不等式,有2223cos cos cos 4A B C ++≥,31cos cos cos 2A B C ⋅⋅≤,于是有下述证法: (Ⅰ)由性质5,1234324423cos cos cos S S S S θθθ=⋅+⋅+⋅, 由Cauchy 不等式,有221234324423(cos cos cos )S S S S θθθ=⋅+⋅+⋅()()222222234342423cos cos cos S S S θθθ++++≤,从而22221342423222234cos cos cos S S S S θθθ++++≥. 同理,还有类似于上式的三个式子,四式相加,得2444222141112cos 4111i ii ij k j i i i i i i S x x S S x x θ<===⎛⎫==-++ ⎪---⎝⎭∑∑∑∑≤≤≥ ()1234141ix x x x x =-++++-∑()4411111641143133i i i i x x ==⎛⎫⎡⎤=-+-⋅-+= ⎪⎢⎥-⎣⎦⎝⎭∑∑≥.故2142cos 3ijk j θ<∑≤≤≥. (Ⅱ)由1234324423cos cos cos S S SS θθθ=⋅+⋅+⋅≥.同理,还有类似于上式的三个不等式,此四式相乘,化简即得6141cos 3ij k j θ<∏≤≤≤. 注将三角形与四面体的上述两个不等式各统一为(Ⅰ)2111cos ,2k j n n i j n<++∑≤≤≥; (Ⅱ)()11211cos ,n n i j n i j n -+<+∏≤≤≤,其中2n =为三角形的,3n =为四面体的.2.善于将有关问题进行转化例18四面体ABCD 三个侧面ABD ,ACD ,BCD 上,由顶点D 引出的中线与底面ABC △对应边所成的角相等,证明:每个侧面的面积小于另外两个侧面面积之和.(1997年波兰竞赛题)COCDEFGABDEFG(b)(a)图22-11证明设E ,F ,G 分别是边AB ,BC ,CA 的中点,连结DE ,DF ,DG 如图2211- (a ).设DE 与AB 所成角为θ,则1sin sin 2DAB S DE AB DE FG θθ=⋅⋅=⋅⋅△,1sin sin 2DBC S DF BC DF GE θθ=⋅⋅=⋅⋅△,1sin sin 2DCA S DG CA DG EF θθ=⋅⋅=⋅⋅△.由于sin 0θ>,所要证明的命题转化为证明:在四面体DEFG 中,任意一组对棱的乘积小于另两组对棱乘积之和.为此,我们来证明: DE FG DF GE DG EF ⋅<⋅+⋅.将四面体DEFG 的面DFG △绕FG 翻转到底面所在的平面上,得D FG '△如图2211- (b ).在四边形D FFG '中,显然,有D G DG '=,D F DF '=.由Ptolemy (托勒密)不等式,有D E GF D F GE D G EF DF GE DG EF '''⋅++⋅=⋅+⋅≤.设D E '与GF 交于点O ,由DFG D FG '△△≌,得DO D O '=.在DOE △中, DE DO OE D O OE D E ''<+=+=.故DE GF D E GF DF GE DG EF '⋅<⋅⋅+⋅≤.从而原题得证.例19给出三个四面体()123i i i i A B C D i =,,,过点i B ,i C ,i D 作平面i α,i β,i γ() 123i =,,分别与棱i i A B ,i i A C ,i i A D 垂直()123i =,,.如果九个平面i α,i β,i γ()123i =,,相交于一点E ,而三点1A ,2A ,3A 在同一直线l 上,求三个四面体的外接球面的交集(形状怎样?位置怎样?).(CMO 3-试题)解由于几何元素太多,画出准确的全图几乎不可能.为此,画出一个局部图.231B 1图22-12(a)(b)连1A E 与1B E 如图2212- (a ),可知111A B B E ⊥,此表明以1A E 为直径的球过1A ,1B ,E 三点.同样可知,这球过1A ,1B ,1C ,1D ,E 五点,此表明中心在1A E 的中点1O ,直径为1A E 的球也正好是四面体1111A B C D 的外接球.类似地可定出四面体i i i i A B C D 的外接球直径和中心()123i =,,. 于是问题转化为到直线123A A A 及其线外一点E 所决定的平面上来了.这个平面与三个球的交线是三个圆,它们有一个公共点E ,从E 向直线123A A A 作垂线,垂足为E ',显然E '是E 关于直线123O O O 的对称点,所以E 与E '是这三圆的公共点.由此知以EE '为直径且垂直于直线123A A A 的圆就是三个四面体的外接球的交集.当E 在直线123A A A 上时,此圆就退化为一个点E .此时三个球面相切于E 点. 例20如图22-13,过四面体PABC 的重心G 的任一直线l 与四个面分别相交于M ,N ,S ,T 四点.求证:11110GM GN GS GT+++=.(《数学通报》问题1362题) B 1lG 1C 1A 1G TPNMSAC B图22-13证明设1G 为ABC △的重心,连1PG ,并设直线L 与直线1PG 确定的平面α与侧面ABC 的交线分别与ABC △的三边交于1A ,1B ,1C .连1PA ,1PB ,1PC ,在平面α内,直线l 与1PA ,1PB ,1PC ,11A B 的交点分别为M ,N ,S ,T .因G 是四面体重心,1G 是ABC △的重心,由重心性质,知G 分1PG 所成的比为31∶,且 1112111110G A G B G C ++=.图22-14以1G 为原点,以直线11G A 为x 轴,建立平面直角坐标系如图2214-.设()1,0A a ,()1,0B b ,()1,0C c ,(),P m n ,别由1112121110G A G B G C ++=,知1110a b c ++=,,44m n G ⎛⎫ ⎪⎝⎭.由两点式得直线1PA ,1PB ,1PC ,11A B 的方程分别为()n y x a m a =--,()ny x b m b=--, ()ny x c m c=--,0y = 设直线l 的参数方程为 1cos 41sin 4x m t y n t αα⎧=+⋅⎪⎪⎨⎪=+⋅⎪⎩(α为倾斜角,t 为参数) 并设M ,N ,S ,T 对应的参数分别为1t ,2t ,3t ,4t . 将直线l 的方程分别代入直线1PA ,1PB ,1PC ,11A B 方程,得 114sin 4cos 4sin 33m n t na nααα-⋅-⋅=+, 214sin 4cos 4sin 33m n t nb nααα-⋅-⋅=+, 314sin 4cos 4sin 43m n t nc nααα-⋅-⋅=+,414sin t n α-= 由1110a b c++=,得123411110t t t t +++=,故11110GM GN GS GT +++=. 3.适当构作辅助体例21求证:若四面体相对棱间的距离分别为1d ,2d ,3d ,则四面体的体积V 不小于13123d d d .D B CA EFC 1D 1A 1B 1图22-15证明如2215-,过四面体ABCD 的三组对棱AB 与CD ,AD 与BC ,AC 与BD ,分别引三对相互平行的平面,得平行六面体(或以四面体ABCD 的棱为侧面对角线构作平行六面体),各相对面的距离分别等于四面体三组对棱的距离,又易知该平行六面体的体积正好是四面体ABCD 体积的3倍. 在底面11A DB C 中,作1EF CA ⊥于E ,则1EF B D ⊥.设垂足为F ,则EF 不小于平面11A AC C 与平面11DD BB 间的距离,即3EF d ≥.又12AC d ≥,所以1123A DB CSd d ⋅≥.又平面11A DB C 与平面11AD BC 的距离为1d ,因此, 1111111123AD BC A DB C A DB CV Sd d d d -=⋅⋅⋅≥.Suoyi 12313ABCD V d d d ≥.例22设a ,b 为四面体ABCD 的一对对棱AB 与CD 的长,r 为四面体内切球半径,求证:()2abr a b <+.(第22届全苏竞赛题)GABCDHFE图22-16证明如图2416-,过AB 与CD 分别作ABEF 与CDGH ,使得AF CD ∥,CH AB ∥,连AC ,BH ,EG ,FD ,得一个平行六面体AFEB CDGH -(或以四面体ABCD 的三棱CA ,CB ,CD 为共顶点的棱构成平行六面体).设AB 与CD 之间的距离为d ,它们所成的角为θ,则由性质15,知1sin 6V ab d θ=⋅⋅四面体.设a h 为ABD △中AB 边上的高,显然D 到AB 的距离大于D 到面AFEB 的距离,即a h d >,而1122ABD a S a h ad =⋅>△.同理,12ABC S ad >△,12ACD S bd >△,12BCD S bd >△.于是,四面体ABCD 的表面积()ABD ABC ACD BCD S S S S S a b d =+++>+△△△△表.注意到性质1,即13V S r =⋅表,得到()3sin 222V abd abd ab r S S S a b θ⋅==<+表表表≤ 4.注意运用向量知识求解例23设平面α,β,γ,δ与四面体ABCD 的外接球面分别切于点A ,B ,C ,D .证明:如果平面α与β的交线与直线CD 共面,则γ与δ的交线与直线AB 共面.(1981年保加利亚竞赛题)证明设四面体ABCD 的外心为O ,半径为R .令OA a =,OB =b ,OC c =,CD d =.对空间中任意一点X ,令OX x =,则222222R =====a b c b d .因为OA α⊥,所以平面α上的点X 满足()0⋅-=a x a ,即2⋅a x =R . 同理,平面β,γ,δ上的点X 分别满足2R ⋅=b x ,2⋅c x =R ,2R ⋅=d x . 注意到,对任意不同时为零的数λ,μ,有方程()()2R λλλμ⋅⋅+a b x =.给出了一个过平面α与β的交线l 的平面(因0λλ≠a +b ,且对任意X l ∈,有2R ⋅=⋅a x b x =.另外,对空间中任意一点X 也存在一对不同时为零的数λ,μ,使得()()220R R λμ⋅-+⋅-=a x b x .即适当选取λ与μ,可使相应的平面过点X .因此直线CD 与直线l 共面的充要条件是:关于未知数λ与μ的方程组()()()()22220,0,R R R R λμλμ⎧⋅-+⋅-=⎪⎨⋅-+⋅-=⎪⎩a c b c a c b c 有非零解,即有()()()()2222R R R R ⋅-⋅-=⋅-⋅-a c b c a b b c . 同理可证,平面γ与δ的交线和直线AB 共面的充要条件为()()()()2222R R R R ⋅-⋅-=⋅-⋅-c a d b c b d a .因为上面得到的两个条件是等价的,所以题中结论得证.例24设四面体ABCD 对应于各顶点的高分别为a h ,b h ,c h ,d h ,在各高线上分别取1A ,1B ,1C ,1D ,使1a k AA h =,1a k BB h =,1c k CC h =,1dkDD h =为任一实数.求证:四面体1111A B C D 的重心合于四面体ABCD 的重心.证明令AB b =,AC c =,AD d =,根据向量矢量积的意义,知同BD BC ⨯的方向是对应A 点高线的方向,而它的长度是BCD △面积的2倍.设A 点对应高线的单位向量为i ,则 2BCDBD BCi S ⨯=△,而()()BD BC ⨯=-⨯-=⨯⨯⨯d b c d b d +d c +c b .故2i S⨯⨯⨯=b d +d c +c d.同理,设B ,C ,D 点对应的高线的单位向量分别为j ,k ,l ,则 22ACD ACD AC AD S S ⨯⨯=△△c d j =,2ADB S ⨯△d b k =,2ABCS ⨯△b cl =.若设四面体ABCD 的体积为V ,因而()16a k kAA h V ==⨯⨯⨯i =b d +d c +c d .同理,()16k BB V =⨯c d ,()16k CC V =⨯d b ,()16kDD V=⨯b c . 因而,有11110AA BB CC DD +++=. 又设1O 为四面体1111A B C D 的重心,则()1111111114AO A B AC A D =++ ()11111114A A AB BB A A AC CC A A AD DD =++++++++ ()11111144A A AA BB CC DD =++++b +c +d + ()114A A =-b +c +d . 而111AO AA A O =+,故()114AO AO ==b +c +d ,这表示1O 与O 重合. 【模拟实战】 习题A1.在三棱锥S ABC -的棱SA ,SB ,SC 上分别取点1A ,1B ,1C ,使得11SA SA SB SB ⋅=⋅1SC SC =⋅.证明:点A ,B ,C ,1A ,1B ,1C .在同一球面上.(第15届全俄竞赛题)2.在四面体ABCD 内求作一点P ,使四个四面体的体积比满足P BCD P CDA P DAB P ABC V V V V αβγδ----=∶∶∶∶∶∶,其中α,β,γ,δ为给定的正数.3.设P ,Q ,R 分别是四面体ABCD 的棱AC ,AD ,AB 或延长线上的点,E ,F 在BC 上,且BE EF FC ==,AE ,AF 分别与RP 交于点G ,H .记四面体APQR 与AGHQ 的体积分别为V ,1V .求证:13V V ≥,当且仅当RP BC ∥或RP 与BC 重合时等号取得.4.四面体ABCD 内接于半径为R 的球,且球心O 在四面体内部.求证:四面体ABCD 至少有一条棱长. 5.在四面体ABCD 中,P 为各棱长之和,V 为其体积,用()CD S 表示过四面体棱CD 及相对棱AB 中点的截面(即中线面)面积,其余中线面表示类同,求证:()()()()()()1111113CD AB BC AD BD AC P S S S S S S V+++++≤等号当且仅当四面体为正四面体时取得.6.四面体KLMN 的顶点在另一个四面体ABCD 的内部,在其面上或者棱上.证明:四面体KLMN 各棱长度的和小于四面体ABCD 各棱长度和的34.(第16届全苏竞赛题) 7.观察一切外切于已知球的四面体AXBY 证明:当确定点A ,B 后,空间四边形的角之和,AXB XBY BYA YAX ∠+∠+∠+∠不依赖于点X 和Y 的选择.(第20届全苏竞赛题)8.四面体ABCD 中,面ABC 与BCD 的夹角为30︒,ABC △的面积为120,BCD △的面积为80;10BC =.求此四面体的体积.(1992年美国竞赛题) 9.在四面体ABCD 内部有一点O ,使得直线AO ,BO ,CO ,DO 与四面体的面BCD ,ACD ,ABD ,ABC 分别交于1A ,1B ,1C ,1D 四点,且1111AO BO CO DOk AO B O C O D O ====.求k 的所有可能的值.(1968年保加利亚竞赛题)10.如果两个四面体的四个面的面积对应相等,则它们的体积也一定相等.对否?(1983年加拿大竞赛题)11.证明:连接四面体的顶点与顶点与相对的面的内切圆圆心的四条直线交于一点的充要条件是,该四面体三组对棱的乘积彼此相等.(1979年波兰竞赛题) 12.在四面体ABCD 的棱AB ,AC ,AD 上,对每个n +∈N ,分别取点n K ,n L ,n M ,使得AB nAK =,()1n AC n AL =+,()2AD n AM =+.证明:所有的平面n n n K L M 共线.(1966年保加利亚竞赛题) 13.设一平面与四面体的一个顶点出发的三条棱相交.证明:当且仅当这个平面过四面体内切球球心时,它分四面体表面所成的两部分的面积与其相应部分的体积成比例.(1976年保加利亚竞赛题)14.证明:对四面体内部的任意一点,从这点观察它的各条棱时的视角之和大于540︒.(1980年奥地利一波兰竞赛题)15.证明:对任意四面体的高i h 和旁切球的半径()1234i r i ==,,,,有441111i i i ih r ===∑∑ (1973年捷克竞赛题)16.设四面体ABCD 中,41AB =,7AC =,18AD =,36BC =,27BD =,13CD =,设d 为AB 与CD 两棱中点间的距离.求2d 的值.17.设a ,b ,c ,d ,e ,f 是一个给定四面体的棱长,S 是它的表面积.证明:222222S a b c d e f +++++),(1992年捷克竞赛题) 18.在六条棱长分别为2,3,3,4,5,5的所有四面体中,最大的体积是多少?证明你的结论.(1983年全国联赛题)19.试证:四面体的重心到四面体各面的距离之和不小于其内心到各面的距离之和.20.平面截四面体PABC 的棱PA ,PB ,PC 依次于A ',B ',C ',截面ABC 的三边AB ,AC ,BC的延长线顺次于L ,N ,M .求证:1ANL BMB PC A LMB B C P A NA S S SS S S ''''''⋅⋅=△△△△△△.21.四面体ZABC 的体积等于5,过棱ZA 的中点K 和棱BC 的中点P 作平面交棱ZC 于M 点,且。
正四面体
![正四面体](https://img.taocdn.com/s3/m/5b126b15a76e58fafab003f3.png)
正四面体常用性质:1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。
它有4个面,6条棱,4个顶点。
正四面体是最简单的正多面体。
2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。
因此,正四面体是特殊的正三棱锥。
3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。
正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。
正四面体的对边相互垂直。
正四面体的对棱相等。
正四面体内任意一点到四个面的距离之和为定值63a。
4、相关数据当正四面体的棱长为a时,一些数据如下:高:63a。
(中心把高分为1:3两部分} 表面积:23a体积:3212a外接球半径:64a,内切球半径:612a,棱切球半径:24a对棱中点的连线段的长:22a,两邻面夹角满足1cos3α=。
若将正四面体放进一个正方体内,则该正方体棱长为22a,其实,正四面体的棱切球即为次正方体的内切球。
5、建系方法1.设有一正四面体D-ABC棱长为a以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为其他性质:正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。
正四面体有四条三重旋转对称轴,六个对称面。
正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。
正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。
内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。
两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。
这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度.侧棱与底面的夹角:ArcCos(√3/3)正四面体的对棱相等。
材料四面体
![材料四面体](https://img.taocdn.com/s3/m/27b8155b26d3240c844769eae009581b6ad9bd5d.png)
材料四面体四面体是指由四个平面所围成的立体,它是最简单的立体之一,也是几何学中的重要概念之一。
下面将向大家介绍四面体的定义、性质以及它在生活中的应用。
首先,四面体是由四个三角形面所组成的立体。
这四个三角形面中,任意两个面不在同一个平面内,而且它们的交线构成四面体的棱。
四面体还有四个顶点,每个顶点连接着三个棱。
根据四面体的面数,我们可以将它分为正四面体和非正四面体两种情况。
接下来,我们来看四面体的一些性质。
首先,四面体的任意两个面的交线都在四面体的一条棱上。
其次,四面体的棱数、面数和顶点数之间满足一个简单的关系,即棱数加上顶点数等于面数加2。
此外,正四面体的底面和高都是等边三角形,它的每个内角为70.5度。
非正四面体的性质则根据具体的形状而定,但它们都具有共同的特点:四面体的任意两个面都不平行,即它们的法向量不共线。
四面体在生活中有着广泛的应用。
首先,它被广泛应用于几何学和数学的研究中。
通过对四面体的分析和计算,我们可以推导出许多定理和公式,在解决实际问题时起到重要的作用。
其次,四面体的结构也被用于建筑和工程设计中。
在建筑设计中,四面体结构可以提供稳定性和坚固性,同时还可以创造出独特而美观的建筑形态。
此外,四面体结构还可以应用于光学和电子学等领域,用于制造镜片和电子器件等。
总结起来,四面体是一个由四个三角形面组成的立体,具有一些特殊的性质。
它在几何学和数学研究中起到重要的作用,并广泛应用于建筑和工程设计以及光学和电子学等领域。
通过深入研究四面体的性质和应用,我们可以更好地理解几何学的基本概念,并将它们运用到实际生活中。
几何体的平行四面体
![几何体的平行四面体](https://img.taocdn.com/s3/m/a248b60b842458fb770bf78a6529647d272834b0.png)
几何体的平行四面体平行四面体是一种特殊的多面体,具有一些独特的性质和特点。
在几何学中,平行四面体是指具有四个平行的面的多面体。
本文将介绍平行四面体的定义、性质和一些相关的应用。
一、平行四面体的定义平行四面体是一个四面体,它的四个面都是平行的。
具体来说,对于一个平行四面体,任意两个相邻面之间的平行线相交于一条公共直线,这条公共直线被称为平行四面体的高。
二、平行四面体的性质1. 面的平行性:平行四面体的四个面都是平行的。
这意味着这个几何体的上下底面是平行的,并且侧面也都是平行的。
2. 边的平行性:平行四面体的对边边平行。
也就是说,连接两个相对面的边都是平行的。
3. 高的关系:平行四面体的高是由相邻面间的平行线构成的。
这条高与底面的交点、底面上的一点和顶点构成一个平行四边形。
4. 相对边长比例:对于一个平行四面体,底面上的任意两条边与对应顶点的连线构成的三角形相似。
5. 体积计算:平行四面体的体积可以通过公式V = (1/3) * S * h来计算,其中S表示底面积,h表示高。
三、平行四面体的应用1. 建筑与工程:平行四面体被广泛应用于建筑与工程领域,特别是设计和建造金字塔形状的建筑物时。
例如,埃及的金字塔就是一个平行四面体结构。
2. 数学学科:平行四面体是数学学科中的一个重要概念,学生们在几何学和立体几何的学习中经常会遇到平行四面体相关的问题和计算。
3. 游戏和娱乐:平行四面体也被广泛应用于游戏和娱乐产业。
在一些游戏中,设计师会使用平行四面体来创建虚拟世界中的建筑和物体。
4. 科学和工业应用:平行四面体的概念也在科学研究和工业应用中得到了应用。
例如,在晶体学中,晶体的结构有时可以用平行四面体的概念来描述。
总结:平行四面体是一个具有四个平行面的几何体,它具有一些独特的性质和特点。
平行四面体在建筑、数学、游戏和科学领域中有着广泛的应用。
通过研究平行四面体的性质和应用,可以加深对立体几何学的理解,同时也可以拓宽我们的知识领域。
空间几何的性质四面体的性质及其应用
![空间几何的性质四面体的性质及其应用](https://img.taocdn.com/s3/m/800be926793e0912a21614791711cc7931b77835.png)
空间几何的性质四面体的性质及其应用四面体是空间中常见的立体图形,它具有一些独特的性质和应用。
本文将介绍四面体的性质及其应用。
一、四面体的定义和性质四面体是由四个三角形面组成的立体图形。
它具有以下性质:1. 定义:四面体是由四个不在同一平面上的点及连接这些点的边组成的立体。
2. 面积和体积:四面体的表面积和体积可以通过一定的公式计算得出。
其中,表面积等于四个三角形面积之和,体积等于底面积乘以高的一半。
3. 棱和顶点:四面体有六条棱和四个顶点。
任意两个顶点之间可以连接一条棱。
4. 高、中线和外接球:四面体的高是从一个顶点到相对的底面的垂直距离。
每个面的中线是连接该面上的两个中点的线段。
四面体还可以围绕外接球,外接球的球心与四面体的顶点都在同一平面上。
二、四面体的分类根据四面体的性质,我们可以将其分为以下几类:1. 正四面体:如果四面体的四个面都是等边三角形,那么它就是正四面体。
正四面体具有对称性,在空间几何学中起到重要作用。
2. 正交四面体:如果四面体的三个互相垂直的棱对同时相等,那么它就是正交四面体。
正交四面体具有一些特殊的性质,常用于计算几何和物理学中。
3. 锐角四面体和钝角四面体:根据四个顶点形成的凸四面体的内角是锐角还是钝角,可以将四面体分为两类。
在实际应用中,这些分类有助于确定四面体的稳定性和结构特征。
三、四面体的应用四面体不仅具有美学价值,还在许多领域有实际应用:1. 建筑与工程学:在建筑设计和工程施工中,四面体的结构特性可以用于设计和计算支撑结构的强度和稳定性。
2. 化学与结晶学:在化学和结晶学研究中,四面体被广泛用于分子和晶体的描述和分析。
3. 三维造型与动画:计算机图形学中,四面体被用于表示和生成三维模型和动画效果。
4. 数学与几何学:四面体是数学和几何学中研究的重要对象之一,对于解决空间几何问题和推导数学定理有重要意义。
总结:四面体是空间几何中重要的立体图形,具有独特的性质和应用。
什么是四面体?
![什么是四面体?](https://img.taocdn.com/s3/m/95fd809c370cba1aa8114431b90d6c85ec3a8887.png)
什么是四面体?四面体是一种几何形状,具有四个面、六条边和四个顶点。
它在数学和几何学中有着广泛的应用,并且在现实世界中也能够见到。
一、四面体的定义及特点四面体是由四个三角形组成的多面体。
通常来说,四个三角形的任意一对面恰好共享着一条边。
这种特殊的构成使得四面体在几何学中具有独特的性质。
1. 对称性:四面体具有对称性,它的每个面都可以通过旋转或镜像对称到其他面上。
这种对称性使得四面体在立体几何研究中相当重要。
2. 体积与面积关系:四面体的体积可以通过底面积和高度计算得出,公式为体积=底面积×高度/3。
而四面体的表面积则由其各个面的面积之和构成。
3. 共面特性:具有共面特性的四面体往往更易于研究和探索。
这意味着四面体的顶点可以被放置在同一平面上,使得它的特性更易于计算和分析。
二、四面体的应用领域四面体作为一种基本的几何形状,在很多领域都有着广泛的应用。
以下是四面体在几个重要领域的应用示例:1. 计算几何学:在计算几何学中,四面体常被用于解决各种计算问题。
比如,通过计算四面体的各个面和边的属性,可以求解出它的体积、表面积等几何参数。
2. 化学结构:四面体也在化学领域中有着重要的应用。
在化学分子的结构描述中,四面体通常用于表达化学键的方向和键长。
3. 三维建模:在计算机图形学和三维建模领域,四面体网格是一种常用的数据结构。
通过将物体分割成许多小的四面体,可以更好地描述物体的形状和曲面性质。
4. 工程应用:四面体在工程领域中也有着广泛的应用。
例如,在有限元分析中,可以将结构物分割成许多小的四面体单元,进而进行应力、变形等物理计算。
5. 自然科学:四面体的概念也能在自然科学领域找到广泛的应用。
例如,在结晶学中,四面体被用来描述晶格结构和晶格缺陷。
三、结语作为一个基本的几何形状,四面体具有独特的几何特性和广泛的应用领域。
不论是在数学研究,还是在实际工程中,四面体都扮演着重要的角色。
通过对四面体的研究和应用,我们能更好地理解和应用几何学的知识,推动科学技术的发展。
四面体的特殊性原理
![四面体的特殊性原理](https://img.taocdn.com/s3/m/8a383bd06394dd88d0d233d4b14e852459fb3976.png)
四面体的特殊性原理四面体是一个具有四个面的多面体,每个面都是一个三角形。
它是空间中最简单的多面体之一,具有许多特殊性质和原理。
1.形状特性:四面体的最基本特性是其形状。
正四面体是最常见的四面体类型,其四个面都是等边三角形,并且所有的内角也相等。
正四面体具有对称性,每个面都等效地相对于其他三个面。
这种形状特性使得正四面体具有优秀的稳定性和抗力特性。
2.内外共点性:四面体的一个重要特性是其四个顶点共面且共点。
换句话说,四面体的顶点均位于同一平面上,这被称为“共点性”。
这个特性很容易证明,只需考虑四面体的两个对角线,它们必定会相交于一个点。
3.顶点对称性:四面体的另一个重要特性是其顶点的对称性。
四面体的顶点分别对称于其他三个顶点,具有相同的距离和角度关系。
这种对称性使四面体在空间中具有优雅和美学上的特殊性。
4.重心性质:四面体的重心是四个顶点的平均值,即四个顶点的坐标均值。
重心在许多应用中起着重要的作用,例如在计算力学性质时,求解质心是简化计算和分析的关键步骤。
每个面的重心位于该面的中心,而整个四面体的重心位于整个四面体内部的一个点上。
5.体积与高度的关系:四面体的体积可以根据其底面积和高度计算得出。
四面体的高度是从底面到对面顶点上垂线的距离。
根据勾股定理,四面体的高度可以通过底边长和平行于对面底边的高边的长度计算得出。
四面体的体积是其底面积和高度的乘积的1/3倍。
6.四面体剖分:四面体可以通过不同的剖分方式展示其特殊性质。
例如,当将四面体通过从顶点到对面底边作垂线分成两个小的四面体时,这两个小的四面体与原始四面体具有相似性质。
该剖分方式可以应用于几何中的许多问题,例如计算体积和表面积。
7.点与平面的关系:一个点可以描述为一个四面体的顶点,而四面体的三个面可以描述为三个相交的平面。
这种关系在几何学和图形学中得到广泛应用,例如在计算射线与平面的交点时。
8.斜四面体的稳定性:斜四面体是指四个面都是三角形,但不满足等边性质的四面体。
正四面体相关结论
![正四面体相关结论](https://img.taocdn.com/s3/m/f641ec62ae45b307e87101f69e3143323968f53c.png)
正四面体相关结论正四面体是一种具有特殊性质的几何图形,它由四个相等的正三角形组成,每个角都是60度。
在正四面体中,有一些重要的结论和性质,这些结论和性质在解决相关的几何问题时非常有用。
1、中心与顶点之间的关系正四面体的中心到四个顶点的距离相等,也就是说,中心是四个顶点所组成的菱形的中心。
这个结论可以用于计算正四面体的半径和中心到顶点的距离。
2、边长与高之间的关系正四面体的边长和高之间有一个重要的关系,即高是边长的2/3。
这个结论可以用于计算正四面体的高,也可以用于解决与正四面体的边长和高有关的问题。
3、体积与半径之间的关系正四面体的体积与半径之间有一个重要的关系,即体积是半径的立方根。
这个结论可以用于计算正四面体的体积,也可以用于解决与正四面体的体积和半径有关的问题。
4、三个两两垂直的平面相交于一点在正四面体中,三个两两垂直的平面相交于一点,这个结论可以用于解决与正四面体的三个两两垂直的平面相交有关的问题。
5、相对的两条边互相垂直在正四面体中,相对的两条边互相垂直,这个结论可以用于解决与正四面体的相对的两条边互相垂直有关的问题。
正四面体的一些重要结论和性质在解决相关的几何问题时非常有用,这些结论和性质可以帮助我们更好地理解和解决正四面体的问题。
正四面体外接球和内切球的半径的求法在几何学中,正四面体是一种具有特殊性质的几何形态。
它由四个相等的正三角形构成,每个面都是一个等边三角形。
这种几何形态在许多领域都有广泛的应用,包括物理学、化学、工程学等。
在解决实际问题时,我们常常需要找出正四面体的外接球和内切球的半径。
下面将介绍两种求法。
第一种方法是通过几何计算直接求解。
首先,我们需要找到正四面体的中心点。
这个点可以通过连接正四面体的四个顶点并取其中间位置来找到。
一旦找到了中心点,我们就可以通过连接这个点和正四面体的各个顶点,找到外接球的球心。
外接球的半径就是从球心到正四面体顶点的距离。
内切球的半径则是从球心到正四面体四个面的中心的距离。
什么是四面体的重心?
![什么是四面体的重心?](https://img.taocdn.com/s3/m/202d4f387ed5360cba1aa8114431b90d6c858987.png)
什么是四面体的重心?一、四面体的定义和性质四面体是指一个有四个面、六条边和四个顶点的多面体。
它是几何学中较为简单的立体几何图形之一,也是研究空间几何的基础。
四面体可以由四个不在同一平面上的点唯一确定,其中每个点称为顶点,相互连接的线段称为边,相邻的三个面围成的空间称为面。
四面体具有以下性质:1. 对称性:四面体的所有边和所有面都是对称的,可以通过一定的变换得到相等的边和面。
2. 相交性:四面体的边和面可以相交,但任意两个面不会共平行。
3. 体积和表面积:四面体的体积等于其底面积乘以高的一半,表面积等于四个侧面的面积之和。
二、四面体的重心定义在四面体中,重心是指四个顶点的质心的连线交点。
重心是四面体的一个特殊点,具有重要的几何性质。
1. 重心的几何性质:重心到四个顶点的距离之和等于重心到四个面的距离之和的三分之一。
这是因为重心是质心的连线的交点,所以与四个面的距离之和相等于四个面与质心连线的距离之和。
2. 重心的稳定性:四面体的重心是四个顶点的连线交点,它具有良好的稳定性。
无论四面体的位置如何改变,重心的位置始终保持不变。
三、四面体重心的应用四面体的重心在几何学和工程学中有广泛的应用。
1. 几何学上,四面体的重心可以帮助我们研究四面体的性质和变换,如旋转、平移和镜像等。
2. 工程学上,四面体的重心可以作为四面体的几何中心,用于计算物体的质心、惯性力矩和各种力学性质。
3. 三维建模和计算机图形学中,四面体的重心是进行网格变形和表面细分的重要基准点。
4. 艺术和设计领域,四面体的重心可以被用来平衡和调整设计中的各个元素,使之达到更好的美学效果。
四、总结总之,四面体的重心是四个顶点的质心的连线交点,它具有几何性质的稳定性和应用的广泛性。
在几何学和工程学中,四面体的重心为我们研究和计算四面体的性质和力学性能提供了便利。
由于其重要性和特殊性,四面体重心在实际应用中扮演着重要角色。
四面体的欧拉公式
![四面体的欧拉公式](https://img.taocdn.com/s3/m/965604ad4bfe04a1b0717fd5360cba1aa8118c0d.png)
四面体的欧拉公式四面体是一种由四个面和四条边所构成的立体图形,它是立体几何学中的一个基本图形。
欧拉公式是数学家欧拉在18世纪提出的一条基本公式,揭示了凸多面体的面数、边数和顶点数之间的关系。
对于四面体而言,欧拉公式可以表示为:面数+顶点数=边数+2在推导四面体的欧拉公式之前,让我们首先了解一下四面体的性质。
四面体的性质与命名:四面体的特点是四个面,每个面都是一个三角形。
四面体的四个顶点两两不在同一平面上,四个面两两相交于一个共同的边。
四面体有许多特殊的性质和命名:1.顶点:四面体中的顶点是立体图形的顶点,共有四个,用A、B、C、D等字母表示。
2.边:四面体的边是由两个顶点间的连线所形成,共有六条,用AB、AC、AD、BC、BD、CD等字母表示。
3.三角面:四面体的四个面都是三角形。
以面ABC为例,顶点A、B、C是该面的三个顶点,分别用字母A、B、C表示。
4.高:对于四面体的三个脚点和与之相对的面,可以得到三条高。
这些高线相交于一个点,称为四面体的垂心。
5.侧面:以边AB为底边的高位与侧边CD所成的面称为四面体的一个侧面,用ABC表示。
现在我们来证明四面体的欧拉公式。
证明四面体的欧拉公式:首先,我们假设四面体的面数为F,边数为E,顶点数为V。
由于四面体有四个面,所以F=4、边数等于四个面的边的总数,即E=6接下来,我们来计算顶点数V。
对于四面体而言,每个面都是一个三角形,所以四个面总共有12条边。
每个顶点是三个面的顶点,所以每个顶点对应3条边。
因此,顶点数V可以通过E/3计算得到,即V=6/3=2现在我们将F、E和V的值代入欧拉公式中:F+V=E+2由于F=4、E=6和V=2,所以4+2=6+2,即6=8我们可以看到,当代入四面体的面数、边数和顶点数时,等式的结果不一致。
这是因为欧拉公式仅适用于凸多面体,而四面体是凸多面体的一种。
如果我们将四面体的一个面切割,形成一个新的面与旧的面相交,我们可以得到一个新的多面体,它是一个正四面体。
四面体与多面体
![四面体与多面体](https://img.taocdn.com/s3/m/0b8fbd842dc58bd63186bceb19e8b8f67d1cef79.png)
四面体与多面体四面体是一种特殊的多面体,具有四个面。
它的特殊性在于四个面都是三角形,并且每个面都共享一个顶点。
本文将介绍四面体以及与之相关的多面体的性质和特点。
一、四面体的定义与性质四面体是一个立体图形,由四个三角形面组成。
这四个三角形面共享四个顶点,这四个顶点也是四面体的顶点。
四面体是一种简单多面体,它的边界是封闭的,没有打开的面。
四面体的性质有以下几个要点:1. 顶点数:四面体有四个顶点。
2. 边数:四面体有六条边。
3. 面数:四面体由四个三角形面组成。
4. 角数:每个顶点都是三个面的交点,所以四面体有四个顶点,每个顶点都有三个角。
二、四面体的类型根据四面体的边长和角度等特性,可以将四面体分为以下几种类型:1. 正四面体:四个面都是等边三角形的四面体称为正四面体。
在正四面体中,四个面的边长相等,每个面的内角也相等,都是60°。
2. 锐角四面体:四面体的所有面都是锐角三角形的称为锐角四面体。
3. 钝角四面体:四面体的至少一个面是钝角三角形的称为钝角四面体。
钝角四面体中,至少有一个面的内角大于90°。
三、多面体的定义与性质多面体是由多个平面面组成的立体图形。
多面体中的每个面都是平面图形,可以是三角形、四边形或多边形等。
多面体也可以有不同的顶点数、边数和面数,因此它的种类非常丰富。
除了四面体之外,多面体还包括以下几种常见的类型:1. 三棱柱:由两个平行且全等的多边形底面以及连接底面对应顶点的多个三角形面组成。
2. 三棱锥:由一个多边形底面和以底面顶点为顶点的三角形面组成。
3. 正多面体:所有面都是全等正多边形的多面体,如正六面体、正八面体等。
4. 不规则多面体:至少有一个面不是正多边形的多面体。
多面体的性质有以下几个要点:1. 顶点数:多面体有多个顶点。
2. 边数:多面体有多条边。
3. 面数:多面体由多个平面面组成。
4. 角数:每个顶点都是多个面的交点,所以多面体有多个顶点,每个顶点都有多个角。
探索几何认识四面体和五面体
![探索几何认识四面体和五面体](https://img.taocdn.com/s3/m/f7423b5d974bcf84b9d528ea81c758f5f61f2904.png)
探索几何认识四面体和五面体四面体和五面体是几何学中的常见多面体。
它们在三维空间中具有一些独特的性质和特征。
本文将探索这两种多面体的认识,从它们的定义、性质、分类以及一些实际应用等方面展开讨论。
一、四面体四面体是一个拥有四个面的多面体,每个面都是一个三角形。
四面体的定义有很多种,其中最常见的一种是四个非共面的点组成的凸体。
四面体通常由顶点、边和面组成,其中顶点是四面体的角,边是连接两个顶点的线段,而面是连接三个顶点的平面。
1.1 四面体的性质四面体的一些重要性质如下:1) 四面体的顶点个数是4,边的个数是6,而面的个数是4。
2) 四面体的每个面都是一个三角形,因此它们的内角之和是180度。
3) 四面体的表面积可以通过计算其各个面的面积之和得到。
4) 四面体的体积可以通过计算以任意一条边为底面的高度与底面面积的乘积再除以3得到。
1.2 四面体的分类根据四面体的特征,我们可以将其分类为正四面体和非正四面体。
1) 正四面体是指四个面均为等边三角形的四面体,它具有对称性,并且所有的面和边长度也相等。
2) 非正四面体是指除了四个面都是等边三角形外,其他面和边的长度不相等的四面体。
1.3 四面体的实际应用四面体在实际应用中有很多重要的作用,例如在晶体学、化学以及计算机图形学等领域都有广泛的应用。
在晶体学中,四面体模型用于描述晶格结构;在化学中,四面体结构被用来描述一些分子的空间构型;在计算机图形学中,四面体网格则被用于三维建模和网格生成等方面。
二、五面体五面体是一个拥有五个面的多面体,每个面都是一个三角形。
五面体的定义有很多种,其中最常见的一种是五个相等等边三角形组成的凸体。
五面体通常由顶点、边和面组成,其中顶点是五面体的角,边是连接两个顶点的线段,而面是连接三个顶点的平面。
2.1 五面体的性质五面体的一些重要性质如下:1) 五面体的顶点个数是5,边的个数是10,而面的个数是5。
2) 五面体的每个面都是一个三角形,因此它们的内角之和是180度。
高一数学正四面体知识点
![高一数学正四面体知识点](https://img.taocdn.com/s3/m/562d9447b42acfc789eb172ded630b1c58ee9b63.png)
高一数学正四面体知识点正四面体是一种特殊的多面体,具有一些独特的性质和特点。
在高一数学中,正四面体是一个重要的几何概念,学习正四面体的知识点对于理解空间几何关系和解决相关问题至关重要。
本文将为大家介绍高一数学中与正四面体相关的知识点。
一、正四面体的定义和性质正四面体是由等边三角形组成的四面体。
其定义需要满足以下条件:1. 四个面均为等边三角形;2. 任意两个面的交线是一个点,称为顶点;3. 任意两个顶点之间的线段相等。
正四面体具有以下性质:1. 所有边长相等,所有的面都是等边三角形;2. 任意两个面之间的夹角为60度;3. 所有的侧面都与底面平行;4. 顶点到底面的距离是底边的一半。
二、正四面体的体积和表面积计算1. 体积计算:正四面体的体积计算公式为V = (√2/12) * a³,其中a为边长。
证明过程:设A为底面中心点,连接A与顶点B,由于正四面体对称性,三角形ABC是等边三角形。
连接O为AB上的中线,连接C为底面上的点到顶点B的垂线,由勾股定理,AB²=BO²+AO²,得到AB²= (1/4)a²+a²,即AB=√2/2 * a。
由底面AB与顶点C的连线构成一个立体角∠ABC,因此这个角是等角,其大小为60°,同时,BC与底面上任意一条边都是垂直的,也即与该底面平行,所以这个三面角是一个锐角。
我们先求出这个三角形底边的长度,设为h,可知tan60°=h/AB,即h=AB*√3=√2/2 * a * √3=a√6/2,所以a*h= (1/4)*a²√6。
故正四面体的体积为V= (1/3)*底面面积*高= (1/3)* (1/4)*a²√3 * a√6/2 = (1/12)*a³√2。
2. 表面积计算:正四面体的表面积计算公式为S = √3 * a²,其中a为边长。
(完整版)四面体的性质
![(完整版)四面体的性质](https://img.taocdn.com/s3/m/1bc252b4be1e650e53ea99b1.png)
1四面体的性质不在一直线上的三点可以连成一个三角形,不共面的四点可以连成四个三角形,这四个三角形围成的几何体叫做四面体(如图1).它有四个顶点,六条棱,四个面.研究四面体的有关性质可以加深对四面体,空间四边形的知识的理解,有利于提高熟练运用知识的能力。
性质1:四面体中相对的棱所在的直线是异面直线。
如图1中AB 和CD ,BC 和AD ,AC 和BD 都是异面直线。
性质2:四面体中,若一个顶点在对面内射影是这个三角形的垂心,则四面体的三组对棱分别互相垂直.证明:如图2的四面体中,设顶点A 在面BCD 内的射影H 是BCD △的垂心。
AH BCD ⊥平面。
连结BH ,CH ,DH,则BH CD ⊥,CH BD ⊥,DH BC ⊥.根据三垂线定理得AB CD ⊥,AC BD ⊥,AD BC ⊥.性质3:四面体中,若有两组对棱互相垂直,则第三组对棱也互相垂直。
证明:设四面体ABCD 中,AB CD ⊥,AC BD ⊥,过A作AH BCD ⊥平面,H 为垂足(如图2).连结BH ,CH ,则BH 为AB 在平面BCD内的射影,根据三垂线定理的逆定理,BH CD ⊥;同理CH BD ⊥,所以H 是BCD △的垂心。
由性质2知AD BC ⊥.根据性质2,3立即可以得到:性质4:四面体中,若一个顶点在它对面内的射影是这个面的中心,则其余各顶点在其对面内的射影也分别是这些面的中心。
利用全等三角形的判定和性质,可以证明下面两条性质:性质5:四面体中,若交于同一顶点的三条棱相等,则这个顶点在对面内的射影是这个三角形的外心,且这三条棱和顶点所对面所成的角相等。
反之也真。
特别地,若这个顶点所对的面是一个直角三角形,则这顶点的射影是直角三角形斜边的中点。
性质6:四面体中,若一个顶点在对面内的射影是这个三角形的内心,则顶点到对面三角形三条边的距离相等,且以这三角形三角形三条边为棱的三个二面角相等.性质7:四面体中,若交于同一点的三条棱两两互相垂直,则这个顶点所对面是一个锐角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四面体的性质
不在一直线上的三点可以连成一个三角形,不共面的四点可以连成四个三角形,这四个三角形围成的几何体叫做四面体(如图1).它有四个顶点,六条棱,四个面.
研究四面体的有关性质可以加深对四面体,空间四边形的知识的理解,有利于提高熟练运用知识的能力.
性质1:四面体中相对的棱所在的直线是异面直线.如图1中AB 和CD ,BC 和AD ,AC 和BD 都是异面直线.
性质2:四面体中,若一个顶点在对面内射影是这个三角形的垂心,则四面体的三组对棱分别互相垂直.
证明:如图2的四面体中,设顶点A 在面BCD 内的射影H 是BCD △的垂心.AH BCD ⊥平面.连结BH ,CH ,DH ,则BH CD ⊥,CH BD ⊥,DH BC ⊥.根据三垂线定理得AB CD ⊥,AC BD ⊥,AD BC ⊥.
性质3:四面体中,若有两组对棱互相垂直,则第三组对棱也互相垂直.
证明:设四面体ABCD 中,AB CD ⊥,AC BD ⊥,过A 作AH BCD ⊥平面,H 为垂足(如图2).连结BH ,CH ,则BH 为AB 在平面BCD 内的射影,根据三垂线定理的逆定理,BH CD ⊥;同理CH BD ⊥,所以H 是BCD △的垂心.由性质2知AD BC ⊥.
根据性质2,3立即可以得到:
性质4:四面体中,若一个顶点在它对面内的射影是这个面的中心,则其余各顶点在其对面内的射影也分别是这些面的中心.
利用全等三角形的判定和性质,可以证明下面两条性质:
性质5:四面体中,若交于同一顶点的三条棱相等,则这个顶点在对面内的射影是这个三角形的外心,且这三条棱和顶点所对面所成的角相等.反之也真.
特别地,若这个顶点所对的面是一个直角三角形,则这顶点的射影是直角三角形斜边的中点. 性质6:四面体中,若一个顶点在对面内的射影是这个三角形的内心,则顶点到对面三角形三条边的距离相等,且以这三角形三角形三条边为棱的三个二面角相等.
性质7:四面体中,若交于同一点的三条棱两两互相垂直,则这个顶点所对面是一个锐角三角形.
证明:如图3,设90APB BPC CPA ∠=∠=∠=,PA a =,PB b =,PC c =,不妨设a b c ≤≤,则222AB a b =+,222BC b c =+,222CA c a =+.显然BC 是ABC △的最大边,BAC ∠是ABC △中最大内角.根据余弦定理,有
222
cos 2AB AC BC BAC AB AC
+-∠=⋅ 222222
= 2
0=>.
所以90BAC ∠<,ABC △是锐角三角形.
性质8:四面体中,若交于同一顶点的三条棱分别两两垂直,则这顶点所对的三角形面积的平方等于其余三个三角形面积的平方和.
证明:设四面体ABCD 中,DA DB ⊥,DB DC ⊥,DC DA ⊥,
且DA a =,DB b =,DC c =(如图4),则12ADB S ab =△,12BDC S bc =△,12
CDA S ca =△. 在ADB △中作DM AB ⊥,则
DM =.
∵CD DA ⊥,CD DB ⊥,∴CD ADB ⊥平面.
∴CD DM ⊥.
在Rt CDM △中,
22222222
222
22222a b a b b c c a CM DM CD c a b a b ++=+=+=++. ∴22
1
()2ABC S AB CM =⋅△ 222222
2222
1()4a b b c c a a b a b ++=⋅+⋅+ 2222221()4
a b b c c a =++ 222ADB BDC CDA S S S =++△△△.
例题:如图5,平面α和四面体ABCD 的对棱AC ,BD 都平行,且分别交AB ,BC ,CD ,DA 于E ,F ,G ,H ,问四边形EFGH 在什么位置时面积最大.
解:∵BD EFGH ∥平面,ABCD
EFGH EH =平面平面
∴EH BD ∥
同理 FG BD ∥,EF HG AC ∥∥.
∴四边形EFGH 是平行四边形.
不妨设FEH ∠是小于或等于90的角,则FEH ∠是异面直线BD ,AC 所成的角.
ABCD 是已知四面体,=BD m ,AC n =,BD 和AC 成θ角(这里m ,n ,θ均为定值).设EH AE BD AB λ==,则1EF BE AC BA
λ==-. ∴EH m λ=,(1)EF n λ=-,
sin (1)sin EFGH S EH EF FEH mn λλθ=⋅∠=-. 当12λ=
时,EFGH S 最大,这时E ,F ,G ,H 分别是所在棱的中点.
练习 1、在四面体ABCD 中,如果AB CD =,DA BC =,AC BD =.求证:180BAC CAD DAB ∠+∠+∠=。
2、在四面体ABCD 中,90BAC ∠=,60BAD CAD ∠=∠=,AB AC AD ==.求证:BCD ABC ⊥平面平面.
3、在四面体ABCD 中,60BAC ∠=,45BAD CAD ∠=∠=,求二面角C AD B --的大小.
4、在四面体P ABC -中,交于P 点的三条棱两两垂直,P 在ABC △的射影是H.求证:PAB △的面积是ABC △的面积和HAB △的面积的比例中项.
5、上题中,设PA a =,PB b =,PC c =,PH d =.求证:2222
1111a b c d ++=. 6、ABC △中,60A ∠=,45B ∠=,6AC =,PC ABC ⊥平面,且4PC =,动点K 在线段AB 上移动.问K 在什么位置时,PCK △面积有最大值和最小值?最大值和最小值各是多少?。