概率论与数理统计 3.1 随机变量的联合概率分布
联合概率密度分布
联合概率密度分布联合概率密度分布是概率论中的一个重要概念,用于描述多个随机变量的联合概率分布。
在概率论和数理统计中,我们经常需要研究多个随机变量之间的关系,而联合概率密度分布提供了一个有效的工具来描述这种关系。
联合概率密度分布可以用来计算多个随机变量同时取某一组值的概率。
对于两个随机变量X和Y来说,我们可以定义联合概率密度函数f(x,y),表示X和Y同时取到x和y的概率密度。
具体而言,联合概率密度函数f(x,y)满足以下两个性质:首先,对于任意的x和y,f(x,y)≥0;其次,对于所有的x和y,联合概率密度函数的积分∫∫f(x,y)dxdy等于1。
这表明联合概率密度函数在定义域上的积分等于1,符合概率的基本性质。
在实际应用中,联合概率密度分布可以用来描述多个随机变量之间的依赖关系。
如果两个随机变量X和Y是相互独立的,那么它们的联合概率密度函数可以拆分为各自的概率密度函数的乘积,即f(x,y)=f(x)·f(y)。
这意味着X和Y之间的取值是相互独立的,一个变量的取值不会对另一个变量的取值产生影响。
相反,如果X和Y之间存在依赖关系,那么它们的联合概率密度函数不能拆分为各自的概率密度函数的乘积。
在实际应用中,我们经常需要计算联合概率密度函数的边际概率密度函数。
边际概率密度函数是联合概率密度函数在某个变量上的积分得到的函数。
例如,对于随机变量X和Y的联合概率密度函数f(x,y),其边际概率密度函数f(x)表示在给定X的取值下,Y的概率分布。
边际概率密度函数可以用来描述一个变量的概率分布,而不考虑其他变量的取值。
除了边际概率密度函数,我们还可以通过联合概率密度函数计算两个随机变量之间的条件概率分布。
条件概率分布描述了在给定某个变量的取值下,另一个变量的概率分布。
对于X和Y的联合概率密度函数f(x,y),给定X的取值x,条件概率密度函数f(y|x)表示在已知X的取值为x的条件下,Y的概率密度函数。
概率论与数理统计课件第三章
f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18
第
页
例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25
第
页
例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14
第
例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|
概率论与数理统计第3章
试求常数a和b。
π F xlim F x a b 2 0 解: F lim F x a b π 1 x 2
1 1 a , b 2 π
P ( 2 4) P ( 2) P ( 2 4) 0.3 0.6 0.5 0.4
P ( 3) 1 P ( 3) 1 0.5 0.5
6
例3:设r.v. 的分布函数
F x a b arctan x
b a
因此求概率可从分布函数与密度函数两条途径入手。
5、密度的图像称分布曲线,相应有两个特征: ⑴ 曲线在x轴上方;
概率面积
y
f(x)分布曲线
⑵ 曲线于x轴之间的 面积是1。
x c o d
10
例4:设 的密度在[a,b]以外为0,在[a,b]内为
一常数 ,
, a x b f ( x) 0, 其它
x2 2
16
⑶ f(x)符合密度函数的两性质: ① f(x) > 0;②
f x d x 1。
x2 2
以标准正态分布为例, e
e d t e
t2 2 2 x2 2
d x 称为高斯积分。
dy
r2 2 0
从F(x)求f(x): f x F x 从f(x)求F(x): F x f t d t
x
9
4、对于连续型随机变量 ,
⑴ P a 0 ,即某指定点的概率为0; ⑵ Pa b Pa b
Pa b Pa b f x d x
概率论与数理统计313 二维连续型随机变量及其联合概率密度
数f(x)的性质
概率密度函数f(x, y)的性质
(4) 在f(x)的连续点处有: f (x) F'(x)
(4)若f (x, y)在(x, y)连续,
则有 2F(x, y) f (x, y). xy
用来求概率密度f(x)的方法
用来求概率密度 f(x,y)的方法
例2 设随机变量(X ,Y )的联合分布函数为
解: 由规范性
f (x, y)dxdy 1
Ae(2x y)dxdy 1 A 2 00
二、联合概率密度函数的性质:
(3)设D是xOy平面上的任意一个平面区域,点(X ,Y ) 落在D内的概率为
P{(X ,Y) D} f (x, y) d x d y.
D
z
z f (x, y)
求:(1)常数A;(2) F ( x, y ) ;(3) P{Y X};
(4) P{1 X 1,1 Y 1}.
解: P{1 X 1,1 Y 1}.
f (x, y) d x d y
D
1 2e 1 (2x y) d y d x 01 01
1
2 e1 2x dx 1ey)(1 e1).
y
1
O
D 1
x
1
(x,y)
求(X ,Y )的联合密度函数.
例3 设
Ae(2x y) , x 0, y 0
(X ,Y ) ~ f (x, y)
0, 其它
求:(1)常数A;(2) F ( x, y ) ;(3) P{Y X};
(4) P{1 X 1,1 Y 1}.
解:
(1)由规范性
f (x, y)dxdy 1
y
o
D x
(3) 对于任意平面区域D R2,
经济数学——概率论与数理统计 3.1 二维随机变量及其分布
其中和式是对一切满足xi≤x , yj≤y求和。
例 若(X,Y)的分布律如下表,求(X,Y)的分布函数。 Y 0 1 X 0 1/2 0 y 1 解 0 1/2
1
1 x
四、 二维连续型随机变量
1.定义:设(X,Y)的联合分布函数为F(x,y),若存在一非负 函数f(x,y),使得对于任意的实分布
二维随机变量及其分布 第二节 边缘分布 第三节 随机变量的独立性 第四节 二维随机变量函数的分布
第一节 二维随机变量及其分布
一、二维随机变量的定义
1.定义: 随机试验E的样本空间Ω={e},设X1(e), X2(e)为定 义Ω上的随机变量,由它们构成的一个向量(X1,X2)叫做 二维随机变量或二维随机向量。 对于二维随机变量, 需要考虑 ①二维随机变量作为一个整体的概率分布或称联合分布; ②还要研究每个分量的概率分布或称边缘分布; ③并且还要考察各分量之间的联系,比如是否独立等。
利用极坐标计算可得
从而有 Aπ=1,即可得A=1/π。
(2)依题意需求概率
下面我们介绍两个常见的二维分布.
设G是平面上的有界区域,其面积为A.若二 维随机变量( X,Y)具有概率密度
则称(X,Y)在G上服从均匀分布.
例
向平面上有界区域G上任投一质点,若质点落 在 G内任一小区域 B的概率与小区域的面积成正比, 而与B的形状及位置无关. 则质点的坐标 (X,Y)在G 上服从均匀分布.
0≤F(x,y)≤1。
因为{X≤x1,Y≤y}{X≤x2,Y≤y}. (2). 对于任意固定的y, F(-∞,y)=0;
对于任意固定的x, F(x,-∞)=0;
《概率论与数理统计》课件3-1二维随机变量及其联合分布
二维随机变量联合分布函数
F(x,y) = P{X x,Y y}
(1) 有界性 0 F(x,y) 1,且有F(− ,y) = lim F(x,y) = 0
x→−
F(x,− ) = lim F(x,y) = 0 F(− ,− ) = lim F(x,y) = 0 ,
1
F(
) 1 F( y) 0 F(x ) 0
F ( , ) A(B )(C ) 1
2
2
F ( , y) A(B )(C arctan y) 0 2
F ( x,
) A( B arctan x) ( C
)0
2
A
F (x, y) y).
1
2
,
B
1
2 (2
C.
2
arctan x)( 2
arctan
(2) P 0 X , 0 Y 1 F( ,1) F(0,1) F( , 0) F(0, 0) .
则〈
l
0,
它
P 恳1 < X 共 2,3 < Y 共 5}
x > 0, y > 0 其
= F(2,5) − F(1,5) − F(1,3) + F(2,3)
A) V
B) 根
A
B
提交
1 F(x, y) A(B arctan x)(C arctan y).
1
A, B,C 2 P 0 X , 0 Y 1
A.
B.
C.
D.
A
C
B
D
提交
1. F(x, y) P{X x,Y y}.
2.
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第三章
01 1/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数. 解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=0}=2×1012×11=1066, P{X=1,Y=1}=2×112×11=166,解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70, P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)d xdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X}; (5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2.解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy =∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10 (-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)--1-2-2241-1-1/2-221-于是(1)max{X,Y} -112pi 1/102/107/10习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。
经管类概率论与数理统计第三章多维随机变量及概率分布
3.1二维随机变量的概念3.1.1二维随机变量及其分布函数到现在为止,我们只讨论了一维随机变量及其他布,但有些随机现象用一个随机变量来描述还不够,而需要用几个随机变量来描述。
例如,在打靶时,以靶心为原点建立直角坐标系,命中点的位置是由一对随机变量(X,Y)(两个坐标)来确定的。
又如考察某地区的气候,通常要考察气温X,风力Y,这两个随机变量,记写(X,Y)。
定义3.12个随机变量X,Y组成的整体Z=(X,Y)叫二维随机变量或二维随机向量。
定义3.2(1)二元函数F(x,y)=P(X≤x,Y≤y)叫二维随机变量(X,Y)的联合分布函数,简称分布函数。
记作(X,Y)~F(x,y)。
(2)二维随机变量(X,Y)中,各分量X,Y的分布函数叫二维随机变量(X,Y)的边缘分布函数。
因为X<+∞,Y<+∞即-∞<X<+∞,-∞<Y<+∞,分别表示必然事件,所以有X~F x(x)=P(X≤x)=P(X≤x,Y<+∞)=F(x,+∞)Y~F Y(y)=P(Y≤y)=P(x<+∞,Y≤y)=F(+∞,y)公式可见X,Y的边缘分布可由联合分布函数求得。
3.1.2二维离散型随机变量定义3-3若二维随机变量(X,Y)只取有限多对或可列无穷多对(x i,y j),(i,j=1,2,…),则称(X,Y)为二维离散型随机变量。
设二维随机变量(X,Y)的所有可能取值为(x i,y j)(i,j=1,2,…),(X,Y)在各个可能取值的概率为:P{X=x i,Y=y j}=P ij(i,j=1,2,…),称P{X=x i,Y=y j}=P ij(i,j=1,2,…)为(X,Y)的分布律。
(X,Y)的分布律还可以写成如下列表形式:(X,Y)的分布律具有下列性质:(1)p ij≥0(i,j=1,2,…);(2)反之,若数集{P ij}(i,j=1,2,…)具有以上两条性质,则它必可作为某二维离散型随机变量的分布律。
概率论与数理统计第3章
y
(2)
{Y X } {( X ,Y ) G },
YX
G
O
P{Y X } P{( X ,Y ) G }
x
f ( x , y ) d x d y
G
0
( 2 x y ) d x y 2e d y
1 . 3
2e ( 2 x y ) , f ( x, y) 0,
(2)
p
i j
ij
1
二维离散型随机向量的联合分布函数为
xi x y j y
p
13
例1
一袋中装有2只白球 则( X , Y )的联合概率分布为 和3只黑球,进行有放 回取球 Y 0 1
X 0 1
1 第一次取出白球 X 0 第一次取出黑球 1 第二次取出白球 Y 0 第二次取出黑球
Y 的边缘概率密度.
25
3 x 3 e x0 边缘密度函数为 例6 求随机向量 (X,Y)的边缘分布函数和边缘密度函数, ( x) f X ( x ) FX x0 已知其联合分布函数为 0
故 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.
9
三、边缘分布函数
( X , Y )为二维随机向量, 联合分布函数为F ( x, y)
X和Y分别也是随机变量 X , Y的分布函数分别记为 FX ( x)和FY ( y) FX ( x) P{ X x} P{ X x, Y } lim F ( x , y ) F ( x , )
4
二、联合分布函数的性质
设 ( X , Y ) 是二维随机向量, 对于任意实数 x , y , 二元函数 : F ( x , y ) P{( X x ) (Y y )} P { X x , Y y } 称为二维随机向量 ( X , Y ) 的分布函数, 或称为随 机变量X 和 Y 的联合分布函数.
概率论与数理统计3.1.3 二维连续型随机变量及其联合概率密度
一、二维连续型随机变量的定义及联合概率密度 二、联合概率密度函数的性质
一、 二维连续型随机变量的定义及联合概率密度函数
一维连续型随机变量X F(x)为随机变量X的分布
函数,若存在非负可积函数 f(x),使得
F(x) P{X x}
x
f (t)dt ( x )
(4) 在f(x)的连续点处有: f (x) F'(x)
(4)若f (x, y)在(x, y)连续,
则有 2F (x, y) f (x, y). xy
用来求概率密度f(x)的方法
用来求概率密度 f(x,y)的方法
例2 设随机变量(X ,Y )的联合分布函数为
(x,y)
用来求待定常数的方法
y
曲线下x轴上
所围面积为1
连续型随机变量(X,Y)联合 概率密度函数f(x, y)的性质
(1) 非负性: f (x, y) 0;
(2) 规范性:
f (x, y)dxdy 1
F(, ).
f (x, y)
用来求待定 常数的方法
曲面下xoy平 面上所围体积
o
(x, y)
X
x
x
X
y
Y
(x, y)
推断:设D是xOy平面上的 一个区域,点( X ,Y )落在D内 的概率为
P{(X ,Y ) D}
f (x, y) d x d y.
D
二、联合概率密度函数的性质:
连续型随机变量X的概率密度函 数f(x)的性质
(1) f(x)≥0; (2) f(x)dx 1 F().
概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布
P(X1=1, X2=0) = P(|Y|<1, |Y|≥2) = 0
P(X1=1, X2=1) = P(|Y|<1, |Y|<2) = P(|Y|<1) = 0.6826
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
第13页
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
课堂练习
第14页
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
第三章 多维随机变量及其分布
第1页
第三章 多维随机变量及其分布
§3.1 多维随机变量及其联合分布 §3.2 边际分布与随机变量的独立性 §3.3 多维随机变量函数的分布 §3.4 多维随机变量的特征数 §3.5 条件分布与条件期望
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
3.2.1 边际分布函数
第29页
巳知 (X, Y) 的联合分布函数为 F(x, y),
则 X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
23 August 2021
概率论与数理统计练习册 参考答案
概率论与数理统计练习册 参考答案第1章 概率论的基本概念 基础练习 1.11、C2、C3、D4、A B C ++5、13{|02}42x x x ≤<≤<或,{}12/1|<<x x ,Ω6、{3},{1,2,4,5,6,7,8,9,10},{1,2,6,7,8,9,10},{1,2,3,6,7,8,9,10}7、(1) Ω={正,正,正,正,正,次},A ={次,正}(2)Ω={正正,正反,反正,反反},A ={正正,反反},B={正正,正反}(3) 22{(,)|1}x y x y Ω=+≤,22{(,)|10}A x y x y x =+<<且 (4)Ω={白,白,黑,黑,黑,红,红,红,红},A={白},B={黑} 8、(1)123A A A (2)123123123A A A A A A A A A ++ (3)123A A A ++ (4)123123123123A A A A A A A A A A A A +++ (5)123123A A A A A A +9、(1)不正确 (2)不正确 (3)不正确 (4)正确 (5) 正确 (6)正确(7)正确 (8)正确10、(1)原式=()()()A B AB A B AB A B A B B -==+=U U U (2)原式=()()A A B B A B A AB BA BB A +++=+++= (3)原式=()AB AB =∅11、证明:左边=()AAB B A A B B AB B A B +=++=+=+=右边 1.21、C2、B3、B4、0.85、0.256、0.37、2226C C 8、0.081 9、2628C C10、3()()()()()()()()4P A B C P A P B P C P AB P BC P AC P ABC ++=++---+=11、解:设,,A B C 分别表示“100人中数学,物理,化学不及格的人数” 则{10},{9},{8}A B C ===,{5},{4},{4},{2}AB AC BC ABC ====100()84ABC A B C =-++=12、解:设A 表示“抽取3个球中至少有2个白球”21343437()C C C P A C +=13、解:(1)设A 表示“10件全是合格品”,则109510100()C P A C = (2) 设B 表示“10件中恰有2件次品”,则8295510100()C C P B C = 14、解:(1)设A 表示“五人生日都在星期日”,51()7P A =(2)设B 表示“五人生日都不在星期日”, 556()7P B = (3)设C 表示“五人生日不都在星期日”,55516()177P C =-- 15、解:{(,)|01,01}x y x y Ω=≤≤≤≤设A 表示“两人能会到面”,则1{(,)|}3A x y x y =-≤, 所以5()9P A =1.31、0.8,0.252、0.63、0.074、23 5、0.56、注:加入条件()0.4P B =解:()()0.1P AB P A ==,()()0.4P A B P B +==()()0.9P A B P AB +==,()(|)0.25()P AB P A B P B ==7、解:设A 表示"13张牌中有5张黑桃,3张红心,3张方块,2张梅花”则5332131313131352()C C C C P A C =,8、解:设123,,A A A 分别表示“零件由甲,乙,丙厂生产”,B 表示“零件时次品”则112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.20.050.40.040.40.030.036=⋅+⋅+⋅=9、解:设123,,A A A 分别表示“甲,乙,丙炮射中敌机”, 123,,B B B分别表示“飞机中一门,二门,三门炮”,C 表示“飞机坠毁”。
联合概率分布和联合概率密度的关系
联合概率分布和联合概率密度的关系
联合概率分布和联合概率密度是概率论和统计学中重要的概念,它们之间有着密切的关系。
首先,我们来看一下它们分别是什么。
联合概率分布是指在随机试验中,两个或多个随机变量同时取
某些特定取值的概率分布。
它可以用一个表格或者一个函数的形式
来表示,其中包含了所有可能的取值组合以及它们对应的概率。
而联合概率密度则是在连续型随机变量的情况下使用的概念。
它描述了多个连续型随机变量同时取某些特定取值的概率密度函数。
在二维情况下,联合概率密度可以用二维平面上的曲线或者曲面来
表示。
这两者之间的关系在于,对于离散型随机变量,联合概率分布
可以通过列出所有可能的取值组合和它们对应的概率来描述,而对
于连续型随机变量,联合概率密度则可以通过一个函数来描述。
在
数学上,可以通过联合概率密度函数对取值区域进行积分来得到联
合概率分布。
另外,联合概率分布和联合概率密度都可以用来计算多个随机
变量之间的相关性、独立性等性质。
它们在统计推断、参数估计、假设检验等方面都有着重要的应用。
总之,联合概率分布和联合概率密度都是描述多个随机变量之间关系的重要工具,它们之间的关系在于描述的对象不同,但都是描述多个随机变量的联合概率分布的数学工具。
三个变量的联合概率分布分解
三个变量的联合概率分布分解在概率论与数理统计中,我们经常遇到多个随机变量的联合概率分布问题。
特别是当涉及到三个或更多变量时,联合概率分布的复杂性会显著增加。
然而,通过分解联合概率分布,我们可以简化问题,更好地理解变量之间的关系。
本文将详细探讨三个变量的联合概率分布分解。
一、联合概率分布的基本概念联合概率分布描述了多个随机变量同时取特定值的概率。
对于三个随机变量X、Y和Z,其联合概率分布P(X,Y,Z)表示这三个变量同时取特定值x、y和z的概率。
二、联合概率分布的分解为了简化联合概率分布的计算和理解,我们通常将其分解为更简单的部分。
对于三个变量的联合概率分布P(X,Y,Z),可以采用以下两种常见的分解方式:1. 链式法则分解:根据链式法则,我们可以将三个变量的联合概率分布分解为一系列条件概率的乘积:\(P(X,Y,Z) = P(X) \cdot P(Y|X) \cdot P(Z|X,Y)\)这里,\(P(X)\)是X的边缘概率分布,\(P(Y|X)\)是在给定X的条件下Y 的条件概率分布,\(P(Z|X,Y)\)是在给定X和Y的条件下Z的条件概率分布。
2. 分组分解:另一种分解方式是将三个变量分为两组,然后计算这两组之间的联合概率分布。
例如,我们可以将X和Y视为一组,Z视为另一组,得到:\(P(X,Y,Z) = P(X,Y) \cdot P(Z|X,Y)\)或者将X视为一组,Y和Z视为另一组,得到:\(P(X,Y,Z) = P(X) \cdot P(Y,Z|X)\)这种分解方式有助于我们更好地理解变量之间的依赖关系。
三、分解的意义与应用通过分解联合概率分布,我们可以更深入地了解随机变量之间的依赖性和独立性。
在实际应用中,这种分解有助于简化概率计算,提高计算效率。
同时,它也为解决复杂的概率问题提供了一种有效的思路。
例如,在统计推断、机器学习、信号处理等领域,我们经常需要处理多个随机变量的联合概率分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
lim A(B arctan x)(C arctan y) A(B arctan x)(C ) 0
y
2
由此可解得:C
=
2
,
B
2
,
A
1
2
11
描述是不够的。例如要研究儿童生长发育
的情况。仅考虑身高或体重是不合理的,
而是应该将两者作为一个整体,研究他们
整体统计规律。若设X=身高、Y=体重
儿童的生长发育
(X,Y).第三章
主要是把一维随机变量的情况推广到二维
随机变量。在推广的过程中要对比、比较
相同及不同的情况。
3
一、定义3.1:
一般, 设E是一个随机试验, 它的样本空间是Ω Ω={ω } , 设 X=X (ω) 和 Y=Y (ω)是定义在Ω上的 随机变量, 由它们构成的一个向量(X , Y) , 称为 二维随机向量或二维随机变量 . 注 二维随机变量(X , Y)的性质不仅与X 与 Y 有关, 而且还依赖于这两个随机变量的相互关系, 因此 需将(X , Y)作为一个整体进行研究 .
解:由分布函数F(x,y)的性质可得:
lim A(B arctan x)(C arctan y) A(B )(C ) 1,
x
22
y
lim A(B arctan x)(C arctan y) A(B )(C,) = lim F(x, y) = 0 , y
F(,) = lim F(x, y) = 0 , x, y
F(,) = lim F(x, y) = 1 . x, y 6
(2)单调性 F(x, y) 分别对 x或 y 是单调不减 , 即当 x1 < x2 , 任意 y R有 F( x1, y) F(x2, y) ; 当 y1 < y2 , 任意 x R有 F( x, y1 ) F(x, y2 ) .
y2 (x1 , y2)
(x2 , y2)
性质(4)的几何意义
y1 (x1 , y1)
(x2 , y1)
O x1
x2 x
注 任一二维分布函数F(x, y)必具备这4条性质;
反之, 具备这些性质的二元函数F( x, y)必为
某个二维随机变量的分布函数 . 8
四、推广: 1、n维随机向量: 设 E是一个随机试验,它的样本空间是Ω={ω } ,
称为n维随机变量( X1 , X2 ,L , Xn )的分布函数或 随机变量X1, X2 ,L , Xn的联合分布函数 . 它也具有类似于二维随机变量分布函数的性质.
10
例1:已知 F(x, y) A(B arctan x)(C arctan y)
求常A,B,C。(- x + , y )
4
二、定义3.2: 设 (X , Y)是二维随机变量, 对于任意实数 x , y ,
二元函数 F ( x, y) = P X x I Y y
= P X x , Y y
称为二维随机变量 (X , Y)的分布函数, 或称为
随机变量 X 和 Y的联合分布函数 .
y
(x, y)
F( x, y)在( x, y)处的函数值
即(X, Y )落在阴影区的概率
O
x
5
三、定理3.1: 任一二维联合分布函数F( x , y )必具有4条基本性质: (1)有界性 对任意的 x 和 y , 有
0 F( x, y) 1 , 且
F (, y) = lim F ( x, y) = 0 , x
设 X1 = X1() , X2 = X2 () ,L , Xn = Xn()
是定义在Ω上的随机变量,由它们构成的一个 n维向量( X1 , X2 ,L , Xn )称为n维随机向量或 n 维随机变量 .
9
2、联合分布函数: 对于任意n个实数 x1 , x2 ,L , xn , n元函数
F ( x1 ,L , xn ) = P X1 x1 , X2 x2 ,L , Xn xn
第三章二维随机变 量及联合概率分布
3.1二维随机变量及联合概率分布 3.2离散型随机变量及其分布律 3.3随机变量及其函数分布 3.4边缘分布 3.5随机变量的独立性 3.6随机变量的条件分布
1
3.1二维随机变量及 联合概率分布
1、概率分布的定义 2、概率分布的性质
2
引言
在一些随机现象中,只用一个随机变量
(3)右连续性 对每个变量均是右连续的, 即
F(x + 0, y) = F(x, y) , F(x, y + 0) = F(x, y) .
7
(4)非负性 对任意 x1 < x2 , y1 < y2 , 有
P x1 X x2, y1 Y y2
y = F(x2, y2 ) F(x1, y2 ) F(x2, y1) + F(x1, y1) 0