(完整版)逻辑代数的基本公式和运算规则
(完整版)逻辑代数的运算规则
逻辑代数的运算规则逻辑代数的基本定律逻辑代数的三个规则1、代入规则在任一逻辑等式中,如果将等式两边所有出现的某一变量都代之以一个逻辑函数,则此等式仍然成立,这一规则称之为代入规则。
2、反演规则已知一逻辑函数F,求其反函数时,只要将原函数F中所有的原变量变为反变量,反变量变为原变量;“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”。
这就是逻辑函数的反演规则。
3、对偶规则已知一逻辑函数F,只要将原函数F中所有的“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”,而变量保持不变、原函数的运算先后顺序保持不变,那么就可以得到一个新函数,这新函数就是对偶函数F'。
其对偶与原函数具有如下特点:1.原函数与对偶函数互为对偶函数;2.任两个相等的函数,其对偶函数也相等。
这两个特点即是逻辑函数的对偶规则。
逻辑运算的常用公式逻辑代数的总结基本逻辑运算:与(或称“积”)---符号(&、?、无、∧、∩)或(或称“和”)---符号(| 、+、∨、∪)非(或称“反”)---符号(! 、)1、基本运算法则:0-1律:0?A=0 0+A=11?A=A 1+A=A同一律:A?A=A A+A=A互补律:A?A=0 A+A=0反演律A?B =A+B A+B=A?B还原律A =A√⊕⊙??+A=02、常用公式交换律:A?B=B?A A+B=B+A结合律:A?(A?B)=(A?B)?C A+(A+B)=(A+B)+C 分配律:A?(A+B)=A?B+A?C A+(A?B)=(A+B)?(A+C) 吸收律:A?(A+B)=AB A+(A?B)=ABA?B+(A?B)=A (A+B)?(A+B)=A。
逻辑代数的基本定律及规则2010.9.23
_ _ _
_
_ _
_
三变量最小项的编号
长春理工大学软件学院
最大项
最大项标准式是以“或与”形式出现的标准式。 最大项: 对于一个给定变量数目的逻辑函数, 所有变 量参加相“或”的项叫做最大项。 在一个最大项中, 每个 变量只能以原变量或反变量出现一次。 例如, 一个变量A有二个最大项: (2 ) A, A。
例题:化简函数
AB + AC + BC = AB + AC
F = ABC + AD + C D + BD
F = ABC + AD + C D + BD
= ABC + ( A + C ) D + BD
= AC ⋅ B + AC ⋅ D + BD
= AC ⋅ B + AC ⋅ D
= ABC + AD + C D
最小项
2 n 个最小项。最小项通 以此类推,n变量共有
常用 mi 表示。 最小项标准式:全是由最小项组成的“与或” 式,便是最小项标准式(不一定由全部最小项 组成)。 例如:
F ( ABC ) = A B C + BC + A C = A B C + ABC + A BC + AB C + AB C = ∑ m(0,3,4,6,7)
长春理工大学软件学院
逻辑代数的基本定律及规则
对合律: A = A
冗余律: AB + A C + BC = AB + A C
长春理工大学软件学院
逻辑代数的基本定律及规则
3 基本规则
代入规则:任何一个含有变量A的等式,如果将所有 出现A的位置都用同一个逻辑函数代替,则等式仍然 成立。这个规则称为代入规则。 反演规则:对于任何一个逻辑函数F,想要得到F的反 函数,只需要将F中的所有“·”换成“+”,“+”换 成“·”,“0”换成“1”,“1”换成“0”,原变量换成反 变量,反变量换成原变量。 长春理工大学软件学院
逻辑代数运算法则
辑 【量例,1.3得.3到】的已Y结=知A果B就+C是+CD。 Y Y,求(A+B。C)(C+D)
代
数
Y=AC BC AD BCD
运 算
Y AC BC AD
法 3.对偶定理:若两个逻辑表达式相等,则他们的对偶式也相等。 则
对偶式就是指:对于任何一个表达式Y,若将其中的“·”
换成“+”, “+”换成“·”,0换成Y1,1换成0,得到一
数字电子技术
逻之 辑代数运算法则
主讲教师:谢永超
湖南铁道 职业技术
学习导 入
逻辑代数有什 么法则呢?
本次课主要内容
逻辑代 数基本 运算规
则
第一点
逻辑代 数的基 本定律
第二点
逻辑代 数的基 本定理
第三点
主 一、逻辑代数的运算 题 规则
1.基本公理:
逻 (1)1=0 ;0=1 (2)1·1=1;0+0=0
主 一、逻辑代数的运算 题 规则
(4)0 1 律1·A=A ;A+0=A ;0·A=0 ;
(5)互补律 A A 0; AA A+11=1
逻
辑 (6)重叠律 A ·A = A ; A + A =A
代
数 (7)还原律A A
运 算
(8)反演律—摩根定A律B A B; A B A B
法
则 证明:反演律—摩根定
个新的表达式 。
A B C=(A B) (A+C)
A (B+C) AB+AC
谢谢观看
湖南铁道 职业技术 学院作品
AB AC ABC ABC
( AB ABC) ( AC ABC)
逻辑代数运算法则
0
0
1
1
0
1
1
1
1
0
1
1
1
1
0
0
主 二、逻辑代数的基本定律
题
(1)原变量吸收公式 AABA
逻 辑
(2)反变量吸收公式 AABAB
代
数 运
(3)冗余律
A B + A C + B C D = A B + A C
算
法
则
证明:
ABACBCABACBC(AA)
ABACABC ABC
(ABAB)C(ACABC)
运 算
Y AC BC AD
法 3.对偶定理:若两个逻辑表达式相等,则他们的对偶式也相等。 则
对偶式就是指:对于任何一个表达式Y,若将其中的“·”换成“+”, “+”
换成“·”,0换成1,1换成0,得到一个新的表达式 Y 。
A B C = ( A B )( A + C )
A(B+C) AB+AC
湖南铁道职业 技术学院作品
谢谢观看
ABAC
主 三、逻辑代数的基本定理
题
1.代入定理:在任何一个包含逻辑变量A的逻辑等式中,若以另外一个逻辑表达式代入
式中所有A的位置,则等式依然成立。
逻
辑 代
将摩根定理推广为三变量的应用情况:
数
运
AB=A+B
算
法 则
现将 B C 代入等式左边B的位置,于是得到
A ( B C ) A ( B C ) A + B + C
数字电子技术之
逻辑代数运算法则
主讲教师:谢永超
湖南铁道职业 技术学院作品
逻辑代数的基本知识
逻辑代数的基本知识 1. 逻辑代数的基本定律根据逻辑变量和逻辑运算的基本定义,可得出逻辑代数的基本定律。
①交换律: A+B = B+A , A • B = B • A;②结合律: A+(B+C) = (A+B)+ C , A • (B • C) = (A • B) • C;③分配律: A •(B+C) = A • B+A • C , A+B • C=(A+B) • (A+C);④互非定律: A+A = l ,A • A = 0 ;1=+A A ,0=•A A ; ⑤重叠定律(同一定律):A • A=A, A+A=A ;⑥反演定律(摩根定律):A • B=A+B 9 A+B=A • B B A B A •=+,B A B A +=•;⑦还原定律: A A = 2. 逻辑代数的基本运算规则 (1)代入规则在逻辑函数表达式中凡是出现某变量的地方都用另一个逻辑函数代替,则等式仍然成立,这个规则称为代入规则。
例如,已知A+AB=A ,将等式中所有出现A 的地方都以函数(C+D)代替则等式仍然成立,即(C+D) + (C+D)B = C+D 。
(2)反演规则对于任意的Y 逻辑式,若将其中所有的“ • ”换成“ + ”换成“ • ”,0换成1,1换成0,原变量换成反变量,反变量换成原变量,则得到原函数Y 的反函数,运用它可以简便地求出一个函数的反函数。
运用反演规则时应注意两点: ① 要注意运算符号的优先顺序,不应改变原式的运算顺序。
例:CD B A Y +=应写为))((D C B A Y ++= 证: ))((D C B A CD B A CD B A Y ++=•=+=② 不属于单变量上的非号应保留不变。
例:)(E D C C B A Y•+•= 则[])()(E D C C B A Y ++•++=D C B A Y +•= 则 D C B A Y •++=(3)对偶规则对于任何一个逻辑函数,如果将其表达式Y 中所有的算符“ • ”换成“ + ”换成“ •”,常量 “0”换成换成“0”,而变量保持不变,则得出的逻辑函数式就是Y 的对偶式,记为Y’。
第2章 逻辑代数基础(完整版)
2
A BC ( A B)( A C )
方法二:真值表法
[解]
方法一:公式法
右式 ( A B)( A C ) A A A C A B B C
A AC AB BC A(1 C B) BC
A BC 左式
A (B C) A B A C 分配律: C ( A B) ( A C ) A B 缓一缓 ( A B)' A'B' ( A B)' A' B' 反演律(摩根定理):
( A B C )' A' B'C ' ( A B C )' A'B'C ' ( A B C )' A' B'C ' ( A B C )' A'B'C '
互补律: A A' 1
A 1 1 A 0 0
A A' 0
等幂律: A A A
A A A
双重否定律: ( A' )' A
20
CopyRight @安阳师范学院物电学院_2013
2
3)基本运算规则
A B B A 交换律: A B B A ( A B) C A ( B C ) 结合律: ( A B) C A ( B C )
A E 电路图 B Y
开关 A 开关 B 断开 断开 闭合 闭合 断开 闭合 断开 闭合 功能表
灯Y 灭 灭 灭 亮
5
L=ABCopyRight @安阳师范学院物电学院_2013
逻辑代数的基本定律和常用公式
逻辑代数的基本定律与常用公式1、基本定律逻辑代数就是一门完整的科学。
与普通代数一样,也有一些用于运算的基本定律。
基本定律反映了逻辑运算的基本规律,就是化简逻辑函数、分析与设计逻辑电路的基本方法。
(1)交换律(2)结合律(3)分配律(4)反演律(德·摩根定律)2、基本公式(1)常量与常量(2)常量与变量(3)变量与变量3、常用公式除上述基本公式外,还有一些常用公式,这些常用公式可以利用基本公式与基本定律推导出来,直接利用这些导出公式可以方便、有效地化简逻辑函数。
(1)证明:上式说明当两个乘积项相加时,若其中一项(长项:A·B)以另一项(短项:A)为因子,则该项(长项)就是多余项,可以删掉。
该公式可用一个口诀帮助记忆:“长中含短,留下短”。
(2)证明:上式说明当两个乘积项相加时,若她们分别包含互为逻辑反的因子(B与),而其她因子相同,则两项定能合并,可将互为逻辑反的两个因子(B与)消掉。
(3)证明:上式说明当两项相加时,若其中一项(长项:·B)包含另一项(短项:A)的逻辑反()作为乘积因子,则可将该项(长项)中的该乘积因子()消掉。
该公式可用一个口诀帮助记忆:“长中含反,去掉反”。
例如:(4)证明:上式说明当3项相加时,若其中两项(AB与C)含有互为逻辑反的因子(A与),则该两项中去掉互为逻辑反的因子后剩余部分的乘积(BC)称为冗余因子。
若第三项中包含前两项的冗余因子,则可将第三项消掉,该项也称为前两项的冗余项。
该公式可用一个口诀帮助记忆:“正负相对,余(余项)全完”。
例:。
逻辑代数的基本定律及规则
逻辑代数的基本定律及规则文章来源:互联网作者:佚名发布时间:2012年05月26日浏览次数: 1 次评论:[已关闭] 功能:打印本文一、逻辑代数相等:假定F、G都具有n个相同变量的逻辑函数,对于这n个变量中的任意一组输入,如F和G都有相同的输出值,则称这两个函数相等。
在实际中,可以通过列真值表来判断。
二、逻辑代数的基本定律:在逻辑代数中,三个基本运算符的运算优先级别依次为:非、与、或。
由此推出10个基本定律如下:1.交换律A+B=B+A;A·B=B·A2.结合律A+(B+C)=(A+B)+C;A·(BC)=(AB)·C3.分配律A·(B+C)=AB+AC;A+BC=(A+B)·(A+C)4.0-1律A+0=A;A·1=AA+1=1 ;A·0=05.互补律A+=1 ;A·=06.重叠律A·A=A;A+A=A7.对合律=A8.吸收律A+AB=A;A·(A+B)=AA+B=A+B;A·(+B)=ABAB+B=B;(A+B)·(+B)=B9.反演律=·;=+10.多余项律AB+C+BC=AB+C;(A+B)·(+C)·(B+C)=(A+B)·(+C)上述的定律都可用真值表加以证明,它们都可以用在后面的代数化简中。
三、逻辑代数的基本规则:逻辑代数中有三个基本规则:代入规则、反演规则和对偶规则。
1.代入规则:在任何逻辑代数等式中,如果等式两边所有出现某一变量(如A)的位置都代以一个逻辑函数(如F),则等式仍成立。
利用代入规则可以扩大定理的应用范围。
例:=+,若用F=AC代替A,可得=++2.反演规则:已知函数F,欲求其反函数时,只要将F式中所有的“·”换成“+”,“+”换成“·”;“0”换成“1”,“1”换成“0”时,原变量变成反变量,反变量变成原变量,便得到。
逻辑代数的基本公式和运算规则
逻辑代数的基本公式和
运算规则
-CAL-FENGHAI.-(YICAI)-Company One1
逻辑代数的基本公式和运算规则
一、基本公式
表1.3.1中若干常用公式的证明1.证明: 2. A+AB=A 证明:A+AB=A(1+B)=A1=A
3.
2
证明:
4.
证明:
推论:
二、运算规则1.代入定理任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立,这称为代入规则。
利用代入规则,反演律能推广到n个变量,即:
2.反演定理对于任意一个逻辑函数式F,若把式中的运算符“.”换成“+”, “+” 换成“.”,常量“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到的结果为。
这个规则叫反演定理运用反演定理时注意两点:① 必须保持原函数的运算次序。
② 不属于单个变量上的非号保留,而非号下面的函数式按反演规则变换。
例如:
其反函
数:
3.对偶定理对于任意一个逻辑函数F,若把式中的运算符“.”换成“+”,“+”换成“.”,常量“0”换成“1”,“1”换成“0”,则得到F的对偶式F′。
例如:
3
其对偶
式:
对偶定理:如果两个函数式相等,则它们对应的对偶式也相等。
4。
逻辑代数基本公式
逻辑代数基本公式逻辑代数是一种用于逻辑项的数学工具。
在逻辑代数中,有许多基本公式,这些公式是我们进行逻辑运算必须掌握并灵活运用的工具。
首先,我们要介绍逻辑代数的基本运算符:与(∧)、或(∨)、非(¬)。
其中,“与”表示两个命题都成立的情况,“或”表示两个命题中至少有一个成立的情况,“非”则是指命题的否定。
接下来,我们要介绍逻辑代数的基本公式:1.德摩根定律德摩根定律是逻辑代数中最经典的公式之一。
它的形式如下:(¬A)∨(¬B)=¬(A∧B)(¬A)∧(¬B)=¬(A∨B)这个定律的意义在于,将“非”运算符从一个命题移到另一个上时,必须同时改变并置换“与”和“或”运算符。
例如:“既不是A也不是B”等价于“不是(A和B)”。
2.分配律分配律的形式如下:A∧(B∨C)=(A∧B)∨(A∧C)A∨(B∧C)=(A∨B)∧(A∨C)分配律在进行逻辑运算时非常实用。
例如,可以将一个复杂的命题转化为一个简单的命题,从而更容易理解。
3.结合律结合律的形式如下:(A∧B)∧C=A∧(B∧C)(A∨B)∨C=A∨(B∨C)结合律指的是,多个有相同运算符的命题可以成员结合在一起。
例如,(A∧B)∧C 等价于A∧(B∧C)。
4.交换律交换律的形式如下:A∧B=B∧AA∨B=B∨A交换律指的是命题中多个项之间可以交换位置,而不影响命题的结论。
例如,A∧B 等价于B∧A。
5.对偶原理对偶原理是基于真值表同构的,它用于将一个表达式的真值表中0 和 1 互换,统称为互为对偶。
其公式如下:¬(A∧B) = ¬A ∨ ¬B¬(A∨B) = ¬A ∧ ¬B其中,左侧是原式,右侧是公式的对偶形式。
逻辑代数中的这些基本公式,可以帮助我们更加容易地进行逻辑运算,简化逻辑命题,并且在实践中具有广泛的应用。
我们应该认真学习这些公式,并对其进行灵活的运用。
逻辑代数的基本公式和常用公式
一.逻辑运算当二进制代码表示不同的逻辑状态时,可以按照一定的规则进行推理运算1.三种基本的逻辑关系①与②或③非④几种常用的复合逻辑运算2.逻辑代数的基本公式和常用公式①基本公式①基本公式3.逻辑代数的基本定理①代入定理:在任何一个包含A的逻辑式中,若以另外一个逻辑式代入式子中A的位置,则等式依然成立②反演定理:如果一个表达式想要取反,那么就在这个表达式中将原变量变为反变量,将反变量变为原变量即可。
4.逻辑函数及其表示方法如果以逻辑变量为输入,运算结果为输出,则输入变量的值确定以后,输出的取值也会随之而定。
输入输出之间是一种函数关系注:在二值逻辑中,输入输出都只有两种取值可能,非零即一。
1.逻辑函数的两种标准表达形式①最小项之和:最小项M,其中M是乘积项,它包含N个因子,N个变量均以原变量和反变量的形式在M中出现一次最小项的编号:最小项的性质:在输入变量任意一个取值下,有且仅有一个最小项的值为1.全体最小项之和为1.任何两个最小项之积为0两个相邻的最小项之和可以合并,消掉一对因子,只留下一个公共因子。
注:相邻指的仅一个变量不同的两项。
②最大项之积最大项:M是相加项,它包含了N个因子,N个变量均以原变量或者反变量的形式在M中出现一次。
其实最小项与最大项是可以相互进行转变的,转变的方式就是摩根定理。
5.逻辑函数的化简逻辑函数的最简形式:最简与或包含的乘积项已经最少,每个乘积项的因子也最少称为最简的与或逻辑式。
①卡诺图化简法:实质:将逻辑函数的最小项之和以图形的方式表达出来以2的N次方分别代表N变量的所有最小项,并且将他们排列成矩阵,而且使得几何位置相邻的两个最小项在逻辑上也是相邻的(只有一个变量不同),这样就得到表示N变量全部最小项的卡诺图。
用卡诺图化简函数:依据:具有相邻的最小项可以合并,消去不同的因子,并且在卡诺图中,最小项的相邻可以直观的从图中反映出来。
合并最小项的原则:两个相邻的最小项可以合并成一项,消去一对因子;四个排成矩形的相邻最小项可以合并成一项,消去两对因子;八个相邻的最小项可以合并为一项,消去三对因子;。
逻辑代数的基本公式
逻辑代数的基本公式
逻辑代数是一种基于逻辑运算的代数系统,广泛应用于电子电路设计、计算机科学等领域。
在逻辑代数中,有许多基本公式,这些公式是逻辑代数运算的基础,也是学习逻辑代数的关键。
逻辑代数的基本公式包括:与运算的结合律、交换律、分配律;或运算的结合律、交换律、分配律;非运算的双重否定律、德摩根定律等。
其中,与运算的结合律指的是a∧(b∧c)=(a∧b)∧c;交换律指的是a∧b=b∧a;分配律指的是a∧(b∨c)=(a∧b)∨(a∧c);或运算的结合律指的是a∨(b∨c)=(a∨b)∨c;交换律指的是a∨b=b∨a;分配律指的是a∨(b∧c)=(a∨b)∧(a∨c);非运算的双重否定律指的是(a)=a;德摩根定律指的是(a∨b)=a∧b,(a∧b)=a∨b。
掌握逻辑代数的基本公式,可以帮助我们更好地理解逻辑代数的运算规律,进而应用到实际的问题中。
- 1 -。
逻辑代数的公式、定理
C)
A 0 0
分配律:
A
A
(B B
C) C
A (A
B B)
A (A
C C)
1 1
B A.B B.A
00 0 10 0 00 0 11 1
反演律(摩根定律):
B A B
证明分配率:A+BA=(A+B)(A+C)
证明:
(A+B)(A+C)=AA+AB+AC+BC
分配率 A(B+C)=AB+AC
=A+AB+AC+BC =A(1+B+C)+BC
等幂率AA=A
分配率 A(B+C)=AB+AC
=A+BC
0-1率A+1=1
(4)常用公式
还原律:
A
B
A
B
A
( A B) ( A B ) A
吸收率:
A A
(
A A
B B)
A A
A (A B) A B A A B A B
逻辑代数的公式、定理和规则
1、逻辑代数的公式和定理 (1)常量之间的关系
与运算:0 0 0 0 1 0 1 0 0 11 1 或运算:0 0 0 0 1 1 1 0 1 1 1 1
非运算: 1 0
0 1
(2)基本公式
0-1
律:AA
0 A 1 A
A 1 1 A 0 0
互补律: A A 1 A A 0
(3)与非-与非表达式:Y A B AC
(4)或非-或非表达式:Y A B A C (5)与或非表达式:Y AB AC
1.3.1逻辑代数基本定律和规则
Y A C B D
应用反演规则应注意:
1.保持原来的运算优先顺序,即如果在原函数表达式中,AB 之间先运算,再和其它变量进行运算, 那么非函数的表达式 中,仍然是AB之间先运算。 2.不属于单个变量上的反号应保留不变。
Y AB C D C
Y ( A B)C D C
对偶规则:如果两个逻辑式相等,则它们的对偶式也相等。
Y A(B C) Y AB CD
Y D A BC Y D ( A B) (C D)
利用对偶规则,可以使要证明及要记忆的公式数目减少一半。
1 A A
A(B C) AB AC
0 A A
A BC ( A B)( A C)
例如,在反演律中用BC 去代替等式中的 B,则新的等式仍成立。
BC代替等式中的B
ABC A BC A B C
02
如果将逻辑函数Y 中的所有“·”换成“+”,“+”换成
“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,
则可得到的一个新的函数表达式 Y D, Y D 称为Y 的对偶式。
一
一、逻辑代数的基本定律:有10个基本定律
定律名称 0-1律 自等律 重叠律 互补律 交换律 结合律 分配律 吸收律 反演律 还原律
定律1
A·0=0 A·1=A A·A=A
A A 0
A·B=B·A A·(B·C )=(A·B )·C A·(B+C )=AB+AC
A(A+B )=A
AB A B
(B B
C) C
A (A
B B)
A A B A B A B
摩根定律
A B AB BA 00 0 0 01 0 0 10 0 0 11 1 1
电工电子技术-逻辑代数的基本公式和基本定理
1.逻辑代数的基本公式
2.逻辑代数的基本定理
(1)代入定理
对于任意一个逻辑等式,以某个逻辑变量或逻辑函数同 时取代等式两端的同一个逻辑变量后,等式依然成立。利用 代入定理可以方便的扩展公式。例如,在反演律中用BC取代 等式中的B,则新的等式仍成立,即得
ABC A BC A B C
(2)反演定理
对于任意一个逻辑函数F,若将其中所有的“+”换成 “·”,“·”换成“+”,0换成1,1换成0,原变量换成反变 量,反变量换成原变量,则得到的结果就是F的反函数。利 用反演定理可以方便地求得已知逻辑式的反逻辑式。
(3)对偶定理
对于任意一个逻辑函数F,若将其中的“+”换成“·”, “·”换成“+”,0换成1,换成0,所得的新逻辑函数就是F
的对偶式 F, 记作 。
所谓对。
例:求Y=A+BC的对偶式Y' 。 解: Y'=A( B+C )
逻辑代数基本公式及定律10152
A· A· B=A
A· A· B = A·(A+B) =A · B
(A+B)=A A· A· B= A· A· A· B= ?
A × A √ A· B A· B × ×
(9)
§ 2.4 逻辑代数的基本定理
2.4.1 代入定理
内容:在任何一个包含变量A的逻辑等式中, 若以另外一个逻辑式代替式中所有的变量A, 则等式仍然成立。
证明: 左式 AB AC BC
AB AC (A A)BC
AB AC ABC ABC 添加
添冗余因子
口诀: 正负相对, 余全完。 (消冗余项)
(8)
( AB ABC) ( AC ABC)
AB AC =右式
4. A · A· B=A · B
(12)
例1: F1 A B C D 0 注意 括号
F1 (A B) (C D) 1
注意括号
F1 AC BC AD BD
与或式
(13)
例 2: F2 A B C D E
反号不动
F2 A B C D E
§2.3 逻辑代数的基本公式和常用公式 2.3.1 基本公式
一、基本定律
或运算规则:
0+0=0 ,0+1=1 ,1+0=1,1+1=1
A 0 A , A 1 1, A A A, A A 1
与运算规则:
0•0=0
非运算规则:
0•1=0
1 0
1•0=0
0 1
1•1=1
A(BC) A(BC) A B C
注:代入定理还可以扩展其他基本定律 的应用范围!
逻辑代数的基本运算规则
逻辑代数的基本运算规则
逻辑代数又称布尔(Hrpthr Boole)代数,是研究逻辑关系的一种数学工具,被广泛应用于数字电路的分析和设计。
逻辑代数和普通代数一样也可以用字母表示变量,但变量的取值只能是0和1。
这里的0和1不是具体的数值,也不存在大小关系,而是表示两种逻辑状态。
在研究实际问题时,0和1所代表的含义由具体的研究对象而定。
所以逻辑代数所表达的是逻辑关系而不是数值关系,这就是它与普通代数本质的区别。
逻辑代数有三种基本的逻辑运算——与运算、或运算和非运算,其他的各种逻辑运算由这三种基本运算组成。
现将逻辑代数的一些基本运算规则列举如下:
上述运算规则都可以用逻辑状态表加以证明,即等号两边表达式的逻辑状态表完全相同,等式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑代数的基本公式和运算规则
一、基本公式
表1.3.1中若干常用公式的证明1.证明: 2. A+AB=A 证明:A+AB=A(1+B)=A1=A
3.
证明:
4.
证明:
推论:
二、运算规则
1.代入定理任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立,这称为代入规则。
利用代入规则,反演律能推广到n个变量,即:
2.反演定理对于任意一个逻辑函数式F,若把式中的运算符“.”换成“+”, “+” 换成“.”,常量“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到的结果为。
这个规则叫反演定理运用反演定理时注意两点:① 必须保持原函数的运算次序。
② 不属于单个变量上的非号保留,而非号下面的函数式按反演规则变换。
例如:
其反函数:
3.对偶定理对于任意一个逻辑函数F,若把式中的运算符“.”换成“+”,“+”换成“.”,常量“0”换成“1”,“1”换成“0”,则得到F的对偶式F′。
例如:
其对偶式:
对偶定理:如果两个函数式相等,则它们对应的对偶式也相等。