中考数学专题复习教案:共顶点的等腰三角形与全等

合集下载

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。

等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。

)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。

问题4给学生留下悬念。

)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。

〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)初中数学等腰三角形的性质教案篇1一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。

等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。

等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。

同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。

2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。

如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:重点:等腰三角形性质的探索与应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设启发性强、学生感兴趣、有利于自主学习和探索的问题情境,让学生在活动丰富、思维积极的状态下进行探究学习,组织合作学习,引导合作过程,使学生朝着有利于知识建构的方向发展。

二、学情分析刚进入二年级的学生,观察、操作、猜测能力较强,但演绎推理、归纳和数学意识的应用能力较弱,缺乏思维的广泛性、敏捷性、紧凑性和灵活性,自主探究和合作学习的能力需要在课堂教学中进一步加强和引导。

三角形的全等和等腰三角形的性质 优秀课教案

三角形的全等和等腰三角形的性质   优秀课教案

1.1 等腰三角形第1课时 三角形的全等和等腰三角形的性质1.复习全等三角形的判定定理及相关性质;2.理解并掌握等腰三角形的性质定理及推论,能够运用其解决简单的几何问题.(重点,难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC 有什么特点?二、合作探究探究点一:全等三角形的判定和性质 【类型一】 全等三角形的判定如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是()A .BD =CDB .AB =AC C .∠B =∠CD .∠BAD =∠CAD解析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.A.∵∠1=∠2,AD 为公共边,若BD =CD ,则△ABD ≌△ACD (SAS);B.∵∠1=∠2,AD 为公共边,若AB =AC ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;C.∵∠1=∠2,AD 为公共边,若∠B =∠C ,则△ABD ≌△ACD (AAS);D.∵∠1=∠2,AD 为公共边,若∠BAD =∠CAD ,则△ABD ≌△ACD (ASA);故选B.方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.要注意AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【类型二】 全等三角形的性质如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是( )A .∠1=∠2B .AC =CA C .∠D =∠B D .AC =BC解析:由△ABC ≌△CDA ,并且AB =CD ,AC 和CA 是公共边,可知∠1和∠2,∠D 和∠B 是对应角.全等三角形的对应角相等,对应边相等,因而前三个选项一定正确.AC 和BC 不是对应边,不一定相等.∵△ABC ≌△CDA ,AB =CD ,∴∠1和∠2,∠D 和∠B 是对应角,∴∠1=∠2,∠D =∠B ,∴AC 和CA 是对应边,而不是BC ,∴A 、B 、C 正确,错误的结论是D.故选D.方法总结:本题主要考查了全等三角形的性质;根据已知条件正确确定对应边、对应角是解决本题的关键.探究点二:等边对等角【类型一】 运用“等边对等角”求角的度数如图,AB =AC =AD ,若∠BAD=80°,则∠BCD =( )A .80°B .100°C .140°D .160° 解析:先根据已知和四边形的内角和为360°,可求∠B +∠BCD +∠D 的度数,再根据等腰三角形的性质可得∠B =∠ACB ,∠ACD =∠D ,从而得到∠BCD 的值.∵∠BAD =80°,∴∠B +∠BCD +∠D =280°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠D ,∴∠BCD =280°÷2=140°,故选C.方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,互为邻补角的两角之和等于180°.【类型二】 分类讨论思想在等腰三角形求角度中的运用等腰三角形的一个角等于30°,求它的顶角的度数.解析:本题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.解:①当底角是30°时,顶角的度数为180°-2×30°=120°;②顶角即为30°.因此等腰三角形的顶角的度数为30°或120°.方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.探究点三:三线合一【类型一】 利用等腰三角形“三线合一”进行计算如图,在△ABC 中,已知AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =125°.求∠ACB 和∠BAC 的度数.解析:根据等腰三角形三线合一的性质可得AE ⊥BC ,再求出∠CDE ,然后根据直角三角形两锐角互余求出∠DCE ,根据角平分线的定义求出∠ACB ,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC .解:∵AB =AC ,AE 平分∠BAC ,∴AE ⊥BC .∵∠ADC =125°,∴∠CDE =55°,∴∠DCE =90°-∠CDE =35°.又∵CD 平分∠ACB ,∴∠ACB =2∠DCE =70°.又∵AB =AC ,∴∠B =∠ACB =70°,∴∠BAC =180-(∠B +∠ACB )=40°.方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.【类型二】 利用等腰三角形“三线合一”进行证明如图,△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E 使得AE =AD ,连接DE ,求证:DE ⊥BC .解析:作AF ∥DE ,交BC 于点F .利用等边对等角及平行线的性质证明∠BAF =∠F AC .在△ABC 中由“三线合一”得AF ⊥BC .再结合AF ∥DE 可得出结论.证明:过点A 作AF ∥DE ,交BC 于点F .∵AE =AD ,∴∠E =∠ADE .∵AF ∥DE ,∴∠E =∠BAF ,∠F AC =∠ADE .∴∠BAF =∠F AC .又∵AB =AC ,∴AF ⊥BC . ∵AF ∥DE ,∴DE ⊥BC .方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC 的中点,请判断线段BE,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12BC =6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。

中考数学复习第22课时《全等三角形》教学设计

中考数学复习第22课时《全等三角形》教学设计

中考数学复习第22课时《全等三角形》教学设计一. 教材分析《全等三角形》是中考数学的重要内容,主要让学生了解全等三角形的概念、性质和判定方法。

通过学习全等三角形,学生能更好地理解几何图形的内在联系,提高解决问题的能力。

本课时教材内容包括全等三角形的定义、性质、SSS、SAS、ASA、AAS五种判定方法及应用。

二. 学情分析学生在学习本课时前,已掌握了相似三角形的知识,对图形的变换有一定的了解。

但部分学生对全等三角形的概念和判定方法理解不深,易混淆。

此外,学生对实际问题中的全等三角形应用能力有待提高。

三. 教学目标1.了解全等三角形的概念、性质和判定方法。

2.能运用SSS、SAS、ASA、AAS四种判定方法判断两个三角形是否全等。

3.提高学生在实际问题中运用全等三角形解决问题的能力。

四. 教学重难点1.全等三角形的概念及其与相似三角形的区别。

2.SSS、SAS、ASA、AAS四种判定方法的运用和记忆。

3.实际问题中全等三角形的应用。

五. 教学方法1.采用案例分析法,通过具体例子让学生了解全等三角形的概念和判定方法。

2.运用分组讨论法,让学生合作探究,提高解决问题的能力。

3.采用问题驱动法,引导学生思考,激发学习兴趣。

4.利用多媒体辅助教学,直观展示全等三角形的变换过程。

六. 教学准备1.准备相关案例和练习题,用于课堂讲解和练习。

2.制作多媒体课件,展示全等三角形的变换过程。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)利用多媒体课件展示两个三角形变换的过程,引导学生思考:如何判断两个三角形是否全等?2.呈现(10分钟)介绍全等三角形的概念、性质和判定方法。

通过具体例子,讲解SSS、SAS、ASA、AAS四种判定方法。

3.操练(10分钟)学生分组讨论,运用所学判定方法判断给出的三角形是否全等。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)针对判定方法进行练习,让学生加深对全等三角形判定方法的理解。

中考数学复习第22课时《全等三角形》教案

中考数学复习第22课时《全等三角形》教案

中考数学复习第22课时《全等三角形》教案一. 教材分析《全等三角形》是初中数学的重要内容,是学习几何的基础。

通过全等三角形的性质和判定,可以培养学生观察、思考、推理的能力。

本课时主要让学生掌握全等三角形的性质,学会用SSS、SAS、ASA、AAS四种方法判定两个三角形全等。

二. 学情分析学生在之前的学习中已经掌握了相似三角形的知识,对于全等三角形的性质和判定有一定的理解基础。

但部分学生在应用时,可能会混淆相似和全等的概念,对于实际操作判定全等三角形还有一定的困难。

三. 教学目标1.知识与技能:理解全等三角形的概念,掌握全等三角形的性质,学会用SSS、SAS、ASA、AAS四种方法判定两个三角形全等。

2.过程与方法:通过观察、思考、推理,培养学生的逻辑思维能力。

3.情感态度价值观:培养学生对数学的兴趣,激发学生探究数学问题的热情。

四. 教学重难点1.教学重点:全等三角形的性质,SSS、SAS、ASA、AAS四种判定方法。

2.教学难点:如何灵活运用四种判定方法,以及在实际操作中如何判断两个三角形是否全等。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等多种教学方法,引导学生主动探究,提高学生解决问题的能力。

六. 教学准备1.教具:多媒体课件、三角板、量角器、直尺。

2.学具:学生每人一份三角形模型、量角器、直尺。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾相似三角形的知识,为新课的学习做好铺垫。

然后提出全等三角形的概念,让学生思考:什么是全等三角形?呈现(10分钟)教师通过多媒体课件展示全等三角形的定义和性质,引导学生观察、思考,并解释全等三角形的意义。

同时,给出SSS、SAS、ASA、AAS四种判定方法,并通过动画演示,让学生直观理解这四种方法。

操练(10分钟)教师给出一些三角形,让学生运用所学知识,判断两个三角形是否全等。

学生在操作过程中,教师巡回指导,解答学生的疑问。

巩固(10分钟)教师学生进行小组合作,共同探讨如何灵活运用四种判定方法,并在小组内进行实际操作,互相检查,巩固所学知识。

1.1.1全等三角形和等腰三角形教案

1.1.1全等三角形和等腰三角形教案
五、教学反思
在本次全等三角形和等腰三角形的课堂教学中,我注意到以下几点值得反思和改进的地方:
1.学生对全等三角形判定方法的掌握程度:在授课过程中,我发现部分学生对全等三角形的判定方法理解不够深刻,尤其是ASA和AAS判定方法容易混淆。针对这一问题,我计划在下一节课中增加一些具体实例,通过对比分析,帮助学生更好地理解和区分这些判定方法。
2.实践活动中学生的参与度:Байду номын сангаас分组讨论和实验操作环节,部分学生参与度不高,可能是由于他们对题目理解不够透彻。为了提高学生的参与度,我将在下一次实践活动中,提前为学生提供更详细的指导,确保他们能更好地投入其中。
3.课堂提问和引导:在课堂提问环节,我发现部分学生的回答不够准确,可能是由于问题设置不够明确。为了提高课堂提问的效果,我将在以后的教学中注意问题的设置,尽量让问题更具针对性和引导性,帮助学生更好地思考。
-例如,在一个等腰三角形中,若已知底边长和顶角,求腰长或底角。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《全等三角形和等腰三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全相同的情况?”(如拼图游戏中的三角形板块)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索全等三角形和等腰三角形的奥秘。
- AAS(角角边):两角及其中一角的对边对应相等的两个三角形全等。
(2)等腰三角形的性质及其判定方法:教师需引导学生探究等腰三角形的性质,如两腰相等、底角相等,并学会运用这些性质解决相关问题。
2.教学难点
(1)全等三角形判定方法的灵活运用:学生在理解判定方法的基础上,需要学会根据不同图形的特点选择合适的判定方法,这是本节课的一大难点。

等腰三角形的复习教案

等腰三角形的复习教案

等腰三角形专题复习(一)教学目标1、能熟练地运用等腰三角形的性质和判定进行有关的计算。

2、能运用等腰三角形的性质和判定进行简单的推理证明。

3、进一步培养学生的分类思想、画图思想和辅助线思想。

重点:运用等腰三角形的性质和判定进行有关的计算和证明。

难点:1、正确地写出推理证明的过程。

2、分类讨论思想的培养。

教学过程一、知识点回顾(一)等腰三角形的性质性质一等腰三角形的两个____相等(简写成“____________”);性质二“三线合一”的“三线”指________________________;用几何语言表示“三线合一”(1)∵AD平分∠BAC,∴_______=________;________⊥(2)∵AD是中线,∴∠________=∠________;________⊥(3)∵AD⊥BC,∴∠________=∠_______;_______=_______.(二)等腰三角形的判定:_____________。

二、你会填吗?1.在△ABC中,AB=AC。

(1)若∠A=50°,则∠B=_____°,∠C=_____°;(2)若∠B=45°,则∠A=_____°,∠C=_____°;(3)若∠A=∠B,则∠A=_____°,∠C=_____°。

2.等腰三角形中的一个角等于100°,则另两个角的度数分别为 ( )A.40°、40°B.100°、20°C.50°、50°D.40°、40°或20°、100°3.等腰三角形中的一个角是50°,则另两个角的度数分别是( )A.65°、65°B.50°、80°C.65°、65°或50°、80°D.50°、50°4.等腰三角形的一边长是10cm,另一边长是6cm,则它的周长是( )A.26cmB.22cmC.16cmD.22cm或26cm5.等腰三角形的周长是24cm,一边长是6cm,则其他两边的长分别是 _____ _____ 。

共顶点的等腰三角形问题课件

共顶点的等腰三角形问题课件

边长性质
总结词
共顶点的等腰三角形具有特定的边长关系,即两腰相等,底 边与其中一腰不等。
详细描述
由于是等腰三角形,两腰的长度必然相等。而共顶点的两个 等腰三角形共享一个顶点,因此它们的边长关系也是固定的 。具体来说,两腰相等,而底边与其中一腰的长度不等。
面积性质
总结词
共顶点的等腰三角形具有特定的面积关系,即两个等腰三角形的面积之和等于以底边为基的三角形的 面积。
02
等腰三角形两腰之间的角称为顶 角,底边与两腰之间的角称为底 角。
共顶点的等腰三角形的特性
共顶点的等腰三角形是指两个或多个 等腰三角形共用一个顶点,且各等腰 三角形的腰和底边分别相等。
共顶点的等腰三角形具有轴对称性, 即沿对称轴对折后,两侧图形能够完 全重合。
共顶点的等腰三角形的分类
根据共顶点的等腰三角形的数量,可分为双共顶点的等腰三角形和多共顶点的等 腰三角形。
共顶点的等腰三角形 问题课件
目录
• 共顶点的等腰三角形的基本概念 • 共顶点的等腰三角形的性质 • 共顶点的等腰三角形的构造方法 • 共顶点的等腰三角形的应用 • 共顶点的等腰三角形的习题与解析
01
共顶点的等腰三角形的基本概念
等腰三角形的定义
01
等腰三角形是两边长度相等的三 角形,其中两个等长的边称为腰 ,另一边称为底边。
高难度习题
题目5
已知等腰三角形ABC,AB=AC,D为BC延长线上一点 ,E、F为AD上两点,且∠BEC=160°,∠BDC=5°。求 ∠EDF的度数。
题目6
已知等腰三角形ABC,AB=AC,D为BC延长线上一点 ,E、F、G为AD上三点,且∠BEC=170°,∠BDC=10° 。求∠DEFG的度数。

八年级数学下册《三角形全等和等腰三角形的性质》教案、教学设计

八年级数学下册《三角形全等和等腰三角形的性质》教案、教学设计
2.鼓励学生在遇到问题时积极与同学、老师交流,共同寻找解决方法。
3.家长要关注孩子的学习进度,适时给予指导和鼓励,培养孩子自主学习的能力。
2.教学难点:
-全等三角形判定方法的选择与应用。
-几何证明过程中逻辑推理的严密性。
-将等腰三角形的性质与实际问题结合,解决具体问题。
(二)教学设想
1.针对重点内容的处理:
-采用直观演示与动手实践相结合的方法,让学生在观察和操作中理解全等三角形的判定方法。
-设计对比练习,让学生通过比较不同判定方法的适用情况,加深对判定方法的理解。
2.等腰三角形的性质:
-利用几何画板或实物模型,直观演示等腰三角形的性质,如两底角相等、底边上的中线等于底边的一半等。
-通过实际例题,让学生学会运用等腰三角形的性质解决几何问题。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个全等三角形或等腰三角形的问题,要求学生运用所学知识进行讨论和解答。
2.学生在小组内分享自己的思考过程和解答方法,互相交流、借鉴,提高解决问题的能力。
五、作业布置
为了巩固学生对三角形全等和等腰三角形性质的理解,提高几何证明能力,特布置以下作业:
1.基础练习题:
-完成课本第78页的练习题1、2、3,涉及全等三角形的判定方法及简单几何证明。
-完成课本第79页的练习题4、5,运用等腰三角形的性质解决实际问题。
2.提高题:
-设计一道综合性的几何证明题,要求学生运用全等三角形和等腰三角形的性质进行证明。
1.针对学生对全等三角形判定方法的掌握情况,设计梯度性的问题,引导学生逐步深入理解全等概念,培养其几何直观和逻辑思维能力。
2.针对学生几何证明能力较弱的问题,注重培养学生的证明意识,引导他们学会运用已知条件和几何性质进行推理和证明。

全等三角形判定复习教案

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

三角形的全等和等腰三角形的性质优秀课教案

三角形的全等和等腰三角形的性质优秀课教案

三角形的全等和等腰三角形的性质优秀课教案一、教学目标1、知识与技能目标学生能够理解三角形全等的概念和判定方法(SSS、SAS、ASA、AAS、HL)。

学生能够掌握等腰三角形的性质,包括等边对等角、三线合一。

能够运用三角形全等和等腰三角形的性质解决简单的几何证明和计算问题。

2、过程与方法目标通过观察、操作、猜想、推理等活动,培养学生的逻辑思维能力和空间观念。

让学生经历探索三角形全等和等腰三角形性质的过程,体会转化、分类讨论等数学思想。

3、情感态度与价值观目标通过合作学习,培养学生的团队合作精神和交流能力。

让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的兴趣和自信心。

二、教学重难点1、教学重点三角形全等的判定方法和等腰三角形的性质。

运用三角形全等和等腰三角形的性质进行几何证明和计算。

2、教学难点灵活运用三角形全等的判定方法证明两个三角形全等。

理解等腰三角形“三线合一”的性质,并能正确运用。

三、教学方法讲授法、探究法、讨论法、练习法四、教学过程1、导入新课展示两个形状、大小完全相同的三角形模型,让学生观察并思考如何判断这两个三角形全等。

引导学生回忆生活中常见的全等图形,如同一品牌、同一型号的三角板等,引出三角形全等的概念。

2、讲授新课三角形全等的概念:能够完全重合的两个三角形叫做全等三角形。

三角形全等的判定方法:边边边(SSS):三边对应相等的两个三角形全等。

边角边(SAS):两边和它们的夹角对应相等的两个三角形全等。

角边角(ASA):两角和它们的夹边对应相等的两个三角形全等。

角角边(AAS):两角和其中一角的对边对应相等的两个三角形全等。

斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等。

等腰三角形的性质:等腰三角形的两腰相等。

等腰三角形的两底角相等(等边对等角)。

等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(三线合一)。

为了帮助学生理解和记忆这些判定方法和性质,可以通过多媒体展示动画、图形等进行直观教学,同时让学生动手操作,进行三角形的拼接和测量。

中考数学等腰三角形的判定复习教案2新人教版

中考数学等腰三角形的判定复习教案2新人教版

等腰三角形的判定(2)教学目的1、会推证等腰三角形的判定定理及其推论,并会阐述等腰三角形的判定定理及其推论。

2、会运用等腰三角形的判定定理,来证明一个三角形是等腰三角形。

体会用角相等以能证得线段相等,从而为证明线段相等增加了一种方法。

3、会综合应用等腰三角形性质定理和判定定理,优化、简化解题过程。

教学分析重点:等腰三角形的判定定理及其推论。

等边三角形的判定。

难点:运用等腰三角形的判定定理及其推论,进行相关的计算与证明。

教学过程一、复习1、回忆等腰三角形的定义及性质。

2、回忆等腰三角形的判定定理及推论。

今天我们继续学习等腰三角形的判定定理、推论及其应用。

(板书课题)订正作业。

二、新授1、讲解例2:如图:上午8时,一条船从A处出发,以15海里每小时的速度向正北航行,10时到达B处,从A、B望灯塔C,测得∠NAC=42°,∠NBC=84°,求从B处到灯塔C的距离。

先引导学生根据题意一步一步画出图形。

说明:角度可以平面内的方向,通常以指北线为主,上北下南,左西右东,在这里简12 单地介绍方位角。

这是一个将实际问题转化为数学问题的例子。

图中有什么线段的长为已知的?学生能答出AB 为30海里。

求B 到C 的距离,也就是要求出线段BC 的长,易证BC=BA ,求出BA 即得BC 。

注意解几何题也要和证明几何题一样,步步有根据。

最后还要解答。

2、讲解推论3:思考题:(1)如图,△ABC 是等边三角形,AD ⊥BC 于D ,则∠BAD= BD= AB 。

(2)如图,△ABC 中,∠A=30°,则∠B= °,延长BC到D ,使BD=AB ,连结AD ,则△ABD 是 三角形,由AC⊥BC 可得,BC=CD=1/2 =1/2 。

总结以上两小题,可得:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

向学生说明推论3的逆命题也成立,即:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

中考数学专题复习教案设计:共顶点的等腰三角形与全等

中考数学专题复习教案设计:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。

初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。

2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。

3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。

教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。

)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。

想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。

)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。

能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点等边三角形的。

判定定理和直角三角形的性质定理。

教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。

《三角形的全等和等腰三角形的性质》教案

《三角形的全等和等腰三角形的性质》教案

ABDEC1.1 等腰三角形《三角形的全等和等腰三角形的性质》教案学习目标 1.通过证明“AAS ”掌握证明定理的基本步骤;2.证明等腰三角形的性质定理并会定理解简单的图形问题。

3.培养发展推理能力重点难点等腰三角形性质定理的推理,及定理的灵活运用学习过程交流预习1、请你用自己的语言说一说证明的基本步骤。

2、列举我们已知道的公理①公理:同位角,两直线平行。

②公理:两直线,同位角。

③公理:的两个三角形全等。

(简称,字母表示)④公理:的两个三角形全等。

(简称,字母表示)⑤公理:的两个三角形全等。

(简称,字母表示)⑥公理:全等三角形的对应边,对应角。

注:等式的有关性质和不等式的有关性质都可以看作公理。

3、预习检测:已知如图,△ABC 中AB =AC ,点D 、E 在BC 上且AD=AE ,求证:BD=CE合作探究探究展示1:三角形全等的判定1、判定一般的三角形全等还有一种方法是什么?推论: (简写为)你能证明吗?已知:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,求证:△ABC≌△DEF探究展示2:等腰三角形的性质定理1、等腰三角形性质:等腰三角形的两个相等(简称:等对等)已知:如图,在△ABC中,AB=AC,求证:∠B=∠C证明一:取BC的中点D,连接AD想一想:线段AD还具有怎样的性质?为什么?推论:简称为()DAB CA BF DEC图3任务清单1、在△ABC 和△DEF 中,以下四个命题中假命题是()A 、由AB=DE ,BC=EF ,∠B=∠E ,可判断△ABC ≌△DEF ;B 、由∠A=∠D ,∠C=∠F ,AC=DF ,可判断△ABC ≌△DEF ;C 、由AB=DE ,AC=DF ,BC=EF ,可判断△ABC ≌△DEF ;D 、由∠A=∠D ,∠B=∠E ,AC=EF ,可判断△ABC ≌△DEF 。

2、下列各组几何图形中,一定全等的是()A 、各有一个角是550的两个等腰三角形;B 、两个等边三角形;C 、腰长相等的两个等腰直角三角形;D 、各有一个角是500,腰长都为6cm 的两个等腰三角形.3、如图,已知:AB ∥CD ,AB=CD,若要使△ABE ≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE ≌△CDF 的是()A 、∠A=∠B ;B 、BF=CE;C 、AE ∥DF;D 、AE=DF.4、若等腰三角形中有一个角等于50°,则等腰三角形的顶角度数为。

中考数学复习必备教案:等腰三角形

中考数学复习必备教案:等腰三角形

中考数学复习必备教案:等腰三⾓形中考数学复习必备:等腰三⾓形知识点回顾知识点⼀:等腰三⾓形的性质——等边对等⾓等腰三⾓形的两个底⾓ .例1:(2009年贵州黔东南州)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于()A .30oB .40oC .45oD .36o分析:根据等边对等⾓的性质可知:∠ABC =∠C ,∠BDC =∠C ,∠BAD=∠ABD .因此就有∠ABC=∠C =∠BDC ,因此若设∠A =x ,则有∠BAD =∠ABD =x,∠BDC =∠ABC =∠C =2x .所以可列⽅程:x +2x +2x =180°可以解得x =36°.同步检测⼀:1.在△ABC 中,AB =AC ,①若∠A =70°,则∠B = °,∠C = °②若∠B =40°,则∠A = °2.(08嘉兴)已知等腰三⾓形的⼀个内⾓为50°,则这个等腰三⾓形的顶⾓为()A.50° B.80° C.50°或80° D.40°或65° 知识点⼆:等腰三⾓形的性质——三线合⼀等腰三⾓形的、、互相重合。

例2:如图,在△ABC 中,AD =AE ,BD =CE ,求证:AB =AC 解:过点A 作AF ⊥BC ∵AD =AE ,∴DF =EF ,∵BD =CE ,∴BF =CF ∴AF 垂直平分BC ∴AB =AC 同步检测⼆:1.在△ABC 中,AB =AC ,D 为BC 的中点,∠B =70°,BC =10㎝,则BD =,∠BAD = °知识点三:等腰三⾓形的判定——等⾓对等边在△ABC 中,如果∠A =∠B ,则有=例3:如图,已知BD 是∠ABC 的⾓平分线,DE ∥BC 交AB 于E ,求证:△BED 是等腰三⾓形.解:∵BD 是∠ABC 的⾓平分线∴∠ABD =∠CBD ∵DE ∥BC ∴∠CBD =∠BDE ∴∠ABD =∠BDE ∴BE =DE∴△BED 是等腰三⾓形同步检测三:1.在△ABC 中∠A =50°,∠B =80°,BC =10㎝,则AB =㎝知识点四:等边三⾓形的性质与判定等边三⾓形的三条边都相等,三个⾓都相等且都等于 °都相等的三⾓形是等边三⾓形;都相等的三⾓形是等边三⾓形;有⼀个⾓是的等腰三⾓形是等边三⾓形例4:如图,C 为线段AB 上⼀点,△ACD ,△CBE 是等边三⾓形,AE 与CD 交于点M ,BD 与CE 交于点N ,AE 交BD 于点O .求证:⑴AE =BD ⑵∠AOB =120° ⑶△CMN 是等边三⾓形分析:⑴根据等边三⾓形的性质可⽤SAS 证明△ACE ≌△DCB ,则得AE =BD 同时可得∠CEA =∠CBD ,⑵因此可由三⾓形的⼀个外⾓等于和它不相邻的两个内⾓之和得∠AOB =∠AEB +∠EBO =∠AEC +∠CEB +∠EBO =∠OBC +∠CEB +∠EBO =∠BEC +∠CBE =60°+60°=120°⑶易知∠DCE =60°,故只需证△MCE ≌△NCB 即可.同步检测四:1.若△ABC 是等边三⾓形,D 为AC 的中点,则∠DBC = ° 2.下列三⾓形:①有两个⾓等于60°的三⾓形;②有⼀个⾓为60°的等腰三⾓形;③三个外⾓(每个顶点处各取⼀个外⾓)均相等的三⾓形;④⼀腰上的中线也是这条腰上的⾼的等腰三⾓形。

最新人教版初中八年级上册数学《共顶点的等腰三角形问题》精品教案

最新人教版初中八年级上册数学《共顶点的等腰三角形问题》精品教案

1.老师引导学生归纳本课知识点。 2.师生共同反思学习心得。
教科书本课课后习题第一题。完 成后同桌之间相互订正
证明:过D作DF⊥BE于F
∵△ABC和△ADE为等腰直
1
ቤተ መጻሕፍቲ ባይዱ角三角形
B
F
2
C3
E
∴AE=ED,∠ACE=∠EFD ∠1=90°-∠2=∠3
D
∴△ACE≌△EFD
∴CE=FD,EF=AC
∵AC=BC ∴BC=EF ∴BC-FC=EF-FC 即BF=CE ∴BF=FD ∴△BFD是等腰直角三角形 ∴∠DBE=45°.
共顶点的等腰三角形问题
等腰三角形的两条腰相等,如果两个等腰三角形共顶点且顶角相等,那么 将两条腰分配到不同的两个三角形中会得到全等三角形,会发现某些线段在数 量和位置上有着特殊的关系.
常见的有共顶点的等腰直角三角形和等边三角形,我们一起来探究.
类型一:共顶点的等腰三角形问题
如图,AB=AC,AE=AF,∠BAC=∠EAF=90°,BE、CF交于M,求
证:⑴BE=CF;⑵求证:BE⊥CF;
C
⑵证明:∵△EAB≌△FAC
45
3
EM 1
2
A
B ∴∠2=∠4 ∵∠2+∠3+∠5=90°
∴∠4+∠5+∠3=∠2+∠5+∠3 =90°
∴BE⊥CF
F
如图,△ABC和△ADE均为等腰直角三角形,∠ACB=∠AED=90°,连接BD
,求证:∠DBE=45°.
A
证:⑴BE=CF;⑵BE⊥CF;
C
⑴证明:∵∠BAC=∠EAF=90°,
EM 1 A
B∴∠BAC+∠1=∠EAF+∠1 即∠EAB=∠FAC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。

6. 布置作业课后练习1和2.五 、目标检测设计1. △ABC 和△BPE 都是等边三角形,点P 在BC 的延长线上,EC 的延长线交AP 于M ,连BM.(1)求证 AP=CE.(2)求∠PME 的度数.(3)求证 BM 平分∠AME.(4)求证 AM +CM=BM.设计意图:本题主要考查学生对本节探究学习内容的理解情况.2. 若△ABD 和△AEC 都是等腰直角三角形.(1)如图1,连接AF ,求∠BFD 和∠AFB 的度数.(2)如图2,连接BC 、DE ,取BC 中点M ,试说明AM 和DE 的关系.图1图2设计意图: 本题主要考查学生对特殊的共顶点等腰三角形与全等知识的理解掌握.教学反思:本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.根据教学内容以“概念、性质、应用”为侧重点,结合学生所具备的逻辑思维和推理论证能力,本节课采用以启发式、合作探究为主,讨论和直观演示为辅的教学方法。

有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。

在教学中,我采用的是“设疑——实验——认识——实践——再认识”的教学模式,并采用“变式练习”方法提高学习效率。

相关文档
最新文档