初高中数学衔接教案(含答案)
初高中衔接数学及参考答案
数 学代数部分第一讲 乘法公式一、知识要点1.平方差公式: 22()()a b a b a b +-=-﹒ 2.完全平方公式:222()2a b a ab b ±=±+;2222()222a b c a b c ab bc ac ++=+++++﹒3.立方和公式: 2233()()a b a ab b a b +-+=+﹒ 4.立方差公式: 2233()()a b a ab b a b -++=-﹒ 5.完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-﹒二、例题选讲例1、填空(1)=++-)9)(3)(3(2x x x _______________﹒ 解:原式=81)9)(9(422-=+-x x x ﹒ (2)=+--22)2()12(x x ______________﹒解:原式=383)44(144222--=++-+-x x x x x x ﹒ 例2、已知31=+xx ,求下列各式的值: (1)221x x +;(2)331xx +﹒ 解:(1)21112)1(22222++=+⋅⋅+=+xx x x x x x x Θ,7292)1(1222=-=-+=+∴x x xx ﹒ (2) 18)17(3)11)(1(12233=-⨯=+-+=+x x x x x x ﹒例3、已知2x y +=,求代数式336x y xy ++的值. 解:33226()()6x y xy x y x xy y xy ++=+-++2222(3)2()8x xy y xy x y =-++=+=﹒例4、 已知8,9,x y y z -=-=试求代数式222x y z xy yz xz ++---的值. 解:8,9,17x y y z x z -=-=∴-=Q ,2222221(222222)2x y z xy yz xz x y z xy yz xz ∴++---=++---22222211[()()()](8917)21722x y y z x z =-+-+-=++= 三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ 四、巩固练习1.计算=+-++-++-))(())(())((a c a c c b c b b a b a _________. 2.计算22()2()()()x y x y x y x y +-+-+-= . 3.2200620082004-⨯= . 4.已知2510x x -+=,则221x x += . 5.计算16842321)13)(13)(13)(13(⋅-++++= .6.计算222222221234562009201012345620092010----++++++++L +201220112012201122+-﹒7.已知2a c b +=+,则222222a b c ab bc ac ++--+= .8.已知2x y -=,求代数式336x y xy --的值.9.已知1,3x y xy -==,试求下列各式的值: (1)22;x y +(2)33.x y -第二讲 因式分解一、知识要点1.因式分解:把一个整式化为几个整式的乘积形式. 2.因式分解的基本方法:(1)提公因式法 )(c b a m mc mb ma ++=++ (2)运用公式法 常见公式有:①22()()a b a b a b -=+-, ②2222()a ab b a b ±+=±, ③3322()()a b a b a ab b ±=±+m , ④3223333()a a b ab b a b ±+±=±,⑤2222222()a b c ab ac bc a b c +++++=++, (3)十字相乘法:2()()()x a b x ab x a x b +++=++ (4)配方法、添项拆项法,分组分解法 二、例题选讲例1、 因式分解:(1)244x x -+ ;(2)38x -;(3)33)2()2(a y a x ---﹒ 解:(1)244x x -+2(2)x =-(2)38x -3322(2)(24)x x x x =-=-++(3)33)2()2(a y a x ---=)()2()2()2(333y x a a y a x +-=-+-例2 、因式分解(1)256x x -+;(2)2215x x --;(3)26136x x -+﹒ 解:(1)256x x -+(2)(3)x x =--;(2)2215x x --(25)(3)x x =+-; (3)26136x x -+(23)(32)x x =--﹒例3、 因式分解225636x xy y x y -+-+ 解:225636x xy y x y -+-+(2)(3)3(2)x y x y x y =----(2)(33)x y x y =---例4、因式分解523325a ab a b b --+ 解:523325a ab a b b --+233233()()a a b b a b =---3322()()a b a b =-- 222()()()a b a b a ab b =-+++三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ 四、巩固练习1.将下列各式分解因式: (1)32x x y -__________________________________________________________________ (2)44-x__________________________________________________________________ (3)33125x y -__________________________________________________________________ (4)1322+-x x__________________________________________________________________ (5)2(1)x a x a -++__________________________________________________________________(6)32331a a a +++__________________________________________________________________ (7)222221a b ab a b ++--+__________________________________________________________________ (8)22122512x xy y ++__________________________________________________________________ (9)2226x xy y x y ++---__________________________________________________________________ 2.已知25a b -=,346a b +=,求多项式22328a ab b --的值.第三讲 因式定理一、知识要点定理1(因式定理):若a 是一元多项式)(0111是非负整数n a x a x a x a n n n n ++⋅⋅⋅++--的根,即00111=++⋅⋅⋅++--a a a a a a a n n n n ,则多项式0111a x a x a x a n n n n ++⋅⋅⋅++--有一个因式a x -.根据因式定理,找出一元多项式的一次因式的关键是求出该多项式的一个根,对于任意的多项式,求出它的根是没有一般方法的,然而对于整系数多项式常用下面的定理来判定它是否有有理根。
初升高衔接课数学教学计划及答案
初升高衔接课数学教学计划及答案引言本文档旨在提供一份初升高衔接课数学教学计划及答案。
该计划旨在帮助学生从初中过渡到高中,在数学学科上建立扎实的基础,并顺利适应高中的教学内容和要求。
教学目标- 帮助学生巩固和复初中数学知识,包括数与式、图形与坐标、函数与方程、几何与测量等内容。
- 引入高中数学相关知识点,使学生能够对高中数学课程有初步了解。
- 培养学生数学思维和解决问题能力,提高其数学技能和应用能力。
教学内容1. 数与式- 整数运算- 分数与小数- 百分数与比例2. 图形与坐标- 直线与曲线- 图形的相似性与对称性3. 函数与方程- 一元一次方程与一元一次不等式- 二次函数与二次方程4. 几何与测量- 三角形与四边形- 平面与空间几何- 数据的统计与分析教学方法- 结合理论与实际,通过具体的例子和问题,引导学生理解数学知识的应用。
- 鼓励学生进行独立思考和问题解决,提高其数学思维和解决问题的能力。
- 组织小组合作研究,促进学生之间的互动和合作,共同解决数学问题。
- 创设多样化的教学活动,如数学游戏、数学竞赛等,激发学生的研究兴趣。
答案示例1. 数与式- 3 + 4 = 7- 5 × 2 = 10- 2/3 + 1/3 = 12. 图形与坐标- 直线的斜率为2- (2, 3)是坐标系中的一个点3. 函数与方程- 解一元一次方程:2x + 5 = 9,解得x = 2- 解二次方程:x^2 - 4x + 4 = 0,解得x = 24. 几何与测量- 直角三角形的斜边长度为5,两直角边的长度分别为3和4 - 正方形的面积为16,边长为4请注意,以上仅为答案示例,实际答案可能有多种可能。
总结通过本教学计划,学生将有机会复习和巩固初中数学知识,并初步了解高中数学的相关内容。
教学方法的多样化将使学生在学习过程中更加主动和积极,提高其数学能力和应用能力。
这份教学计划将有助于学生顺利过渡到高中数学学习,并顺利完成高中数学课程的学习和应对考试的挑战。
人教版数学初高中衔接教案
人教版数学初高中衔接教案课程名称:数学初高中衔接
课时安排:10课时
教学目标:
1. 了解初中数学与高中数学的衔接关系;
2. 掌握高中数学的基础知识,为高中学习打下扎实基础;
3. 提升解题能力和思维逻辑能力。
教学内容:
1. 高中数学的基础知识概述;
2. 高中数学的常见题型分析与解答;
3. 高中数学与初中数学的衔接点分析。
教学方法:
1. 讲授相结合的教学方法;
2. 练习与讨论相结合的教学方法;
3. 个案分析与练习。
教学过程:
第一课:高中数学基础知识概述
1. 高中数学的分支及内容;
2. 高中数学与初中数学的区别与联系;
3. 高中数学的基础概念。
第二至第五课:高中数学常见题型分析与解答
1. 代数与函数;
2. 几何与空间;
3. 概率与统计。
第六至第十课:高中数学与初中数学的衔接点分析
1. 高中数学的延伸与拓展;
2. 初中数学知识在高中的应用;
3. 高中数学解题技巧与方法。
教学评价:
1. 课堂表现评价;
2. 练习成绩评价;
3. 个案分析评价。
教学资料:
1. 高中数学教材;
2. 高中数学练习册;
3. 高中数学试卷。
教学反思:
1. 教学方法与手段的改进;
2. 学生学习情况的调查分析;
3. 教师教学效果的评估与提升。
(精品)初升高暑假数学衔接教材(含答案)
初升高暑假数学衔接教材第一部分,如何做好高、初中数学的衔接●第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。
确实,初、高中的数学语言有着显著的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。
当然,能力的发展是渐进的,不是一朝一夕的。
这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。
3 知识内容的整体数量剧增。
高中数学在知识内容的“量”上急剧增加了。
初升高数学衔接课程(15节)
初升高数学衔接课程(例题+练习+习题+答案)1、一元二次不等式2、分式不等式3、绝对值不等式4、集合的含义与表示5、集合间的基本关系6、集合的基本运算7、映射与函数8、分式函数9、函数定义域10、函数值域11、函数单调性12、函数奇偶性13、函数解析式14、二次函数在闭区间上的最值15、集合与函数测试制作人:梁林庆时间:2015-7-11、一元二次不等式1、1 知识1、定义:含有一个未知数,并且未知数的最高次数是二次的不等式叫做一元二次不等式。
2、解一元二次不等式的步骤:(1)把二次项系数变为正,令一元二次不等式=0,得到一元二次方程; (2)解一元二次方程得到两根(一根或无根);(3)根据不等号判断取值范围。
(若>,两根之外,若<,两根之间)。
1、2 例题例1、 解下列不等式1、02532>-+x x 2、01692>+-x x 3、0542>+-x x4、0122<++-x x 5、0442>-+-x x例2、 已知不等式012<-+bx ax 的解集是{}43|<<x x ,求实数a,b 的值。
例3、 解关于x 的不等式 0)12(22<+++-m m x m x例4、 解关于x 的不等式 0)1(2<--+a x a x1、解下列不等式(1)03422<++x x (2)08232≤+--x x (3)21618x x ≥-(4) ()()410x x +--<; (5)232x x -+>; (6)24410x x -+>.2、已知一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,求实数ab 的值。
3、若不等式210x mx ++>的解集为R ,求m 的取值范围。
解下列一元二次不等式1.03282>--x x2.031082≥-+x x3.041542<--x x4.02122>--x x5.021842>-+x x6.05842<--x x7.0121752≤-+x x 8.0611102>--x x 9.038162>--x x10.038162<-+x x 11.0127102≥--x x 12.02102>-+x x2、分式不等式2、1知识1、定义:分母中含有未知数的不等式叫做分式不等式。
初高中数学衔接教案
初高中数学衔接教案
教学目标:使学生能够顺利过渡从初中数学到高中数学,掌握所需基础知识和方法
重点难点:初中数学基础概念与高中数学深入理解的衔接,数学知识的逻辑性和抽象性,
学习方法和思维方式的转变
教学内容:
1. 复习初中数学重要知识点,如代数、几何、概率与统计等;
2. 讲解高中数学常见概念和方法,如函数、导数、积分等;
3. 拓展初中数学知识,引导学生学习更深层次和抽象性的数学内容;
教学步骤:
一、复习初中数学知识(30分钟)
1. 复习代数知识,如多项式、方程、不等式等;
2. 复习几何知识,如平面几何、立体几何等;
3. 复习概率与统计知识,如排列组合、概率计算等;
二、讲解高中数学概念方法(40分钟)
1. 引入高中数学常见概念,如函数的概念和基本性质;
2. 讲解导数和积分的初步概念和意义;
3. 演示高中数学解题方法和思维方式;
三、拓展深入数学知识(30分钟)
1. 引入高中数学中更深层次和抽象性的内容,如极限、微分方程等;
2. 演示高中数学的解题方法和证明步骤;
3. 指导学生如何应对高中数学学习的挑战和困难;
教学反馈:通过课堂练习和作业检查,评估学生对初高中数学衔接的掌握情况,并及时给
予指导和帮助。
教学延伸:组织学生进行数学竞赛、参加数学社团或研究小组等活动,拓宽学生数学视野,提高数学思维能力和解题能力。
教学评价:通过课后测试和作业绩效,评估学生对初高中数学衔接知识和方法的掌握情况以及学习态度和进步情况。
教学反思:根据学生的学习反馈和表现,调整教学内容和方法,及时帮助学生解决学习困难,推动学生数学学习的持续发展和提高。
初升高衔接课数学教案及答案(总共8讲)
初升高衔接课数学教案及答案(总共8讲)
初升高衔接课数学教案(总共8讲)
初高一衔接课:基本运算问题
初高一衔接课:基本运算问题
(一)绝对值
一、知识梳理:
⑴ 数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
⑵ 数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即(0)0(0)(0)a a a a a a >??
==??-<?
.
⑶ 个负数比较大小,绝对值大的反而小.
⑷ 个绝对值不等式:||(0)x a a a x a <>?-<<; ||(0)x a a x a >>?<-或x a >.⑸ 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.
二、例题讲解:
例1 解不等式:13x x -+->4.
x 原式=(+
27∴- x x 213∴+ x x 25∴+ x x
22∴- x x。
初升高衔接数学课程终极精编版含答案解析
目录第一讲因式分解 (2)第二讲分式 (6)第三讲图形变换 (10)第四讲三角形的“五心” (14)第五讲几何中的著名定理 (18)第六讲圆 (20)第七讲一次函数和一次不等式 (23)第八讲均值不等式 (27)第九讲一次分式函数 (31)第十讲一元二次方程 (34)第十一讲一元二次函数(一) (38)第十二讲一元二次函数(二) (42)第十三讲一元二次不等式 (46)第十四讲绝对值不等式 (50)第十五讲根的分布(一) (53)第十六讲根的分布(二) (57)全书例题练习答案解析 (62)第一讲 因式分解一、知识归纳1、公式法分解因式:用公式法因式分解,要掌握如下公式: (1)))((22b a b a b a -+=-; (2)222)(2b a b ab a ±+±;(3)33223)(33b a b ab b a a ±=±+±;(4)2222)(222c b a ac bc ab c b a ++=+++++;(5)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++; (6)*1221);)((N ••n b ab b a ab a b a n n n n nn∈++⋯+⋅+-=-----;(7)当n 为正奇数时))((1221----+-+-+=+n n n n nnb ab b a a b a b a当n 为正偶数时))((1221-----++-+=-n n n n nnb ab b a a b a b a2、十字相乘法因式分解3、待定系数法因式分解4、添项与拆项法因式分解5、长除法 二、例题讲解例1:因式分解:3762--x x例2:因式分解:2222224)()(2b a x b a x -++-例3:因式分解310434422-+---y x y xy x例4:利用待定系数法因式分解(1)2031493222+-+-+y x y xy x (2)310434422-+---y x y xy x例5:利用添项法、拆项法因式分解(1)763-+x x (2)15++x x例6:已知0132=--x x ,求198757623+-+x x x 的值。
初升高衔接教程及答案
初升高衔接教程及答案# 一、数学部分1. 代数基础题目:解一元二次方程 \( ax^2 + bx + c = 0 \)。
答案:使用求根公式 \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) 来解方程。
2. 几何基础题目:证明直角三角形的斜边是最长边。
答案:根据勾股定理,设直角三角形的直角边分别为 \( a \) 和 \( b \),斜边为 \( c \),有 \( a^2 + b^2 = c^2 \)。
由于平方和总是非负的,所以 \( c \) 必须大于 \( a \) 和 \( b \) 中的任何一个,因此斜边是最长边。
# 二、物理部分1. 力学基础题目:解释牛顿第一定律。
答案:牛顿第一定律,也称为惯性定律,表明一个物体会保持静止状态或匀速直线运动状态,除非受到外力的作用。
2. 电学基础题目:解释欧姆定律。
答案:欧姆定律表明,通过导体的电流 \( I \) 与导体两端的电压 \( V \) 成正比,与导体的电阻 \( R \) 成反比,即 \( I = \frac{V}{R} \)。
# 三、化学部分1. 原子结构题目:描述原子的基本结构。
答案:原子由位于中心的原子核和绕核运动的电子组成。
原子核由质子和中子组成,电子在核外的电子云中运动。
2. 化学反应题目:解释什么是化学平衡。
答案:化学平衡是指在一定条件下,正反应和逆反应的速率相等,反应物和生成物的浓度保持不变的状态。
# 四、生物部分1. 细胞结构题目:简述细胞的基本结构。
答案:细胞是生命的基本单位,由细胞膜、细胞质和细胞核组成。
细胞膜控制物质的进出,细胞质含有各种细胞器,细胞核包含遗传物质。
2. 遗传与进化题目:解释达尔文的自然选择理论。
答案:达尔文的自然选择理论认为,在生存竞争中,适应环境的个体更有可能生存并繁衍后代,从而使得有利特征在种群中逐渐积累,导致物种的进化。
以上内容为初升高衔接教程及答案的示例,旨在帮助学生在进入高中前对基础知识进行复习和巩固。
初高中数学衔接教案(含答案)
第一讲 数与式1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4. 练 习 1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).1A 0 C |x -1||x -3|图1.1-11.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b 212x ++,22x y ++是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,,等等. 一般地,,与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩例1将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <.解: (1=(20)a ==≥;(3220)xx x ==-<.例2 (3-.解法一:(3-=393-=1)6=12.解法二: (3-例3 试比较下列各组数的大小:(1 (2解: (11===,===,>(2)∵=== 又 4>22,∴6+4>6+22,例4 化简:20042005⋅-.解:20042005⋅-=20042004⋅-⋅=2004⎡⎤⋅-⋅⎣⎦=20041⋅-例 5 化简:(1; (21)x <<.解:(1)原式===2=2=.(2)原式1x x=-, ∵01x <<,∴11x x>>, 所以,原式=1x x -.例 6 已知x y ==22353x xy y -+的值 .解: ∵2210x y +==+=,1xy ==,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练 习 1.填空: (1=__ ___;(2(x =-x 的取值范围是_ _ ___; (3)=__ ___; (4)若x ==______ __. 2.选择题:=( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB 具有下列性质: A A MB B M⨯=⨯; A A MB B M÷=÷. 上述性质被称为分式的基本性质. 2.繁分式像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+. (1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+ =111111()()()23341n n -+-++-+=1121n -+,又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12.例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值. 解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,∴e =12<1,舍去;或e =2.∴e =2. 练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:若223x y x y -=+,则xy= ( ) (A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x yx y-+的值. 4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1 A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2+=________;(22=,则a 的取值范围是________; (3=________.B 组1.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y++=+__ __;2.已知:11,23x y ==的值. C 组1.选择题:(1= ( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算 ( )(A (B (C ) (D )2.解方程22112()3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示). 2.提取公因式法与分组分解法 例2 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 解: (1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.-1 -2 x x 图1.2-1 -1 -2 1 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4 -1 1x y图1.2-5或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +++.练 习 1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x 2+6x +8; (2)8a 3-b 3;(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a ).第二讲 函数与方程2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a -+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根. (1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根. (2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =, 2x =(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以, ①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根12b x a -+=,22b x a-=,则有1222b bx x a a-+===-;221222(4)444b b ac ac cx x a a a--====. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2, 所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有 以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另一个根为-35,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35. 由 (-35)+2=-5k,得 k =-7. 所以,方程的另一个根为-35,k 的值为-7.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵x 12+x 22-x 1·x 2=21, ∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21, 化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意; 当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =17. 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y , 则 x +y =4, ①xy =-12. ② 由①,得 y =4-x , 代入②,得x (4-x )=-12,即 x 2-4x -12=0, ∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根.解这个方程,得x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-.(1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=253()4()22--⨯-=254+6=494,∴| x 1-x 2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x =,2x =,∴| x 1-x 2|=||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a (其中Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论. 例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围. 解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4,由②得 a <174.∴a 的取值范围是a <4. 练 习 1.选择题:(1)方程2230x k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) (A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是 . (3)以-3和1为根的一元二次方程是 .3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根? 4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( )(A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.2.2 二次函数2.2.1 二次函数y =ax 2+bx +c 的图像和性质问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.的值扩大两倍就可以了.再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.12x 2,y =-同学们也可以用类似于上面的方法画出函数y =2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小;当x=2ba-时,函数取最大值y =244ac b a -.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.+1对称轴、随x 的增解:∵y =-3x 2-6x +1=-3(x +1)2+4∴函数图象的开口向下;对称轴是直线x =-1;顶点坐标为(-1,4);当x =-1时,函数y 取最大值y =4;图2.2-3当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小; 采用描点法画图,选顶点A (-1,4)),与x 轴交于点B 和C (,与y 轴的交点为D (0,1),过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.例2 某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有70130,50150,k b k b =+⎧⎨=+⎩ 解得 k =-1,b =200. ∴ y =-x +200.设每天的利润为z (元),则z =(-x +200)(x -120)=-x 2+320x -24000 =-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3 把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224bc +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x 2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩ 解得b =-8,c =14. 解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像. 由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4 已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论.解:(1)当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;(3)当0≤a <2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a ≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题. 练 习 1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2 ( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的 2.填空题(1)二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),则m = ,n = .(2)已知二次函数y =x 2+(m -2)x -2m ,当m = 时,函数图象的顶点在y 轴上;当m = 时,函数图象的顶点在x 轴上;当m = 时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;当x = 时,函数取最 值y = ;当x 时,y 随着x 的增大而减小. 3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y 随x 的变化情况,并画出其图象. (1)y =x 2-2x -3; (2)y =1+6 x -x 2.4.已知函数y =-x 2-2x +3,当自变量x 在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x 的值:(1)x ≤-2;(2)x ≤2;(3)-2≤x ≤1;(4)0≤x ≤3.①图2.2-6②③2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx +c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++)= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x -x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1 已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上, 所以,2=x +1,∴x =1. ∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a =-+<, ∵二次函数的图像经过点(3,-1), ∴21(32)1a -=-+,解得a =-2. ∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0), ∴可设二次函数为y =a (x +3) (x -1) (a ≠0), 展开,得 y =ax 2+2ax -3a ,顶点的纵坐标为2212444a a a a--=-, 由于二次函数图象的顶点到x 轴的距离2, ∴|-4a |=2,即a =12±. 所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+. 分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式. 解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1. 又顶点到x 轴的距离为2, ∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2, 由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-12,或a =12. 所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2. 说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练 习 1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是 ( ) (A )0个 (B )1个 (C )2个 (D )无法确定(2)函数y =-12(x +1)2+2的顶点坐标是 ( )(A )(1,2) (B )(1,-2) (C )(-1,2) (D )(-1,-2) 2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a(a ≠0) .(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 . 3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6); (2)当x =3时,函数有最小值5,且经过点(1,11);(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).2.2.3 二次函数的简单应用一、函数图象的平移变换与对称变换1.平移变换问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移? 我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可. 例1 求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式: (1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位. 分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改变二次函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式. 解:二次函数y =2x 2-4x -3的解析式可变为 y =2(x -1)2-1, 其顶点坐标为(1,-1). (1)把函数y =2(x -1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为 y =2(x -3)2-2. (2)把函数y =2(x -1)2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是(-1, 2),所以,平移后所得到的函数图象对应的函数表达式就为 y =2(x +1)2+2.2.对称变换。
最新暑期初高中数学衔接教程【含答案】
课堂笔记第一章 乘法公式与因式分解§1.1 乘法公式我们知道(a +b )2=a 2+2ab +b 2,将公式左边的指数变为3时,又有什么结论呢?由于(a +b )3=(a +b )2(a +b )=a 2+2ab +b 2 (a +b )=a 3+a 2b +2a 2b +2ab 2+ab 2+b 3=a 3+3a 2b +3ab 2+b 3,因此得到和的立方公式(a +b )3=a 3+3a 2b +3ab 2+b 3.将公式中的b 全部改为-b ,又得到差的立方公式(a -b )3=a 3-3a 2b +3ab 2-b 3.上述两个公式称为完全立方公式,它们可以合写为(a ±b )3=a 3±3a 2b +3ab 2±b 3.【例1】化简:(x +1)3-x x 2+3x +3 .【解答】(x +1)3-x x 2+3x +3 =x 3+3x 2+3x +1-x 3-3x 2-3x =1.由完全立方公式可得(a +b )3-3a 2b -3ab 2=a 3+b 3,即(a +b )(a +b )2-3ab =a 3+b 3,由此可得立方和公式(a +b )a 2-ab +b 2 =a 3+b 3.将立方和公式中的b 全部改为-b ,得到立方差公式(a -b )a 2+ab +b 2 =a 3-b 3.【例2】对任意实数a ,试比较(1+a )(1-a )1+a +a 2 1-a +a 2 与1的大小.【解析】观察(1+a )(1-a )1+a +a 2 1-a +a 2 的结构特点,可运用立方和(差)公式将其化简.【解答】(1+a )(1-a )1+a +a 2 1-a +a 2=(1+a )1-a +a 2 (1-a )1+a +a 2=1+a 3 1-a 3 =1-a 6因为1-a 6-1=-a 6,对任意实数a ,-a 6≤0,所以课堂笔记(1+a)(1-a)1+a+a21-a+a2≤1.通过将完全平方公式(a+b)2=a2+2ab+b2中的指数2推广到3,我们得到了完全立方公式.有兴趣的同学可以将指数推广到4,5,⋯.另外,我们也可以从项数的角度推广(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2bc+2ca.灵活应用等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ca,可以为代数式运算带来方便.【例3】已知a+b+c=0,ab+bc+ca=-12,求下列各式的值:(1)a2+b2+c2(2)a4+b4+c4【解析】将(1)与已知联系,联想已知中的等式,发现可将a2+b2+c2用a+b+ c和ab+bc+ca表示.由于a4+b4+c4=a22+b2 2+c2 2,由(1)得到启发,如果知道a2b2+b2c2+c2a2的值,就能得解.【解答】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.由上式和已知得0=a2+b2+c2-1,即a2+b2+c2=1.(2)由ab+bc+ca=-12,得a2b2+b2c2+c2a2+2abc(a+b+c)=14.因为a+b+c=0,所以a2b2+b2c2+c2a2=14.再由(1)的结论,得a4+b4+c4+2a2b2+2b2c2+2c2a2=1.因此a4+b4+c4=12.【例4】已知x2+x-1=0,求证:(x+1)3-(x-1)3=8-6x.【证法1】(x+1)3-(x-1)3=x3+3x2+3x+1-x3-3x2+3x-1=x3+3x2+3x+1-x3+3x2-3x+1=6x2+2.由已知得x2=1-x,故6x2+2=6(1-x)+2=8-6x.因此,(x+1)3-(x-1)3=8-6x.【证法2】(x+1)3-(x-1)3=(x+1-x+1)(x+1)2+(x+1)(x-1)+(x-1)2=2x2+2x+1+x2-1+x2-2x+1课堂笔记=6x 2+2.以下同证法1习题1.11.若a +b =8,ab =2,则a 3+b 3=()A.128B.464C.496D.5122.若x +y +z =0,则x 3+y 3+z 3=()A.0B.x 2y +y 2z +z 2xC.x 2+y 2+z 2D.3xyz3.设A =n +1n 3,B =n 3+1n 3+6,对于任意n >0,则A ,B 大小关系为()A.A ≥BB.A >BC.A ≤BD.不一定4.(5-x )25+5x +x 2 =.5.观察下列各式的规律:(a -b )(a +b )=a 2-b 2,(a -b )a 2+ab +b 2 =a 3-b 3,(a -b )a 3+a 2b +ab 2+b 3 =a 4-b 4.可得到(a -b )a n +a n -1b +⋯+ab n -1+b n =.(其中n 为正整数).6.求函数y =(x -2)3-x 3的最大值.7.当x =33时,求代数式2x +1x 4x 2-2+1x 2 -1x 3的值.8.已知a ,b ,c 为非零实数,a 2+b 2+c 2 x 2+y 2+z 2 =(ax +by +cz )2,求证:x a =yb =zc .课堂笔记§1.2 因式分解因式分解就是将一个多项式化成几个整式的积的形式,它与多项式乘法运算是互逆变形.我们已学过两种分解因式的方法:提取公因式法与公式法.下面我们继续学习一些分解因式的方法.1.十字相乘法我们知道,形如x2+(p+q)x+pq的二次三项式,它的特点是二次项系数是1,常数pq与一次项系数p+q可以通过如图1.2-1的“十字相乘,乘积相加”方式建立联系,得到x2+(p+q)x+pq=(x+p)(x+q).这种方法能否推广呢?如果要对2x2-7x+3分解因式,我们把二次项系数2分解为1×2,把常数项3分解成1×3或(-1)×(-3),按图1.2-2至图1.2-5的运算方式,也用“十字相乘,乘积相加”验算.12311×3+2×1=512131×1+2×3=712-3-11×- 3 +2×-1=-512-1-31×-1+2×-3=-7图1.2-2图1.2-3图1.2-4图1.2-5可以发现图1.2-5对应的结果1×(-1)+2×(-3)=-7,恰好等于一次项系数-7.由于(x-3)(2x-1)=2x2-7x+3,从而2x2-7x+3=(x-3)(2x-1).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.【例1】将下列各式分解因式:(1)2x2+x-3;(2)-6a2+7a+5【解析】(1)因为2=1×2,-3=(-1)×3=1×(-3),且一次项系数是1,所以可按图1.2-6用十字相乘法分解因式.(2)当二次项系数为负时,二次项系数分解成的两个因数异号,则十字辅助图的各种可能性就会更多.因此先把负号提到括号外面,即-6a2+7a+5=-6a2-7a-5,然后再把6a2-7a-5按图1.2-7用十字相乘法分解因式.【解答】(1)因为1×3+2×(-1)=1,恰好等于一次项系数1,所以2x2+x-3=(x-1)(2x+3).(2)因为-6a2+7a+5=-6a2-7a-5,而根据十字相乘法,6a2-7a-5= (2a+1)(3a-5),所以-6a2+7a+5=-(2a+1)(3a-5).11pq1×p+1×q=p+q图1.2-1123-1123-1图1.2-6图1.2-7课堂笔记【例2】分解因式:x 2-x 2-x 2-x -2.【解析】先将x 2-x 视为一个整体,通过两次十字相乘法得到解决.【解答】x 2-x 2-x 2-x -2=x 2-x -2 x 2-x +1 =(x -2)(x +1)x 2-x +1 .2.分组分解法观察多项式xm +xn +ym +yn ,它的各项并没有公因式,因此不能用提取公因式来分解因式;这是一个四项式,因此也不能直接用公式法或十字相乘法来分解因式.观察多项式的各项,前两项有公因式x ,后两项有公因式y ,分别提取后得到x (m +n )+y (m +n ).这时又有了公因式(m +n ),因此能把多项式xm +xn +ym +yn 分解因式.分解过程是xm +xn +ym +yn =x (m +n )+y (m +n )=(m +n )(x +y ).一般地,如果把一个多项式的项适当分组,并提出公因式后,各组之间又出现新的公因式,那么这个多项式就可以用分组方法来分解因式.【例3】将下列各式分解因式:(1)x 3-x 2+x -1;(2)x 2+4(xy -1)+4y 2.【解答】(1)【解法1】x 3-x 2+x -1=x 3-x 2 +(x -1)=x 2(x -1)+(x -1)=(x -1)x 2+1 .【解法2】x 3-x 2+x -1=x 3+x -x 2+1 =x x 2+1 -x 2+1 =x 2+1 (x -1).(2)x 2+4(xy -1)+4y 2=x 2+4xy -4+4y 2=x 2+4xy +4y 2 -4=(x +2y )2-4=(x +2y +2)(x +2y -2).【注】本题第(2)小题的解法是先将多项式分组,再用公式法分解因式.先将多项式分组后分解因式的方法称为分组分解法.用这种方法分解因式,分组时应预见到下一步分解的可能性.【例4】分解因式:x 3+3x -4.【解析】本题用前面学过的方法似乎均不奏效,若将其中一项拆成两项,就可考虑分组分解.【解答】x 3+3x -4=x 3+3x -1-3=x 3-1 +(3x -3)=(x -1)x 2+x +1 +3(x -1)=(x -1)x 2+x +4 .课堂笔记【例5】已知x3-2x2y-xy2+2y3=0,x>y>0,化简:xz-2yz+1.【解答】因为x3-2x2y-xy2+2y3=x2(x-2y)-y2(x-2y)=(x-2y)x2-y2=(x-2y)(x+y)(x-y),所以(x-2y)(x+y)(x-y)=0.又因为x>y>0,所以x+y≠0,x-y≠0,即只有x-2y=0.从而xz-2yz+1=z(x-2y)+1=1.习题1.21.对多项式4x2+2x-y-y2用分组分解法分解因式,下面分组正确的是()A.4x2+2x-y+y2B.4x2+2x-y2-yC.4x2-yD.4x2-y+(2x-y2)+2x-y2.要使二次三项式x2-6x+m在整数范围内可分解,m为正整数,那么m的取值可以有()A.2个B.3个C.5个D.6个3.把多项式2ab+1-a2-b2分解因式,结果是()A.(a+b-1)(b-a+1)B.(a-b+1)(b-a+1)C.(a+b-1)(a-b+1)D.(a-b+1)(a-b-1)4.m4+m2+1=m4+-m2+1=m2+.m2+5.将下列各式分解因式:(1)4x2-x-3;(2)3x2+2ax-a2.6.将下列各式分解因式:(1)x3-y3-x2y+xy2;(2)2a2-b2+ab-2a+b.7.已知m=x-y,n=xy,试用m,n表示x3+y32.8.当x=-1时,x3+2x2-5x-6=0.请根据这一事实,将x3+2x2-5x-6分解因式课堂笔记第一章测试题(满分为100分,考试时间45分钟)一、选择题(本题有6小题,每小题5分,共30分)1.多项式-3y 2-2yx +x 2分解因式的结果是()A.-(y +x )(3y +x )B.(x +y )(x -3y )C.-(y -x )(3y -x )D.(x +y )(3x -y )2.若a 3-b 3=3a 2b -3ab 2+1,其中a ,b 为实数,则a -b =()A.0B.-1C.1D.±13.若多项式2x 2+7x +m 分解因式的结果中有因式x +3,则此多项式分解因式的结果中另一因式为()A.2x -1B.2x +1C.x +1D.x -14.若a +1a =3,则a 2+a 3+a 4+1a 2+1a 3+1a 4=()A.7B.25C.47D.725.多项式4-x 2-2xy -y 2分解因式的结果是()A.(2+x +y )(2-x -y )B.(2+x +y )(2-x +y )C.(1+x -y )(4-x -y )D.(1-x +y )(4+x +y )6.若x -y -z =3,yz -xy -xz =3,则x 2+y 2+z 2=()A.0B.3C.9D.-1二、填空题(本题有3小题,每小题8分,共24分)7.若8x 3+12x 2y 2+6xy 4+y 6可分解为2x +y m 3,则m =.8.若关于x 的二次三项式ax 2+3x -9的两个因式的和为3x ,则a =.9.x 2+x +1x 2+1x -4=1x +x + 1x +x - .三、解答题(本题有3小题,第10,11题各15分,第12题16分,共46分)10.分解因式:(1)x 3-5x 2+6x ;(2)4m 3+m -1.11.已知x 2-x -1=0,求x 5-x 4-3x 3+3x 2+x 的值.12.已知a 2-9x 2+6xy -y 2(a +3x )2-(ay +3xy )=1,求证:y =6x .课堂笔记第二章分式与根式§2.1分式及其运算1.分式的运算分式运算与因式分解关系密切,掌握了各种乘法公式和因式分解方法,可以使我们的分式运算能力得到提高.【例1】计算:a2+7a+10a2-a+1×a3+1a2+4a+4÷a+1a+2.【解析】分式乘除运算与约分相关,应考虑先将各分式的分子分母分解因式.【解答】原式=a+2a+5a2-a+1×a+1a2-a+1a+22×a+2a+1=a+5【例2】先化简,再求值:m2+n2m2+2mn+n2-2mn÷m+nmn2×m3+3m2n+3mn2+n3m3+m2n-mn2-n3,其中m=57,n=3.【解析】分式混合运算时需合理安排运算顺序,小心完成每一步.本题代数式最后乘上的分式其分子是完全立方,分母可以进行分组分解.【解答】原式=m2+n2(m+n)2-2mn×m2n2(m+n)2×(m+n)3(m+n)2(m-n)=m2+n2(m+n)2-2mn(m+n)2×(m+n)(m-n)=m2-2mn+n2(m+n)2×(m+n)(m-n)=m-nm+n.当m=57,n=3时,原式=m-nm+n=57-357+3=910.【例3】已知xx2-3x+1=1,求x2x4-9x2+1的值.【解析】观察题目特点,对条件与结论采用取倒数处理,建立条件与结论间的联系,从而达到解题的目的.【解答】因为xx2-3x+1=1,所以x2-3x+1x=1,得x+1x=4.于是x4-9x2+1x2=x2+1x2-9=x+1x2-11=16-11=5.因此x2x4-9x2+1=15.【注】本题解答中灵活应用了x2+1x2=x+1x2-2.课堂笔记2.分式的证明【例4】已知b +1c =1,c +1a =1,求证:a +1b =1,【解析】由已知两式消去c ,即可得到含a ,b 的关系式.【解答】由b +1c =1,得1c =1-b ;由c +1a =1,得c =1-1a .所以(1-b )1-1a =1,得1-1a -b +b a =1,即-1a -b +b a =0.两边都乘以a ,得-1-ab +b =0,两边再都除以b ,得-1b -a +1=0,移项得a +1b =1.【例5】已知abc =1,求证:a ab +a +1+b bc +b +1+c ac +c +1=1.【解析】此题直接通分太繁,不可取.观察求证式子的左边,发现作轮换a →b→c →a ,可将其中一项变为另两项,结合已知条件,可以有以下两种策略.【解答】【解法1】因为abc =1,所以a ,b ,c 均不为零.原式=a ab +a +1+ab a (bc +b +1)+abc ab (ac +c +1)=a ab +a +1+ab abc +ab +a +abc abac +abc +ab=a ab +a +1+ab 1+ab +a +1a +1+ab=a +ab +1ab +a +1=1.【解法2】因为abc =1,所以a ,b ,c 均不为零.原式=a ab +a +abc +b bc +b +1+bc b (ac +c +1)=1b +1+bc +b bc +b +1+bc bac +bc +b=1b +1+bc +b bc +b +1+bc 1+bc +b=1+b +bc bc +b +1=1.3.繁分式我们知道,像2m ,ab 1+b ,⋯这样分母中含有字母的代数式叫做分式.而像1x +1x ,a 1+b b 1+a,⋯这样分子或分母中含有分式的分式就叫繁分式.繁分式可以通过适当的代数变换转化成普通的分式.例如,1x +1x =课堂笔记xx x+1x=xx2+1【例6】化简:1+1-xx1-1-xyxy.【解析】对于繁分式化简,可以利用分式基本性质,在分式的分子、分母上都乘以它们各分母的最简公分母,从而达到使分子、分母转化为整式的目的;也可以利用分式的概念,将繁分式转化为分式的除法.【解答】【解法1】原式=1+1-xxxy1-1-xyxyxy=xy+y-xyxy-1+xy=y2xy-1.【解法2】原式=1+1-xx÷1-1-xyxy=x+1-xx÷xy-1+xyxy= y2xy-1.【例7】化简:x+1x2-x+1x-11-x-1x2÷x2+1x2-x-1x+3x2+1x2-2x-2x+3.【解析】观察发现,上式中出现最多的是x+1x,而x2+1x2=x+1x2-2,因此设x+1x=a,原式的形就变简单了,从而有利于化简.换元法在繁分式化简中是一种常用的方法.【解答】设x+1x=a,则x2+1x2=x+1x2-2=a2-2.原式=a2-a-11-a2÷a2-a+1a2-2a+1=a2-a2-a+1a-12×(a-1)2a2-a+1 =a2-a2-a+1=a-1=x+1x-1.课堂笔记习题2.11.下列运算中,错误的是()A.a b =acbc (c ≠0) B.-a -ba +b =-1C.0.5a +b 0.2a -0.3b =5a +10b 2a -3b D.x -y x +y =y -x y +x 2.若x +1x =4,则x 2x 4+x 2+1=()A.10 B.15C.115D.1163.若a +1b=1,b +2c =1,则c +2a =()A.1B.2C.3D.44.化简:11-11-1x .5.化简:a 3-a 2-a +1a 3-3a 2+3a -1.6.计算:1-a -11-a 2÷a 3+1a 2-2a +1×11-a.7.已知1a +1b+1c =0,求证:a 2+b 2+c 2=(a +b +c )2.8.已知xyz =1,x +y +z =2,x 2+y 2+z 2=16,求1xy +2z +1yz +2x+1zx +2y的值.课堂笔记§2.2根式及其迲算1.根式的运算一个代数式的运算结果若含有根式,就必须把它化为最简根式.最简根式满足以下3个条件:(1)被开方数的指数与根指数互质;(2)被开方数的每一个因式的指数都小于根指数;(3)被开方数不含分母.把分母中的根号化去,叫分母有理化.例如,620=625=6×525×5=355.在根式运算中,一般最后结果要进行分母有理化,使分母不含根号.【例1】化简:(1)12-3;(2)x-yx+y(x≠y);(3)x-y3x-3y-x+y3x+3y.【解析】分母有理化通常是把分子和分母都乘以同一个不等于零的适当代数式(有理化因式),使分母不含根号.其中第(2)题还可以将分子用平方差公式分解因式后进行约分,同样第(3)题也可以将分子用立方和(差)公式分解因式后进行约分.【解答】(1)【解】12-3=2+3(2-3)(2+3)=2+32-3=-(2+3)=-2-3.(2)【解法1】x-yx+y=(x-y)(x-y)(x+y)(x-y)=(x-y)(x-y)x-y=x-y.【解法2】x-yx+y=(x+y)(x-y)x+y=x-y.(3)【解】x-y3x-3y-x+y3x+3y=(3x)3-(3y)33x-3y-(3x)3+(3y)33x+3y=(3x)2+3x3y+(3y)2-(3x)2+3x3y-(3y)2 =23xy【例2】计算:1+23+5(1+3)(3+5)+5+27+3(5+7)(7+3).【解析】观察分式的分子和分母,发现(1+3)+(3+5)=1+23+5,(5+7)+(7+3)=5+27+3.因此可先将他们拆成两项之和,然后分别进行分母有理化.【解答】原式=11+3+13+5+15+7+17+3=1-3(1+3)(1-3)+3-5(3+5)(3-5)+5-7(5+7)(5-7)课堂笔记+7-3(7+3)(7-3)=-12(1-3+3-5+5-7+7-3)=-12(1-3)=1【例3】计算:1-x -11+x -1+22-x ÷2+xx -1.【解析】二次根式的混合运算,要根据算式的形式特征安排计算程序,使计算简便.【解答】原式=(1-x -1)2(1+x -1)(1-x -1)+22-x×x -12+x=1-2x -1+x -11-x +1+2x -12-x =x2-x.【例4】已知a =12+3,求1-2a +a 2a -1-a 2-2a +1a 2-a的值.【解析】先化简再求值,同时注意(a -1)2=|a -1|.【解答】因为a =12+3=2-3<1,所以原式=(a -1)2a -1-(a -1)2a (a -1)=(a -1)-|a -1|a (a -1)=a -1--(a -1)a (a -1)=a -1+1a=2-3-1+2+3=3.2.根式的证明【例5】已知(x +c )2+y 2+(x -c )2+y 2=2a ,且a 2-c 2=b 2,其中a >b >0,求证:x 2a 2+y 2b2=1.【解析】当已知等式中含有二次根式时,可以考虑把等式两边平方.【解答】【证明】因为(x +c )2+y 2+(x -c )2+y 2=2a ,所以(x +c )2+y 2=2a -(x -c )2+y 2两边平方,整理得a 2-cx =a (x -c )2+y 2.两边再平方,整理得a 2-c 2 x 2+a 2y 2=a 2a 2-c 2 .把a 2-c 2=b 2代入得b 2x 2+a 2y 2=a 2b 2,两边同除以a 2b 2,得x 2a 2+y 2b2=1.【例6】已知a ,b 都是非负数,并且1-a 2×1-b 2=ab ,求证:a 1-b 2+b 1-a 2=1.【解析】当已知式或求证式中含有二次根式时,可以考虑把两边平方化为整式再证明.但A 2=B 2,未必有A =B ,因此在证明过程中必须确定A ,B 是课堂笔记否同号.【解答】【证明】将1-a2×1-b2=ab两边平方,得1-a21-b2=a2b2,即1-a2-b2+a2b2=a2b2,得a2+b2=1.a1-b2+b1-a22=a21-b2+b21-a2+2ab1-b2×1-a2=a2+b2-2a2b2+2a2b2=1.因为a,b都是非负数,所以a1-b2+b1-a2≥0.因此a1-b2+b1-a2=1.3.n次根式实际上,数的平方根的概念可以推广.一般地,如果x n=a,那么x叫做a的n 次方根.例如,由于24=16和(-2)4=16,我们把2或-2叫做16的4次方根.当n 是偶数时,正数a的正的n次方根用符号n a表示,负的n次方根用符号-n a表示,也可以把两个方根合起来写作±n a.例如,416=2,-416=-2,合起来写作±416=±2.类比平方根与立方根的性质,我们不难发现:在实数范围内,正数有两个相反的偶次方根,负数没有偶次方根,但任意实数都只有一个与它同号的奇次方根.本节所讨论的n次方根运算都限在实数范围内.【例7】(1)求-32243的5次方根;(2)求(-8)2的6次方根.【解析】根据n次方根的定义,可以逆用乘方运算求得开方运算的结果.需要注意正数的偶次方根一定有两个,不要漏掉负的一个.求方根时,为了降低难度,可以把被开方数中比较大的数作质因数分解.【解答】(1)5-32243=5-2535=-23.(2)±6(-8)2=±626=±2.【例8】(1)当x<0时,求|x|+4x4+23x3的值.(2)若n为自然数,2n a2n=-a,a的取值范围是什么?【解析】根据n次根式的性质,可以对含字母的根式进行化简与讨论.【解答】(1)当x<0时,|x|+4x4+23x3=|x|+|x|+2x=-x-x+2x=0.(2)因为n为自然数,所以2n为偶数,于是2n a2n=|a|.又因为2n a2n=-a,所以a≤0.类似于二次根式的性质,我们也可以得到n次根式的性质:(1)(n a)n=a.课堂笔记(2)当n 为奇数时,na n =a ;当n 为偶数时,na n =|a |=a ,a ≥0;-a ,a <0.(3)mpa mp =na m (a ≥0),n ab =n a ⋅n b (a ≥0,b ≥0),na b=na n b(a ≥0,b >0),n a m =(n a )m (a ≥0).从指数式的角度看,a =a 12,3a =a 13,⋯,n a =a 1n ,所以a m =na m ,a -mn =1n am .课堂笔记习题2.21.下列说法正确的是()A.正数有一个偶次方根B.负数没有偶次方根C.负数有两个奇次方根D.正数有两个奇次方根2.当a>0时,-ax3=()A.x axB.x-axC.-x-axD.-x ax3.把a-ba+b(a≠b)分母有理化的结果是()A.-1B.a+ba-b C.a+b-2aba-bD.a+b-2abb-a4.(-1)101的7次方根是,0的8次方根是,(-4)2的4次方根是,(-4)4的4次方根是,5.计算:-5-132=,6(-27)2=,(2×32)4=,18÷32=.6.已知a=13+22,b=13-22,求1b-1-1a-1的值.7.化简:(a-b)3+2a a+b ba a+b b-3b-3aba-b.8.化简:(1)a-2a-1(1<a<2);(2)n(a-b)n+n(a+b)n a<b<0,n>1,n∈N∗.9.证明:a2+1b2+a2(ab+1)2=a+1b-aab+1.课堂笔记第二章测试题(满分为100分,考试时间45分钟)一、选择题(本题有6小题,每小题5分,共30分)1.若分式x +yx -y中的x ,y 的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的13D.是原来的162.计算a b-b a÷a +b a 的结果是()A.a -b aB.a +b bC.a -bbD.a +b a3.把a +ba -b(a ≠b )分母有理化的结果是()A.-1B.a +b a -bC.a +b +2aba -bD.a +b +2abb -a4.下列式子错误的是()A.(a )2=aB.3a 3=aC.(n a )n =a (n >1的整数)D.na n =a (n >1的整数)5.化简x -|x |x的结果是()A.-|x |B.-xC.x 2D.x6.若n 为自然数,2n +1a 2n +1=a ,则a 的取值范围是()A.a ≥0B.a <0C.a ≤0D.a 为全体实数二、填空题(本题有4小题,每小题6分,共24分)7.64的平方根是,立方根是,6次方根是.8.化简:1x -1+1x +1+2x x 2+1+4x 3x 4+1=.9.化简:11+11+1x=.10.当x <0时,5x 5+4x 4+3x 3=.三、解答题(本题有3小题,第11,12题各15分,第13题每题16分,共46分)11.若(x -10)2+4y -4=0,求y x 的10次方根.课堂笔记12.化简:x+1x-1-x-1x+11x2-1.13.当a=12-1时,求a2+6a2-1-a+1a-1+1÷a3+8a4+3a3+2a2的值.课堂笔记第三章方程与方程组§3.1三元一次方程组我们已经学习了二元一次方程组及其解法, 知道解二元一次方程组的基本思想是:二元一次方程组⟶消元一元一次方程. 解二元一次方程组的基本方法有代人消元法和加减消元法. 消元的目的是把二元一次方程组化归为一元一次方程.在现实生活中, 我们会遇到末知数不止两个的方程, 下面我们就来学习三元一次方程组.像x +y +z =12,x +2y +5z =22,x =4y ,4x +2y +z =0,x +2y -z =3,2x -y +2z =-4这类方程组中含有三个末知数, 含末知数的项的次数都是1 , 这样的方程组叫做三元一次方程组.解三元一次方程组的基本思想与解二元一次方程组一致, 通过消元转化为我们会解的方程组:三元一次方程组⟶消元二元一次方程组⟶消元一元一次方程. 解三元一次方程组的基本方法有代人消元法和加减消元法.【例1】解方程组x +y +z =12,①x +2y +5z =22,②x =4y .③【分析】将方程③分别代入方程①②, 得到只含y ,z 的二元一次方程组.【解】将方程③分别代入方程①②, 得方程组5y +z =12④6y +5z =22⑤解得y =2,z =2.把y =2,z =2代人方程①, 得x +2+2=12, 所以x =8.方程组的解是x =8,y =2,z =2.【例2】解方程组课堂笔记4x+2y+z=0①x+2y-z=3②2x-y+2z=-4③【分析】解三元一次方程组的关键是逐步消元, 转化为二元一次方程组. 将方程①+②, 可以消去z, 将方程③+②×2, 也可以消去z, 从而得到二元一次方程组.【解】方程①+②, 得5x+4y=3.④方程③+②×2, 得4x+3y=2. ⑤方程④和方程⑤组成方程组5x+4y=34x+3y=2解得x=-1,y=2.把x=-1,y=2代人方程②, 得-1+2×2-z=3, 所以z=0.方程组的解是x=-1,y=2,z=0.【例3】解方程组x:y:z=1:2:7,2x-y+3z=21.本题含有三个末知数, 只有两个方程, 其中方程①含有比例. 如果设x=a, 则y=2a,z=7a, 就得到了关于x,y,z三个末知数之间的关系, 代入方程②即可求解.【解】由方程①, 设x=a,y=2a,z=7a.代人方程②, 得2a-2a+21a=21, 即a=1.于是x=1,y=2,z=7.方程组的解是x=1,y=2,z=7.【注】本题的解答实际上用了比例的性质(第五章). 虽然方程组形式上是两个方程, 但方程①实际上隐含了两个方程:2x=y,7y=2z.通过上面几道例题, 我们发现, 三元一次方程组的解法仍是用代人法或加减法消元, 化归为二元一次方程组, 再化归为一元一次方程. 实际上, 消元是解一次方程组的主要方法. 解一次方程组的消元“化归”基本思想, 可以推广到“四元”“五元”等多元方程组.习題3.1课堂笔记1.解方程组3x -y +2z =3,2x +y -4z =11,若要使运算简便,消元的方法应选取.7x +y -5z =1,()A.先消去x .B.先消去y .C.先消去z .D.以上说法都不对.2.已知方程组2x -y +z =5,5x +8y -z =9,则x +y 的值是()A.14.B.2.C.-14.D.-2.3.已知方程3x -y -7=0,2x +3y =1,y =kx -9有公共解, 则k 的值是()A.6.B.5.C.4.D.3.4.当x =0,1,-1时, 二次三项式ax 2+bx +c 的值分别为5,6,10, 则a =b = ,c =.5.已知方程组x -2y +z =0,2x +4y -z =0,则x :y :z =6.解下列三元一次方程组:①x -4y +z =-32x +y -z =18x -y -z =7②x :y :z =2:3:5x +y +z =1007.若|a -b -1|+(b -2a +c )2+|2c -b |=0, 求a ,b ,c 的值.8.己知4x -3y -6z =0,x +2y -7z =0,求2x 2+3y 2+6z 2x 2+5y 2+7z 2的值.§3.2一元二次方程的根的判别式一元二次方程ax 2+bx +c =0(a ≠0)由配方法可化为x +b 2a 2=b 2-4ac 4a 2.因为a ≠0, 所以4a 2>0. 式子b 2-4ac 的值有以下三种情况:①b 2-4ac >0这时b 2-4ac 4a 2>0, 由①式得x +b 2a =±b 2-4ac 2a , 方程有两个不相等的实数根x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a.②b 2-4ac =0课堂笔记这时b2-4ac4a2=0, 由①式得x+b2a2=0, 方程有两个相等的实数根x1=x2=-b2a.③b2-4ac<0这时b2-4ac4a2<0, 由①式得x+b2a2<0, 而x取任何实数都不能使x+b2a2<0, 因此方程无实数根.这说明, 根据b2-4ac的值的符号, 我们可以判定一元二次方程ax2+bx+c= 0(a≠0)的根的情况. 一般地, 式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式, 通常用希腊字母Δ表示它, 即Δ=b2-4ac.归纳起来, 有①Δ>0⇔方程有两个不相等的实数根;②Δ=0⇔方程有两个相等的实数根;③Δ<0⇔方程没有实数根.【例1】【例1】不解方程, 判别下列方程的根的情况:②5x2=2(x-10);③8x2+(m+1)x+m-7=0.①x2+2x-1=0;【解】①因为Δ=22-4×(-1)=8>0, 所以方程有两个不相等的实数根.②将原方程整理, 可得5x2-2x+20=0.因为Δ=(-2)2-4×5×20=-396<0, 所以方程没有实数根.③Δ=(m+1)2-4×8×(m-7)=m2-30m+225=(m-15)2.因为无论m取何值, 都有Δ=(m-15)2≥0, 所以方程有两个实数根.【例2】【例2】已知关于x的方程(k-2)x2+k=(2k-1)x有两个不相等的实数根, 求k的范围.【分析】将方程化成一般形式, 二次项系数k-2≠0. 因为一元二次方程有两个不相等的实数根, 所以Δ>0.【解】方程(k-2)x2+k=(2k-1)x可化为(k-2)x2-(2k-1)x+k=0.因为方程有两个不相等的实数根, 所以课堂笔记k -2≠0,Δ=[-(2k -1)]2-4k (k -2)=4k +1>0.解得k >-14且k ≠2.所以k 的取值范围是k >-14且k ≠2.【例3】证明:关于x 的一元二次方程m 2+1 x 2-2mx +m 2+4 =0没有实数根.【分析】要证一元二次方程没有实数根, 只要证Δ<0即可.【证明】二次项系数m 2+1≠0.Δ=(-2m )2-4m 2+1 m 2+4 =-4m 4+4m 2+4 =-4m 2+2 2.因为无论m 取什么实数, 都有m 2+2>0, 所以-4m 2+2 2<0, 即Δ<0. 因此, 一元二次方程m 2+1 x 2-2mx +m 2+4 =0没有实数根.【例4】当m 为何值时, 关于x 的方程m 2-4 x 2+2(m +1)x +1=0有实数根.和m 2-4≠0两种情形讨论.【解】①当m 2-4=0, 即m =±2时, 2(m +1)≠0, 方程为一元一次方程, 总有实数根.②当m 2-4≠0, 即m ≠±2时, 要使方程m 2-4 x 2+2(m +1)x +1=0有实数根, 则Δ=[2(m +1)]2-4m 2-4 =8m +20≥0, 解得m ≥-52.因此, 当m ≥-52且m ≠±2时, 方程有实数根.综合①②, 当m ≥-52时, 方程有实数根.习题3.21.方程x 2+1=0,x 2+x =0,x 2+x -1=0,x 2-x =0中, 无实根的方程有()A.1个.B.2个.C.3个.D.4个.2.关于x 的方程ax 2-2x +1=0中, 若a <0, 则根的情况是().A.有两个相等的实数根.B.有两个不相等的实数根.课堂笔记C.没有实数根.D.无法确定.3.关于x的方程ax2+bx+c=0(a≠0)中, 若a与c异号, 则根的情况是()A.有两个不相等的实数根.B.有两个相等的实数根.C.没有实数根.D.无法确定4.若关于x的一元二次方程(m-2)2x2+2(m+1)x+1=0有两个不相等的实数根, 则m的取值范围是5.若二次三项式3x2-4x+2k在实数范围内总能分解成两个一次因式的积, 则k的取值范围是6.不解方程, 判别下列方程的根的情况:③5x2+1-7x=0.①2x2+3x-4=0;②16y2+9=24y7.证明:关于x的方程mx2-(m+2)x=-1必有实数根.8.已知关于x的方程k2-1x2+2(k+1)x+1=0有实数根, 求k的取值范围.§3.3书达定理及其应用方程ax2+bx+c=0(a≠0)的求根公式x=-b±b2-4ac2a, 不仅表示可以由方程的系数a,b,c决定根的值, 而且反映了根与系数之间的联系. 本节我们进一步讨论根与系数的关系.根据求根公式可知, 当b2-4ac≥0时, 一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.由此可得x1+x2=-b+b2-4ac2a+-b-b2-4ac2a=-2b2a=-ba,x1x2=-b+b2-4ac2a⋅-b-b2-4ac2a=(-b)2-b2-4ac4a2=c a.因此, 方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-b a,x1x2=c a.这个一元二次方程的根与系数的关系叫做韦达定理.课堂笔记反过来, 如果x 1,x 2满足x 1+x 2=-b a ,x 1x 2=ca, 那么x 1,x 2一定是方程ax 2+bx +c =0(a ≠0)的两个根, 这就是韦达定理的逆定理.特别地,①如果方程x 2+px +q =0的两个根是x 1,x 2, 那么x 1+x 2=-p ,x 1x 2=q ;②以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-x 1+x 2 x +x 1x 2=0【例1】根据一元二次方程根与系数的关系, 求下列方程两根的和与积:①x 2-5x -8=0;②3x 2=1-6x ;③2x 2-43x -22=0. 化成一元二次方程的一般形式ax 2+bx +c =0(a≠0), 直接应用韦达定理x 1+x 2=-b a ,x 1x 2=ca 来求.【解】①x 1+x 2=-(-5)=5,x 1x 2=-8.②方程化为3x 2+6x -1=0, 则x 1+x 2=-2,x 1x 2=-13.③x 1+x 2=--432=26,x 1x 2=-222=-2.【例2】已知方程5x 2+2x -15=0, 求:①两根的倒数和;②两根的平方和.【分析】本题可以先求出方程的根, 但是计算较繁. 根据韦达定理, 将代数式变形成念有x 1+x 2和x 1x 2形式的式子, 可以筒化运算.【解】设方程的两根为x 1,x 2, 根据韦达定理, 有x 1+x 2=-25,x 1x 2=-3.①1x 1+1x 2=x 1+x 2x 2x 2=-25-3=215.②x 21+x 22=x 1+x 2 2-2x 1x 2=-252-2×(-3)=15425.【例3】当k 取何值时, 关于x 的方程3x 2-2(3k +1)x +3k 2-1=0, ①有一根为零;②有两个互为相反数的实根;(3)两根互为倒数.【解】要使方程有根, 必须Δ=[-2(3k +1)]2-4×33k 2-1 ≥0, 解得k ≥-23.①若方程有一根为零, 则x 1x 2=0. x 1x 2=3k 2-13=0, 解得k =±33.课堂笔记因为±33>-23, 所以当k=±33时, 方程有一个根为零.②若方程有两个互为相反数的实根, 则x1+x2=0. x1+x2=23(3k+1)=0, 解得k=-13, 因为-13>-23, 所以当k=-13时, 方程有两个互为相反数的实数根.③若方程两根互为倒数, 则x1x2=1. x1x2=3k2-13=1, 解得k=±233.因为233>-23, 而-233<-23, 所以当k=233时, 方程的两实根互为倒数.【例4】写出一个二元二次方程, 使它的两个根为-5和23.【分析】方程的根是由它的系数决定的, 给出根与系数的关系可以构造出一元二次方程, 但得到的一元二次方程不唯一, 不过它们各次项的系数对应成比例. 为了方便, 一般设所求的方程为x2+px+q=0.【解】设所求的方程为x2+px+q=0, 由根与系数的关系可知-5+23=-p, -5×23=q, 得p=133,q=-103.因此, 一元二次方程为x2+133x-103=0, 即3x2+13x-10=0.1.设x1,x2是方程2x2-6x+3=0的两根, 则x21+x22的值是().A.15.B.6.C.12.D.3 .2.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是().A.y2+5y-6=0.B.y2+5y+6=0.C.y2-5y+6=0.D.y2-5y-6=0.3.若m,n是方程x2+2x-2002=0的两实数根, 代数式3m+mn+3n的值是().A. -2008.B. -1996.D. 1996 .C. 2008 .课堂笔记4.若关于x 的方程m 2-2 x 2-(m -2)x +1=0的两实根互为倒数, 则m 的值是5.以方程x 2-3x -1=0的两个根的平方为根的一元二次方程是6.设x 1,x 2是方程2x 2+4x -3=0的两个根, 利用根与系数的关系求下列各式的值:①x 1+1 x 2+1 ;②x 1x 2+x 2x 1;③x 1-x 27.已知关于x 的一元二次方程ax 2+bx +c =0, 两根之比为3:5, 求证:64ac =15b 2.8.已知关于x 的一元二次方程2x 2+ax -2a +1=0, 两个实根的平方和为294, 求a 的值.§3.4可化为一元二次方程的分式方程我们已经学过可化为一元一次方程的分式方程及其解法. 本节学习可化为一元二次方程的分式方程的解法.【例1】解方程4x -1x -1=1.【分析】解分式方程, 首先要找这个分式方程的最简公分母, 然后方程两边同乘以最简公分母, 约去分母, 使分式方程化为整式方程.【解】方程的两边同乘最简公分母x (x -1), 得4(x -1)-x =x (x -1).整理, 得x 2-4x +4=0.解得x 1=x 2=2.检验:当x =2时, x (x -1)=2(2-1)=2≠0.所以原方程的根是x =2.验根的一般方法是:把整式方程的根代人最简公分母, 看结果是不是零, 使最简公分母为零的根是增根, 必须舍去.为什么要检验呢?根据方程同解原理:方程两边都乘以不等于零的同一个数, 所得方程与原方程同解. 而我们在解分式方程时, 方程两边同乘以最简公分母, 它是一个整式, 当这个整式为零时, 就不符合方程的同解原理要求, 所得整式方程的根就不一定是原方程的根, 因此解分式方程必须验根.课堂笔记【例2】解方程1x+2-4x-5x2-x-6=1.【分析】将分式方程的分母进行因式分解, 从而确定出最简公分母是(x+2)(x -3).【解】方程两边同乘最简公分母(x+2)(x-3), 得x-3-(4x-5)=x2-x-6整理, 得x2+2x-8=0.解得x1=-4,x2=2.检验:当x=-4或x=2时, (x+2)(x-3)≠0.所以原方程的根是x1=-4,x2=2.课堂笔记【例3】解方程8x 2+2x x 2-1+3x 2-1x 2+2x=11.【分析】按一般解法, 应先去分母, 整理后为一元四次方程, 结果较繁. 观察方程, 左边的两个分式x 2+2x x 2-1和x 2-1x 2+2x 互为倒数, 可以通过“换元”, 将方程化简.【解】设x 2+2x x 2-1=y , 则x 2-1x 2+2x=1y , 于是原方程变形为8y +3y =11.方程两边同乘y , 得8y 2-11y +3=0解得y 1=1,y 2=38.经检验, y 1=1,y 2=38都是方程8y +3y=11的根.当y =1时, x 2+2xx 2-1=1, 去分母, 整理, 得x 2+2x =x 2-1.解得x 1=-12.当y =38时, x 2+2x x 2-1=38, 去分母, 整理, 得5x 2+16x +3=0.解得x 2=-3,x 3=-15.检验:把x =-12,x =-3,x =-15分别代人原方程的分母, 各分母都不为零.所以, 原方程的根是x 1=-12,x 2=-3,x 3=-15.习题3.41解下列方程:(1)2x -12x -1=1;(2)2x 2-6xx -3=x +5.2. 解下列方程:(1)x -1x 2-2x -1x =x x -2;(2)24x 2-4x -3-14x 2-8x +3-2x -51-4x 2=0.课堂笔记3.解下列方程:(1)xx+12+5x x+1+6=0;(2)x2-3x+3xx2-3=132.§3.5简单的根式方程像2x2-7x=x-2,3x-5-x+2=1,x+1-2x+1=3这类根号内含有末知数, 且根指数为2的方程, 叫做二次根式方程.二次根式方程可以通过把方程的两边平方, 化为整式(或分式)方程来解. 不过变形有可能产生增根. 因此, 解二次根式方程时, 必须把变形所得整式(或分式)方程的根, 代人原方程进行检验.【例1】解方程2x2-7x=x-2.【分析】通过两边平方化为整式方程.【解】两边平方, 得2x2-7x=x2-4x+4整理, 得x2-3x-4=0.解得x1=4,x2=-1.检验:把x=4代人原方程, 左边=2×42-7×4=2, 右边=4-2=2, 所以x= 4是原方程的根;把x=-1代人原方程, 右边=-3, 而左边的算术平方根不可能是负数, x=-1是增根.原方程的根是x=4.【例2】解方程3x-5-x+2=1.【分析】方程左边有两个二次根式, 如果直接平方, 结果较繁. 一般把其中一个根式移到方程的右边, 使方程左右两边各含有一个根式.【解】移项,得3x-5=x+2+1.两边平方, 得3x-5=1+2x+2+x+2.化简, 得x-4=x+2.两边再平方并整理, 得x2-9x+14=0.解得x1=2,x2=7.课堂笔记经检验, x =2是增根;x =7是原方程的根.【例3】解方程x 2+8x +x 2+8x =12.【分析】x 2+8x 是x 2+8x 的算术平方根, 如果直接平方, 结果很繁. 若设x 2+8x =y , 则原方程就转化为关于y 的一元二次方程.【解】设x 2+8x =y , 那么x 2+8x =y 2, 原方程就变形为y 2+y -12=0.解得y 1=-4,y 2=3.当y =-4时, x 2+8x =-4无解.当y =3时, x 2+8x =3, 解得x 1=-9,x 2=1.经检验, 原方程的根为x 1=-9,x 2=1.习题3.51.解下列方程:(1)2x -2x +1=5;(2)x +x -3=3.2.解下列方程:(1)2x -5-x -3=1;(2)5x +4-x +3=1.1解下列方程:(1)x -1x +2-52=-x +2x -1;(2)x 2+x -x 2+x -2-4=0.§3.6简单的二元二次方程组像x 2+y 2=1,x 2-2y 2+x +3y -10这类含有两个末知数, 并且含有末知数的项的最高次数是2的整式方程, 叫做二元二次方程. 由含有相同的两个末知数的两个二元二次方程, 或一个二元二次方程和一个二元一次方程, 组成的方程组叫做二元二次方程组.解二元二次方程组就是求方程组中两个方程的公共解. 解二元二次方程组的基本思想是消元和降次, 消元就是把二元化为一元, 降次就是把二次降为一次, 其目的是把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程来解.本节内容主要解决简单的二元二次方程组问题.【例1】解方程组课堂笔记x2+y2=1------1x+y-1=0----(2【解】由方程(2), 得y=1-x(3)把方程(3)代人方程(1), 得x2+(1-x)2=1.整理, 得x2-x=0.解得x1=0,x2=1把x=0代人方程(3), 得y=1;把x=1代人方程(3), 得y=0.原方程组的解是x1=0,y1=1;x2=1,y2=0.【注】解由一个二元一次方程和一个二元二次方程组成的方程组, 其解法是先由二元一次方程出发, 用含一个末知数的式子表示另一个末知数, 再把这个式子代人二元二次方程, 达到消元的目的, 转化为一元二次方程求解.【例2】解方程组x2+2xy+y2=1,x2+4y2=8【分析】方程(1)变形为(x+y)2=1, 把它化为两个二元一次方程x+y+1=0和x+y-1=0, 分别与方程(2)组成方程组x+y+1=0,x2+4y2=8,x+y-1=0,x2+4y2=8;x2+4y2=8两个方程组即可.【解】由方程(1)得x+y+1=0,x+y-1=0.原方程组变形为x+y+1=0,x2+4y2=8;x+y-1=0,x2+4y2=8.分别解这两个方程组, 得原方程的解为x1=-2,y1=1;x2=25,y2=-75;x3=2,y3=-1;x4=-25,y4=75.【注】由两个二元二次方程组成的方程组, 如果能把其中一个二元二次方程分解为两个二元一次方程, 就可以转化为由一个二元一次方程和一个二元二次方程组成方程组的形式.。
数学初高中衔接优秀教案
数学初高中衔接优秀教案教案名称:数列的性质及应用教学内容:初中数学中的数列的性质及应用,与高中数学中数列的进一步拓展的衔接教学目标:1. 理解数列的概念和性质,掌握各种数列的表示方式;2. 掌握数列的求和公式,并能应用求和公式解决实际问题;3. 能够分析数列的性质,找出规律,推导数列的通项公式;4. 能够灵活运用数列的性质和公式解决复杂问题。
教学过程:一、复习初中数列的性质和求和公式(10分钟)1. 复习等差数列、等比数列的定义和性质;2. 复习等差数列、等比数列的通项公式和求和公式。
二、引入高中数列的概念(10分钟)1. 引入高中数列的概念,讲解高中数列与初中数列的区别;2. 引入等差数列的前n项和的泛化公式;3. 引入等比数列的通项公式和前n项和的泛化公式。
三、练习数列的求和公式(20分钟)1. 练习应用等差数列、等比数列的求和公式解决实际问题;2. 练习运用泛化公式解决数量关系题。
四、探究数列的通项公式(20分钟)1. 利用数学归纳法推导等差数列的通项公式;2. 利用数学归纳法推导等比数列的通项公式。
五、综合练习(15分钟)1. 综合运用等差数列、等比数列的性质和公式解决综合题;2. 练习分析题目,找出数列的规律,推导数列的通项公式。
六、课堂总结(5分钟)1. 总结数列的性质和公式;2. 总结数列的求和方法和推导通项公式的步骤。
教学反思:本节课以初中数列的性质和应用为基础,引入了高中数列的基本概念和进一步深化的内容,通过练习和探究的方式,使学生在初高中数学的衔接过程中能够顺利过渡,提高数学应用能力和解决问题的能力。
在教学中,教师要注重引导学生分析问题,找出规律,培养学生的逻辑思维能力和创新能力。
初高中数学衔接教材 word版配答案(精品版)
数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。
在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。
这也是我们继续高中数学学习的基础。
良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。
高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。
高考题中与函数思想方法有关的习题占整个试题的60%以上。
1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。
”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。
初升高衔接教本数学答案
初升高衔接教本数学答案尊敬的老师和同学们:为了帮助同学们更好地适应高中数学的学习,我们特此提供了初升高衔接教本数学的答案。
请注意,这些答案仅供学习参考,我们鼓励同学们在遇到难题时先自己思考,然后再对照答案进行学习。
【第一章:代数基础】1. 问题1:解一元一次方程。
答案:对于方程 \( ax + b = 0 \),解为 \( x = -\frac{b}{a} \)。
2. 问题2:因式分解。
答案:多项式 \( ax^2 + bx + c \) 可以通过公式 \( x^2 + (b+c)x + bc \) 进行因式分解。
【第二章:几何初步】1. 问题1:证明三角形的内角和。
答案:在三角形ABC中,设角A、角B、角C分别为α、β、γ,则\( α + β + γ = 180^\circ \)。
2. 问题2:证明勾股定理。
答案:在直角三角形ABC中,设直角边为a、b,斜边为c,根据勾股定理,有 \( a^2 + b^2 = c^2 \)。
【第三章:函数与方程】1. 问题1:求函数的值域。
答案:对于函数 \( f(x) = ax + b \),其值域为 \( (-\infty,+\infty) \)。
2. 问题2:解一元二次方程。
答案:对于方程 \( ax^2 + bx + c = 0 \),当 \( a \neq 0 \) 时,解为 \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)。
【第四章:解析几何】1. 问题1:求直线的方程。
答案:给定直线上的两点 \( (x_1, y_1) \) 和 \( (x_2, y_2) \),直线的斜率为 \( m = \frac{y_2 - y_1}{x_2 - x_1} \),直线方程为 \( y - y_1 = m(x - x_1) \)。
2. 问题2:求圆的方程。
答案:给定圆心 \( (h, k) \) 和半径 \( r \),圆的标准方程为\( (x - h)^2 + (y - k)^2 = r^2 \)。
【初升高 数学衔接教材】1~16讲参考答案
第一讲 因式分解例1:解:由多项式的乘法法则易得))(()(2d cx b ax bd x bc ad acx ++=+++∴∴3×(-3)+2×1=-7∴)32)(13(3762-+=--x x x x 例2:解:∴原式=])([])([2222b a x b a x +-⋅-- =))()()((b a x b a x b a x b a x --+++--+ 例3:解:原式=)3103()44(422+--+-y y x y x=)3)(13()44(42---+-y y x y x =)]3(2)][13(2[-+--y x y x =)32)(132(-++-y x y x点评:以上三例均是利用十字相乘来因式分解,其中例3中有x 、y ,而我们将其整理x 的二次三项式。
故又称“主元法”。
例4:解:如果要分解的因式的形式是,唯一确定的,那么可以考虑利用待定系数法 ∵)3)(32(93222y x y x y xy x +-=-+则可设)3)(32(2031493222n y x m y x y x y xy x +++-=+-+-+(m 、n 待定) ∴原式=mn y n m x n m y xy x +-+++-+)33()2(93222比较系数得⎪⎩⎪⎨⎧=-=-=+20333142m n n m n m 解得m =4,n =53 2 1-3 x 2 -(a -b)2 x 2-(a -b)22x -(3y -1)2xy -3∴原式=)53)(432(+++-y x y x(2)在例3中利用了十字相乘法,请同学们用待定系数法解决。
例5:解:(1))61)(1()1(6)1)(1()66()1(762233+++-=-+++-=-+-=-+x x x x x x x x x x x =)7)(1(2++-x x x或)7)(1()1(7)1)(1()77()(76233++-=-+-+=-+-=-+x x x x x x x x x x x x 或)7)(1()1)(1(6)1)(1(7)66()77(7622333++-=-+-++-=---=-+x x x x x x x x x x x x x x解:(2)15++x x =)1()1()1()(232225+++-=+++-x x x x x x x x)1()1)(1(222+++++-=x x x x x x )1)(1(232+-++=x x x x例6:解:把198757623+-+x x x 用含有132--x x 的代数式表示∴321990339 198739 261987576132223232+--+--+----x x x x x x x x x x x x∴19901990)13)(32(1987576223=+--+=+-+x x x x x x 课堂练习答案:1、(1)))()()()((2222y xy x y xy x y x y x z y x +++--+-+ (2))1)(1)(1)(1(--+--+++b a b a b a b a (3))42)(2)(14(2++-+m m m m2、(1))22)(22(22+-++x x x x (2))8)(1(2-+-x x x3、(1))1)(23(+-++y x y x (2))23)(12(+--+y x y x4、-15、2-=ab第二讲 分式例题解析答案:例1:解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2例2:解:观察各分母的特点知,式中第一、二项,第三、四项分别组合通分较容易∴原式=4422442222232))(())((b a b a b a b b a b a b b a b a a -+--++-+++ =011))((22224422222222=---=-+-+-+ba b a b a b a b a b a b a 例3:解:设a m n =,b nm=,则1=ab ∴原式=2)(32223322-++÷---++b a ba b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(n m n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c ba abc b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+-----------=ac b c a c a b c b c a b a -=---+-+-----2111111 例5:解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bcb bcbc b b bc b 例6:解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。
初高中数学知识衔接教案
初高中数学知识衔接教案1.了解初中数学和高中数学之间的知识衔接关系;2.掌握初高中数学知识的衔接技巧;3.提高学生数学学习的整体水平。
教学重点:1.初高中数学知识衔接的重要性;2.初高中数学知识衔接的方法和技巧;3.提高学生数学学习的整体水平。
教学内容:1.初中数学和高中数学的知识衔接关系;2.初中数学知识在高中数学学习中的应用;3.初中数学知识和高中数学知识的差异和联系。
教学过程:一、导入(5分钟)教师向学生介绍初高中数学知识衔接的重要性,引导学生对数学学习有更深入的理解。
二、讲解(15分钟)1.学生通过课堂讨论,了解初中数学知识对于高中数学学习的重要性;2.讲解初中数学和高中数学知识之间的衔接关系,指导学生如何有效地掌握初高中数学知识的衔接技巧。
三、练习(20分钟)1.组织学生进行初高中数学知识的练习,检验学生的掌握情况;2.针对学生在练习中的问题,及时给予指导和辅导。
四、讨论(10分钟)1.组织学生就初中数学知识和高中数学知识的联系进行讨论,激发学生的学习兴趣;2.鼓励学生积极提出问题,促进学生对数学知识的更深入理解。
五、总结(5分钟)教师总结本节课的教学内容,强调初高中数学知识的衔接关系,并鼓励学生在学习中勇于探索和实践。
六、作业布置(5分钟)布置作业:学生复习今天学过的知识内容,对初高中数学知识的衔接关系进行总结。
教学反思:通过本节课的教学,学生对初高中数学知识的衔接关系有了更深入的理解,提高了数学学习的整体水平。
教师要根据学生的实际情况,设计更加贴近学生需求的教学内容,促进学生的学习兴趣,提高学生的学习效果。
初高中数学衔接问题教案
初高中数学衔接问题教案
教学目标:通过本节课的学习,学生能够掌握初中和高中数学之间的衔接问题,提高数学的学习能力和解题能力。
教学重点和难点:初高中数学之间的衔接问题,理解和掌握数学公式和定理的应用。
教学准备:教材《初高中数学课程标准实验教科书》、黑板、彩色粉笔、教学PPT等。
教学过程:
一、导入新课
教师向学生介绍初高中数学之间的衔接问题,引导学生思考初中数学与高中数学之间的关系,为学生打下学习数学的基础。
二、教学内容
1. 总结初中数学知识,复习基础概念和公式。
2. 介绍高中数学的知识,引导学生理解高中数学的难点和重点。
3. 综合初高中数学知识,引导学生掌握数学公式和定理的应用。
三、课堂练习
老师提供一些相关的练习题,让学生独立或合作完成,巩固所学知识。
四、课堂反馈
教师将学生的作业进行点评,对答案进行讲解,并解答学生提出的疑问。
五、拓展延伸
学生可以自学更深入的数学知识,拓展延伸新的数学题目,提高数学解题能力。
六、课堂总结
教师总结本节课的教学内容,让学生对初高中数学的衔接问题有一个清晰的认识。
七、作业布置
布置相关作业,让学生巩固所学知识,提高解题能力。
教学反思:本节课授课内容清晰,学生互动积极,但仍需在课堂练习环节加强学生的解题能力和实践能力。
未来需要更多引导学生自主学习,提高数学思维和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 数与式1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4. 练 习 1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).10 C |x -1||x -3|图1.1-11.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ). 2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b 21x +,22x y +是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,等等. 一般地,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩例1将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <.解: (1=(20)a ==≥;(3220)xx x ==-<.例2 (3.解法一:(3)解法二: (3)=12. 例3 试比较下列各组数的大小:(1 (2解: (1===,===,>(2)∵=== 又 4>22,∴6+4>6+22,例4 化简:20042005⋅.解:20042005⋅=20042004⋅-⋅=2004⎡⎤+⋅⋅⎣⎦=20041⋅例 5 化简:(1 (21)x <<.解:(1)原式===2=2=.(2)原式1x x=-, ∵01x <<,∴11x x>>, 所以,原式=1x x -.例 6 已知x y ==22353x xy y -+的值 .解: ∵2210x y +==+=,1xy ==,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练 习 1.填空: (1=__ ___;(2(x =-x 的取值范围是_ _ ___;(3)=__ ___; (4)若2x ==______ __. 2.选择题:=成立的条件是 ( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: A A M B B M ⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质. 2.繁分式像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数); (2)计算:1111223910+++⨯⨯⨯ ; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+ . (1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+ =111111()()()23341n n -+-++-+ =1121n -+,又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+ <12. 例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值. 解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,∴e =12<1,舍去;或e =2.∴e =2. 练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:若223x y x y -=+,则xy= ( ) (A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x yx y-+的值. 4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1 A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2=________;(22=,则a 的取值范围是________;(3=________.B 组1.填空:(1)12a =,13b =,则2223352a aba ab b-=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y++=+__ __;2.已知:11,23x y ==的值. C 组1.选择题:(1=( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算 ( )(A (B (C ) (D )2.解方程22112()3()10x x x x +-+-=. 3.计算:1111132435911++++⨯⨯⨯⨯ . 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++ <14.1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示). 2.提取公因式法与分组分解法 例2 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 解: (1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.-1 -2 x x 图1.2-1 -1 -2 1 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4 -1 1x y图1.2-5或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习 1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x 2+6x +8; (2)8a 3-b 3;(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a ).第二讲 函数与方程2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a -+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根. (2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根12a x +=, 22a x =. (3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以, ①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根1x =,2x =,则有1222b bx x a a-+===-;221222(4)42244b b b b ac ac cx x a a a a a----=⋅===. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有 以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另一个根为-35,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35. 由 (-35)+2=-5k,得 k =-7. 所以,方程的另一个根为-35,k 的值为-7.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵x 12+x 22-x 1·x 2=21,∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21, 化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意; 当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =17. 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y , 则 x +y =4, ①xy =-12. ② 由①,得 y =4-x , 代入②,得x (4-x )=-12,即 x 2-4x -12=0, ∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根.解这个方程,得x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-.(1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=253()4()22--⨯-=254+6=494,∴| x 1-x 2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x =,2x =,∴| x 1-x 2|= ||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a (其中Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论. 例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围. 解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4,由②得 a <174.∴a 的取值范围是a <4. 练 习 1.选择题:(1)方程2230x k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) (A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是 . (3)以-3和1为根的一元二次方程是.3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根? 4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( )(A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.2.2 二次函数2.2.1 二次函数y =ax 2+bx +c 的图像和性质问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.的值扩大两倍就可以了.再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.12x 2,y =-同学们也可以用类似于上面的方法画出函数y =2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a +224b a)+c -24b a224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2ba -时,y 随着x 的增大而减小;当x=2b a -时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.+1对称轴、x x 的增大而增大(或减小)?并画出该函数的图象. 解:∵y =-3x 2-6x +1=-3(x +1)2+4∴函数图象的开口向下;对称轴是直线x =-1;顶点坐标为(-1,4);当x =-1时,函数y 取最大值y =4;图2.2-3当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小; 采用描点法画图,选顶点A (-1,4)),与x 轴交于点B 3(,0)3和C 3(,0)3-,与y 轴的交点为D (0,1),过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.例2 某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有70130,50150,k b k b =+⎧⎨=+⎩ 解得 k =-1,b =200. ∴ y =-x +200.设每天的利润为z (元),则z =(-x +200)(x -120)=-x 2+320x -24000 =-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3 把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224bc +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x 2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩ 解得b =-8,c =14. 解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像. 由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4 已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论.解:(1)当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;(3)当0≤a <2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a ≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题. 练 习 1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2 ( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的 2.填空题(1)二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),则m = ,n = .(2)已知二次函数y =x 2+(m -2)x -2m ,当m = 时,函数图象的顶点在y 轴上;当m = 时,函数图象的顶点在x 轴上;当m = 时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;当x = 时,函数取最 值y = ;当x 时,y 随着x 的增大而减小. 3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y 随x 的变化情况,并画出其图象. (1)y =x 2-2x -3; (2)y =1+6 x -x 2.4.已知函数y =-x 2-2x +3,当自变量x 在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x 的值:(1)x ≤-2;(2)x ≤2;(3)-2≤x ≤1;(4)0≤x ≤3.①图2.2-6②③2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx +c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++)= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x -x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1 已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上, 所以,2=x +1,∴x =1. ∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a =-+<, ∵二次函数的图像经过点(3,-1), ∴21(32)1a -=-+,解得a =-2. ∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0), ∴可设二次函数为y =a (x +3) (x -1) (a ≠0), 展开,得 y =ax 2+2ax -3a ,顶点的纵坐标为2212444a a a a--=-, 由于二次函数图象的顶点到x 轴的距离2, ∴|-4a |=2,即a =12±. 所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+. 分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式. 解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1. 又顶点到x 轴的距离为2, ∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2, 由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-12,或a =12. 所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2. 说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得。