第3章飞行器的动力系统
飞行器工作原理
飞行器工作原理飞行器是一种能够在大气层中飞行的交通工具,它的工作原理是基于物理学和工程学的原理,包括空气动力学、力学和控制系统等多个方面。
本文将从这些方面详细介绍飞行器的工作原理。
一、空气动力学空气动力学是研究空气在物体表面上所产生的力学效应的学科。
在飞行器中,空气动力学起着重要的作用。
首先,飞行器受到气流的阻力,这个阻力的大小与飞行器的形状、速度和空气密度等因素有关。
其次,通过调整飞行器的控制面,如副翼、升降舵和方向舵等,可以改变飞行器所受到的气流的力的方向和大小,从而控制飞行器的飞行状态。
二、力学力学是研究物体运动和受力的学科。
在飞行器中,力学对于解释和分析飞行器的运动和受力状态至关重要。
需要考虑的力包括重力、升力、推力和阻力。
首先,重力是指地球对飞行器的吸引力,它的大小与飞行器和地球的质量有关。
其次,升力是指垂直向上的力,它可以通过产生气流上升的形式来支撑飞行器。
第三,推力是指飞行器发动机产生的作用力,它可以使飞行器前进或加速。
最后,阻力是指飞行器在飞行中所受到的阻碍力,它的大小与飞行器速度和空气密度等因素有关。
三、控制系统飞行器的控制系统用来操控和控制飞行器的飞行姿态和航向。
一般而言,飞行器的控制系统包括姿态控制和导航控制两个部分。
姿态控制是指控制飞行器在飞行中的旋转、俯仰和滚转等动作,这可以通过调整飞行器的控制面来实现。
导航控制是指控制飞行器的航向和飞行路径,这可以通过使用惯性导航系统、GPS和雷达等设备来实现。
四、飞行器类型根据不同的工作原理和应用范围,飞行器可以分为多种类型,包括飞机、直升机、无人机等。
飞机是一种固定翼的飞行器,它通过机翼产生升力和推力来进行飞行。
直升机是一种以旋翼产生升力和推力的飞行器,它可以在空中悬停和垂直起降。
无人机是指没有人员搭乘的飞行器,它可以通过遥控或预设程序进行飞行任务。
总结:飞行器的工作原理基于空气动力学、力学和控制系统等多个学科的原理。
通过调整飞行器的形状、控制面和飞行状态,可以实现飞行器的升力、推力和控制。
无人机飞行器的能源技术电池与动力系统
无人机飞行器的能源技术电池与动力系统无人机飞行器的能源技术——电池与动力系统无人机飞行器是近年来崛起的一种重要的航空器,其应用范围涵盖了农业、航拍、安防、地质勘探等多个领域。
在无人机飞行器技术的众多关键部件中,能源技术是其中一个至关重要的方面。
本文将对无人机飞行器的能源技术,尤其是电池与动力系统进行探讨。
一、电池技术1. 锂电池在无人机飞行器中,锂电池是最常用的电池类型之一。
锂电池具有高能量密度、轻量化等优点,能够为无人机提供持续稳定的动力供应。
目前,锂聚合物电池被广泛应用于中小型无人机飞行器中,其具有较高的能量密度和较轻的重量,能够为无人机提供更长的续航时间。
2. 镍氢电池另外一种常用的电池类型是镍氢电池。
镍氢电池具有较高的循环寿命和更好的高温性能,适用于高温环境下的无人机飞行器。
相比于锂电池,镍氢电池的安全性更高,但能量密度稍低一些。
3. 未来发展方向随着技术的不断发展,还有其他类型的电池被不断尝试应用于无人机飞行器中,如固态电池、锂硫电池等。
这些新型电池具有更高的能量密度和更长的循环寿命,有望成为未来无人机飞行器电池技术的发展趋势。
二、动力系统1. 电动动力系统无人机飞行器的动力系统主要分为电动动力系统和内燃动力系统两种。
电动动力系统由电机、电调、螺旋桨等部分组成,是目前中小型无人机的主流动力系统。
电动动力系统具有响应速度快、噪音低、维护成本低等优点,能够为无人机提供可靠的动力支持。
2. 内燃动力系统内燃动力系统则是一些大型无人机飞行器使用的动力系统。
内燃动力系统运用内燃机作为动力源,能够提供强大的动力支持和更长的续航能力。
但相应的,内燃动力系统的噪音和维护成本较高,适用于对动力要求较高的长距离任务。
3. 新型动力系统除了传统的电动和内燃动力系统,还有一些新型动力系统不断涌现。
比如氢燃料电池动力系统、太阳能动力系统等,这些系统在减少对常规能源的依赖、提高无人机飞行器环保性等方面具有巨大潜力。
飞行器动力系统控制技术综述
飞行器动力系统控制技术综述随着航空航天技术的不断发展,飞行器的动力系统控制技术越来越受到研究和关注。
在飞行器的运行过程中,动力系统起着至关重要的作用,它直接影响到飞行器的性能、安全和有效性。
本文将综述飞行器动力系统控制技术的发展与应用,包括发动机控制、推进系统控制和电力系统控制三个方面。
一、发动机控制发动机是飞行器动力系统的核心部件,其控制技术对整个飞行器运行至关重要。
发动机控制技术主要包括燃油供应控制、启动控制和稳定控制等。
1. 燃油供应控制燃油供应控制是控制发动机燃油流量的过程,通过控制燃油流量可以实现发动机的加速和减速。
燃油供应控制需要根据飞行器的工况和性能要求来调整燃油流量,以实现发动机的稳定运行。
2. 启动控制发动机的启动过程必须严格控制,以确保发动机能够快速、可靠地启动。
启动控制主要包括燃料供应控制、点火控制和空气流量控制等。
其中,点火控制是启动过程中最关键的环节,通过控制点火时间和点火能量来确保发动机的正常启动。
3. 稳定控制稳定控制是保持发动机在运行过程中保持稳定性的控制过程。
稳定控制主要包括转矩控制、负载控制和温度控制等。
通过控制这些参数,可以确保发动机在各种工况下都能够保持稳定的性能。
二、推进系统控制推进系统是飞行器动力系统的重要组成部分,其控制技术对飞行器的推进性能和效率起到重要的影响。
1. 推力控制推力控制是控制推进系统输出推力的过程,通过调整推力大小和方向,可以保持飞行器在空中的平衡和稳定。
推力控制的方法多种多样,包括喷气推力控制、涡扇推力控制和推力反馈控制等。
2. 推进效率优化推进效率优化是通过优化推进系统的工作状态来提高飞行器的性能和效率。
推进效率优化主要包括推进系统的工作参数调整、系统效率评估和优化等。
通过这些优化方法可以降低飞行器的能耗和减少对环境的影响。
三、电力系统控制电力系统是现代飞行器中不可或缺的部分,它为飞行器提供能源供应和电力功率支持。
电力系统的控制技术主要包括能量管理、电力负载控制和电池管理等。
第三章飞机的飞行原理
二、飞机的飞行过程
(二)爬升阶段: 有两种方式,一种是按固定的角度持续爬升达到预定高度。 这样做的好处是节省时间,但发动机所要的功率大,燃料消耗 大;另一种方式是阶梯式爬升,飞机飞行到一定的高度,水平 飞行以增加速度,然后再爬升到第二个高度,经过几个阶段后 爬升到预定高度,由于飞机的升力随速度升高而增加,同时燃 油的消耗使飞机的重量不断减轻,因而这种的爬升最节约燃料。 (三)巡航阶段: 飞机达到预定高度后,保持水平等速飞行状态,这时如果 没有天气变化的影响,驾驶员可以按照选定的速度和姿态稳定 飞行,飞机几乎不需要操纵。 (四)下降阶段: 在降落前半小时或更短的飞行距离时驾驶员开始逐渐降低 高度,到达机场的空域上空。
三、大气飞行环境
平流层位于对流层顶的上面,其顶界由地面伸展到35一 40公里。由于这一层受地球表面影响较小,所以气温基本上 保持不变,大约为-56.51℃,故又称同温层。平流层中,几 乎没有水蒸气,所以没有雪、雾、云等气象现象;且空气比较 稀薄,风向稳定,空气主要是水平流动。
飞行器的飞行的理想环境是平流层。
一、大气的结构和气象要素
风是指空气的水平流动。风的存在使飞机的飞行增加了一定 的复杂性,它直接影响着起飞、着陆、巡航和油量的消耗。机 场跑道方向是固定的,而风的矢量是经常变化。因此,实际上 起飞、着陆往往是在侧风条件下进行。侧风使飞机偏离跑道, 而且侧风角度越大或者风速越大,偏离得越利害。所以在侧风 中根据具体情况作必要的修正,才能保证对准跑道,安全起降。 飞 机 着 陆 遇 侧 风
一、大气的结构和气象要素
降水是云雾中的水滴或冰晶降到地面的现象。降水通常 指雨、雪、冰、雹等。 降水对飞行的影响: 1.降水使能见度减小。 2.过冷雨滴会造成飞机结冰。 3.降水影响了跑道的正常使用。
飞行器的运行原理是什么
飞行器的运行原理是什么飞行器的运行原理涉及多个方面,包括空气动力学、力学、电子技术等。
一般来说,飞行器的运行原理可以分为以下几个方面:1. 空气动力学原理:飞行器能够飞行的最基本原理就是利用空气动力学。
空气动力学研究了空气在运动过程中产生的各种力,并从中推导出飞行器在不同飞行状态下所受到的各种力的大小、方向和作用点。
在飞行器运行过程中,它以空气作为工作介质,通过与气流相互作用来产生升力、阻力、推力和侧向力等。
2. 升力的产生:飞行器所受到的升力是它能够克服重力并在空中保持平衡的力。
升力主要通过飞行器的翅膀(或称为机翼)产生。
机翼的上表面比下表面更为凸起,当空气经过机翼时,其流速在上表面较快,压力较小;而在下表面,流速较慢,压力较大。
由于压差的存在,在机翼上部形成了一个向下的压强,从而产生向上的升力。
3. 推力的产生:推力是飞行器前进的动力来源,主要由发动机产生。
发动机通过燃料燃烧产生高温高压气体,然后将其排出,通过喷气或推进器喷射到后方,产生的反作用力推动飞行器向前运动。
推力的大小与喷出气体的速度和喷出的质量有关。
4. 阻力的产生:阻力是指空气对飞行器运动的一种阻碍力,阻碍着飞行器的加速度和速度的改变。
阻力可以分为多种类型,包括气动阻力、重力和摩擦阻力等。
飞行器通过减小阻力的大小,可以减少能量损失,提高效率。
5. 重力的作用:重力是地球对物体的吸引力,也是影响飞行器运动的一个重要因素。
在飞行过程中,飞行器需要克服重力的作用,才能继续保持飞行状态。
为了平衡重力与升力的作用,飞行器通常需要调整机身的姿态或通过不同部件的运作来实现。
6. 控制系统:飞行器的运行离不开精确的控制系统来调整姿态、航向和高度等参数。
控制系统一般包括操纵装置、传感器、计算机和执行器等组成。
传感器可以感知飞行器的各种姿态参数和环境条件,操纵装置通过操作来控制飞行器的行动,而计算机则负责对传感器获取的数据进行处理和判断,并通过执行器实现舵面、引擎等机械部件的运动,从而控制飞行器的运行。
《航空航天概论》课程教学大纲
《航空航天概论》课程教学大纲课程编号:B2F050110课程中文名称:航空航天概论课程英文名称:Introduction to Aeronautics and Astronautics开课学期:秋/春季学分/学时:2.0/24+10°先修课程:建议后续课程:适用专业/开课对象:所有专业/全校1年级本科生团队负责人:杨超贾玉红责任教授:执笔人:贾玉红核准院长:一、课程的性质、目的和任务《航空航天概论》是各专业一年级学生的必修课程,主要向学生介绍航空航天技术所涉及学科的基本知识、基本原理及其发展概况。
本课以飞行器(航空器和航天器)为中心,分别介绍了飞行原理、动力系统、机载设备、构造以及地面设备等方面的初步知识、原理和技术,并尽量反映上述学科的最新成就和发展动态。
通过该课程的学习,学生应对航空航天技术所涉及学科的基本知识、基本原理有一个全面和系统的了解,培养学生爱航空航天、学航空航天、投身于航空航天的兴趣和爱好,进一步培养学生的航空航天工程意识,提升国际视野,并为后继课程的学习打下基础。
本课程重点支持以下毕业要求指标点:1.1掌握飞行器设计的基本理论、基本知识1.2飞行器设计的基本能力1.3熟悉航空航天飞行器设计的方针、政策和法规1.4熟悉航空航天的理论前沿、应用前景和发展动态,具备创新意识1.5良好的思想品德、社会公德和职业道德的能力二、课程内容、基本要求及学时分配第一章航空航天发展概况(6学时)1. 航空航天的基本概念(掌握)2. 飞行器的分类、组成与功用(掌握)3. 航空航天发展概况(掌握)4. 我国的航空航天工业(掌握)5. 航空航天技术现状及未来发展趋势(了解)重点支持毕业要求指标点1.3,1.4,1.5第二章飞行环境和飞行原理(8学时)1. 飞行环境(了解)2. 流动气体的基本规律(掌握)3. 飞机上的空气动力作用及原理(掌握)4. 高速飞行的特点(掌握)5. 飞机的飞行性能,操纵性和稳定性(掌握)6. 直升机的飞行原理(掌握)7. 航天器的飞行原理(了解)重点支持毕业要求指标点1.1,1.2第三章飞行器动力系统(3学时)1. 发动机的分类及特点(了解)2. 活塞式航空发动机(掌握)3. 空气喷气发动机(掌握)4. 火箭发动机(掌握)5. 组合发动机(了解)6. 非常规推进系统(了解)重点支持毕业要求指标点1.1,1.2第四章飞行器机载设备(3学时)1. 传感器、飞行器仪表与显示系统(掌握)2. 飞行器导航系统(掌握)3. 飞行器自动控制系统(掌握)4. 其他机载设备(了解)重点支持毕业要求指标点1.1,1.2第五章飞行器的构造(4学时)1. 对飞行器结构的一般要求和常用的结构材料(了解)2. 航空器的构造(掌握)3. 航天器的构造(掌握)4. 火箭和导弹的构造(了解)5. 地面设施和保障系统(了解)重点支持毕业要求指标点1.1,1.2三、教学方法本课程采用理论教学和现场教学相结合的方法,理论教学主要讲授基本原理和基础知识,大比例现场教学让学生对所学内容有更直观的认识,加深对理论知识的学习和理解。
第三章飞行器运动方程(0901)
第三章飞行器的运动方程 刚体动力学方程的推导 1.刚体飞行器运动的假设1)认为飞行器不仅是刚体,而且质量是常数;2)假设地面为惯性参考系,即假设地面坐标为惯性坐标; 3)忽略地面曲率,视地面为平面; 4)假设重力加速度不随飞行高度而变化;5)假设机体坐标系的z o x --平面为飞行器对称平面,且飞行器不仅几何外形对称,而且内部质量分布亦对称,惯性积0==zy xy I I 2.旋转坐标系中向量的导数设活动坐标系b b b z y Ox 具有角速度ω (见图)。
向量ω在此坐标系中的分量为r q p ,,,即k r j q i p++=ω () 其中i 、j、k 是b x 、b y 、b z 轴的单位向量。
图设有一个可变的向量)(t a,它在此坐标系中的分量为z y x a a a ,,,即k a j a i a a z y x++= ()由上式求向量)(t a对时间t 的导数:b xωb yb zOijkdtkd a dt j d a dt i d a k dt da j dt da i dt da dt a d z y x z y x +++++= () 从理论力学知,当一个刚体绕定点以角速度ω旋转时,刚体上任何一点P的速度为r dt r d⨯=ω () 其中r是从O 点到P 点的向径。
现在,把单位向量i看作是活动坐标系中一点P 的向径,于是可得:i dtid⨯=ω () 同理可得: j dtj d⨯=ω () k dtkd⨯=ω () 将式()、()及()代入式()中,可得:)(k a j a i a k dtda j dt da i dt da dt a d z y x z y x ++⨯+++=ω () 或写为: a t a dt a d⨯+=ωδδ () 其中k dt da j dt da i dt da t a z y x++=δδ taδδ 称为在活动坐标系中的“相对导数”,相当于站在此活动坐标系中的观察者所看到的向量a 的变化率。
飞行器动力装置
涡轮喷气发动机
燃烧室 燃烧室是燃料与从压气机出来的高压空气混合燃烧 的地方。 燃烧室的功用: 将燃料的化学能转变为内能,气体的温度和压力升 高。高温、高压的气体冲击涡轮,驱动涡轮旋转而发出 功率。
航空燃气涡轮发动机
燃气涡轮发动机工作流程 在航空燃气涡轮发动机中,进入发动机的空气经 压气机压缩后,流入燃烧室与喷入的燃油混合后燃烧, 形成高温、高压的燃气,再进入燃气涡轮中膨胀作功,
使涡轮高速旋转并输出功率。
3D演示
航空燃气涡轮发动机
燃气涡轮发动机分类 由燃气涡轮出来的燃气,仍具有一定的能量,正 是这股具有能量的燃气,才产生了发动机的推力或输 出功率。 利用这股燃气能量的方式不同,就相应地产生了 不同类型的燃气涡轮发动机。 • 涡轮喷气发动机 • 涡轮风扇发动机 • 涡轮螺旋桨发动机 • 涡轮轴发动机
活塞式航空发动机
➢活塞式发动机的主要特点
➢优点
经济性较好:不但耗油 率低,而且单位功率的 售价低;
燃烧较完全,所以对环 境的污染相对较小;
噪音较小。
➢缺点
发动机功率小; 外形阻力大; 重量较大; 螺旋桨高速旋转时
效率低。
目前,活塞式航空发动机仍广泛地 应用于小型低速飞机。
活塞式航空发动机
概述
发动机分类
活塞式航空发动机
活塞式航空发动机一般以汽油为燃料, 带动螺旋桨,由螺旋桨产生推(拉)力为飞 机提供动力。
所以,作 为飞机的动力装 置时,活塞式发 动机与螺旋桨是 不能分割的。
活塞式航空发动机
➢活塞式航空发动机的主要构件
气缸 活塞 连杆 曲轴 进、排气活门
活塞式航空发动机
➢活塞冲程
涡轮喷气发动机
静子是压气机中不旋转的部分,由机匣和整流叶 片组成。
航空发动机PPT课件
第3章 飞行器动力系统
2020/2/19
1
3.1 发动机的分类及特点
冲压 喷气发 燃动气机
涡轮喷气发动机 涡轮风扇发动机 涡轮螺桨发动机
活塞式
涡轮发
涡轮桨扇发动机
发动机
航发空动航机天 动机
涡轮轴发动机 垂直起落发动机
火箭
航空航天
冲压发 动机
组合
涡轮
发动机
火箭 发动机
化学 液体火箭发动机 火箭发 固体火箭发动机 动机 固-液混合火箭发动机
功率重量比——
发动机提供的功率和发动机重量之比(kW/kg)
燃料消耗率(耗油率)——
衡量发动机经济性的指标,产生1kW功率在每小时 所消耗的燃料的质量(kg/kW h)
2020/2/19
活塞式航空发动8 机
航空航天概论
第3章 飞行器动力系统
3.3 空气喷气发动机
气 球
平衡状态 反作用力 作用力
自动旋转喷灌器 喷嘴喷出高压水流的反作用力
燃烧剂 ——
液氢H2 航空煤油 肼及其衍生物N2H4 (CH3)2N2H2 混胺
2020/2/19
航空航天概论
第3章 飞行器动力系统
火箭发5动0 机
3、液体火箭发动机的优缺点
优点 —— 比冲高,推力范围大,能反复起动 推力大小较易控制,工作时间长 固体推进剂性能稳定,可长期贮存
缺点 —— 推进剂不宜长期贮存,作战使用性能差
星形发动机
直立式发动机
V形发动机
2020/2/19
活塞式航空发动6 机
航空航天概论
第3章 飞行器动力系统
活塞8发动机 双排14缸星形气冷发动机
2020/2/19
航空航天概论
航空航天概论《航空航天概论》是1997年10月北京航空航天大学出版社出版的图书,作者是何庆芝。
该书以航空器和航天器为中心,对其学科和各系统进行了全面介绍。
航空航天科学技术是一门高度综合的尖端科学技术,近几十年来发展迅速,对人类社会的影响巨大。
本书是为航空航天院校低年级学生编写的入门教材,使学生初步了解航空航天领域所涉及学科的基本知识、基本原理及其发展概况。
全书共六章。
第一章绪论是一般概述,第二章是飞行器飞行原理,第三章是飞行器的动力系统,第四章是飞行器机载设备,第五章是飞行器构造,第六章是地面设备和保障系统。
原理论述由浅入深、循序渐进,内容丰富、翔实,文字通顺易懂、可读性强。
本书是航空航天院校教材,适合低年级学生学习,也可供相关专业的教学、科技人员参考。
以下是目录参考前言第一章绪论第一节航空与航天的基本内涵第二节飞行器的分类一、航空器二、航天器三、火箭和导弹第三节航空航天发展简史一、航空发展简史二、火箭、导弹发展简史三、航天发展简史第四节飞行环境一、大气飞行环境二、空间飞行环境三、标准大气第二章飞行器飞行原理第一节流体流动的基本知识一、流体流动的基本概念二、流体流动的基本规律三、空气动力学的实验设备――风洞第二节作用在飞机上的空气动力一、飞机的几何外形和参数二、低、亚声速时飞机上的空气动力三、跨声速时飞机上的空气动力四、超声速时飞机上的空气动力第三节飞机的飞行性能,稳定性和操纵性一、飞机的飞行性能二、飞机的稳定性与操纵性第四节直升机的飞行原理一、直升机概况二、直升机旋翼的工作原理第五节航天器飞行原理一、Kepler轨道的性质和轨道要素二、轨道摄动三、几种特殊的轨道四、星下点和星下点轨迹五、航空器姿态的稳定和控制思考题第三章飞行器的动力系统第一节概述第二节发动机分类第三节活塞式航空发动机一、发动机主要机件和工作原理二、发动机辅助系统三、航空活塞式发动机主要性能参数第四节空气喷气发动机一、涡轮喷气发动机二、其他类型的燃气涡轮发动机三、无压气机的空气喷气发动机第五节火箭发动机一、发动机主要性能参数二、液体火箭发动机三、固体火箭发动机四、固-液混合火箭发动机第六节组合式和特殊发动机一、火箭发动机与冲压发动机组合二、涡轮喷气发动机与冲压发动机组合三、特殊发动机思考题第四章飞行器机载设备第一节飞行器仪表、传感器与显示系统一、发动机工作状态参数测量二、飞行状态参数测量三、电子综合显示器第二节飞行器的导航技术一、无线电导航二、卫星导航系统三、惯性导航四、图像匹配导航(制导)技术五、天文导航六、组合导航第三节飞行器自动控制一、自动驾驶仪二、飞行轨迹控制三、自动着陆系统与设备四、电传操纵五、空中交通管理第四节其他机载设备一、电气设备二、通信设备三、雷达设备四、高空防护救生设备思考题第五章飞行器构造和发展概况第一节对飞行器结构的一般要求和所采用的主要材料一、对飞行器结构的一般要求二、飞行器结构所采用的主要材料第二节飞机和直升机构造一、飞机的基本构造二、军用飞机的构造特点和发展概况三、民用飞机的构造特点和发展概况四、特殊飞机五、直升机第三节导弹一、有翼导弹二、弹道导弹三、反弹道导弹导弹系统第四节航天器一、航天器的基本系统二、卫星结构三、空间探测器结构四、载人飞船五、空间站第五节火箭一、探空火箭二、运载火箭第六节航天飞机和空天飞机一、航天飞机二、空天飞机思考题第六章地面设施和保障系统第一节机场及地面保障设施一、机场二、地面保障系统第二节导弹的发射装置和地面设备一、组成和功用二、战略弹道导弹的发射方式三、战略弹道导弹的发射装置和地面设备第三节运载火箭的地面设备与保障系统一、航天基地二、航天器发射场三、中国的航天器发射场和测控中心四、发射窗口思考题。
飞行器在重力场中的轨迹与动力学
飞行器在重力场中的轨迹与动力学飞行器的运动轨迹及动力学是航空工程中重要的研究领域之一。
在地球上,飞行器要克服地球的重力及其他空气动力学问题,以实现安全、平稳和高效的飞行。
本文将从飞行器运动学及动力学两个方面探讨飞行器在重力场中的轨迹与运动特性。
飞行器的运动轨迹可以分为直线飞行和曲线飞行两大类。
直线飞行是指飞行器按照一条直线飞行,这种飞行适用于长距离的航空运输;曲线飞行则是飞行器按照一定的曲线路径进行飞行,如盘旋、螺旋等。
无论是直线飞行还是曲线飞行,飞行器的运动均受到重力的影响。
在直线飞行中,飞行器需要消耗一定的燃料,以克服重力的作用,保持稳定的水平飞行状态。
此时,重力是飞行器运动的主要阻力,飞行器通过推力产生的升力来克服重力的作用。
通过调节推力的大小,飞行器可以保持稳定的飞行高度。
这种情况下,飞行器的轨迹为一条直线,但其速度、高度和姿态可以根据航空器的设计和需要进行调整。
在曲线飞行中,飞行器需要克服不仅是重力,还有其他的动力学问题。
例如,在盘旋飞行中,飞行器需要通过加大升力,以克服地球的重力,并保持相对较小的速度,以保持飞行的平稳性。
在螺旋飞行中,飞行器还要考虑转向动力和向心力的作用,以保持曲线飞行的平稳性。
飞行器的动力学也是研究的重要领域之一。
动力学主要涉及飞行器的加速度、速度和力学特性。
在重力场中,飞行器的加速度主要受到推力和重力的作用。
推力越大,加速度越大,飞行器的速度增加;重力越大,加速度越小,飞行器的速度减小。
通过调节推力和重力的平衡,飞行器可以实现不同的飞行速度。
飞行器的速度与力学特性也与其设计和用途有关。
例如,民用飞机的速度一般较低,主要用于大范围的空中交通运输;而军用战斗机的速度较快,主要用于提供战斗支持和战术优势。
此外,飞行器的力学特性还涉及其机翼和舵面的设计,以及气动力学效应对飞行稳定性和操纵性的影响。
综上所述,飞行器在重力场中的轨迹与动力学是一个复杂而重要的研究领域。
飞行器的轨迹可以分为直线飞行和曲线飞行两大类,其运动受到重力的影响,通过调节推力和升力进行克服。
航天技术导论第三章
第三章 飞行器的推进系统3.1 推进系统的组成和分类产生推力推动飞行器前进的装置称为推进系统或动力装置。
它包括发动机、燃料或推进剂,以及输送燃料或推进剂的系统(管道、阀门、泵或挤压装置等)、附件、仪表和安装支架等。
不同种类的动力装置,其组成也不尽相同。
如液体火箭推进系统包括液体火箭发动机、安装发动机并承受推力的机架、推进剂贮箱、输送推进剂的导管和涡轮泵、贮箱的增压系统等。
而固体火箭推进系统则将固体推进剂浇铸成型在发动机的燃烧室内,没有贮箱、导管以及输送和增压装置等。
飞行器的推进系统有活塞式推进系统和喷气式推进系统两大类。
前者目前只用于小型低速飞机上。
后者分为空气喷气发动机、火箭发动机和组合式发动机。
空气喷气发动机是利用空气中的氧气,与所携带的燃料燃烧产生高温燃气工作的,所以只能用于飞机和部分只在空气中飞行的飞航式导弹。
而火箭发动机完全依靠自身携带的推进剂工作,不需要空气中的氧气助燃,能够在高空和大气层外使用,所以,它是运载火箭、导弹和各种航天器的主要动力装置。
组合式发动机是两种或两种以上不同类型发动机的组合,包括不同类型空气喷气发动机之间的组合,以及空气喷气发动机与火箭发动机之间的组合等。
组合式发动机主要用于在空气中飞行的飞航式导弹。
根据目前的使用和发展情况,喷气式推进系统的大致分类如图3-1所示。
本章将着重介绍火箭发动机。
3.2 火箭发动机的特点和基本参数3.2.1 火箭发动机的特点前面已经提到,火箭发动机是运载火箭、导弹和各种航天器的主要动力装置。
火箭推进系统可以由单台或多台火箭发动机构成。
目前,广泛应用的火箭发动机几乎全部采用化学推进剂作为能源。
推进剂在发动机燃烧室中燃烧生成高温燃气,通过喷管膨胀高速喷出,产生反作用力,为飞行器提供飞行所需的主动力和各种辅助动力。
火箭推进系统自带的推进剂包括燃烧剂和氧化剂,不需要空气中的氧气来助燃,它的主要特点如下:(1) 火箭发动机的工作过程不需要大气中的氧,因此可以在离地面任何高度上工作。
飞行器的运动学和动力学分析
飞行器的运动学和动力学分析飞行器运动学和动力学分析随着科技的发展和人类探索空间的越来越深入,飞行器作为空间探索的重要工具和交通工具,得到了越来越广泛的应用。
对于飞行器的运动学和动力学分析是飞行器设计和控制的基础,也是飞行器性能的重要指标之一。
本文将从运动学和动力学两个方面对飞行器进行分析。
一、运动学分析运动学是研究物体运动的位置、速度、加速度等变化过程的物理学分支。
在飞行器设计和控制中,运动学分析主要包括三个方面:1、姿态控制飞行器的姿态控制涉及到飞行器的姿态稳定性和姿态调整能力。
在飞行器运动过程中,由于外部环境的影响和内部器件的失效等原因,飞行器可能会出现不稳定的姿态,影响飞行器的性能和安全性。
因此,姿态控制是飞行器设计和控制的重要问题。
姿态控制的基本原理是通过飞行器内置的传感器感知飞行器的动态姿态,再通过控制器对飞行器的控制面进行调整,最终使飞行器保持稳定的姿态状态。
姿态控制的技术难点在于如何快速、精确地感知飞行器的姿态变化,并做出相应的调整。
2、飞行轨迹规划飞行器的飞行轨迹规划主要包括确定飞行器的起点、终点和中间路径,以及确定飞行器在不同时间段内的飞行速度和飞行方向等。
飞行轨迹规划是飞行器飞行过程中的重要问题,直接关系到飞行器的航行安全和性能。
在飞行轨迹规划中,需要考虑到各种环境因素的影响,如风力、气压、温度、湿度等,以及地形地貌的变化。
飞行轨迹规划的目的是使飞行器在最短时间内达到目标点,并尽量避免遭受损失。
3、动力系统分析飞行器的动力系统是飞行器能够运行的重要部件,在设计和控制中需要对其进行分析和优化。
动力系统分析主要包括飞行器的动力来源、动力输出能力以及能量转换效率等方面。
在动力系统分析中,需要综合考虑动力系统的质量、功率和效率等因素,以及飞行器的运动学特性,选定合适的动力系统,实现飞行器的高效、稳定和可靠运行。
二、动力学分析动力学是研究物体受力作用下运动状态的变化过程的物理学分支。
在飞行器设计和控制中,动力学分析主要包括四个方面:1、空气动力学分析飞行器在空气中运动时,会受到空气的阻力、升力、侧向力和剪切力等作用力。
飞行器动力传动系统的设计与分析
飞行器动力传动系统的设计与分析随着航空科技的不断发展,飞行器成为人们日常生活和工业领域中的重要组成部分。
而飞行器的动力传动系统作为其核心部件之一,对于飞行器的性能和安全起着决定性的作用。
本文将对飞行器动力传动系统的设计与分析进行探讨,旨在提供一些启示和指导。
一、飞行器动力传动系统的组成飞行器动力传动系统是指将动力源(例如发动机)生成的能量,通过传动装置(例如传动轴、传动带)传输到飞行器的其他部件,用于驱动飞行器运动的一系列装置。
典型的飞行器动力传动系统由以下几个组成部分构成:1. 动力源:动力源是飞行器动力传动系统的核心,常见的动力源包括燃气涡轮发动机、螺旋桨发动机等。
动力源将化学能或其他形式的能量转化为机械能,为整个飞行器提供动力。
2. 传动装置:传动装置是将动力源生成的机械能传递到飞行器其他部件的装置。
常见的传动装置有传动轴、传动链、传动带等。
这些装置能够通过机械方式将转动的力矩沿着特定的轴线或平面传输到驱动系统中。
3. 驱动系统:驱动系统是飞行器动力传动系统的重要组成部分,包括各种传动元件、传动比例和传动关系。
驱动系统将动力源传递过来的能量转换为飞行器所需的动力输出。
根据不同飞行器的需求,驱动系统的设计和分析方法也各不相同。
二、飞行器动力传动系统的设计原则在设计飞行器动力传动系统时,需要遵循一些基本原则,以确保系统的稳定性和高效性。
以下是一些常见的设计原则:1. 整体性和互补性原则:飞行器动力传动系统的设计需要考虑整体性和互补性。
即各个组成部分之间需要相互配合,形成一个有机的整体。
例如,传动装置的选取应与动力源的类型和输出特性相匹配,以充分发挥动力源的性能。
2. 健壮性和可靠性原则:飞行器动力传动系统的设计应具备健壮性和可靠性,以保证系统在各种工作条件下的稳定性和安全性。
例如,在选择传动装置和传动元件时,应考虑其材料的强度、耐久性和可靠性,以满足系统长时间运行的需求。
3. 效率和优化原则:飞行器动力传动系统的设计应追求高效率和优化。
民航概论电子课件第三章飞机结构及飞行原理
10 第 三 章 飞 机 结 构 及 飞 行 原 理
滑翔机
6 第三章 飞机结构及飞行原理
直升机
二、飞机的分类
1.按照飞机用途分类 按照用途不同,飞机可以分为军用飞机和民用飞机两类。军用飞机
依据不同的用途又可分为战斗机、轰炸机、攻击机、舰载飞机、军用运 输机、教练机、侦察机、预警机等。
7 第三章 飞机结构及飞行原理
2.按发动机类型分类 按照发动机类型不同,飞机可以分为螺旋桨式飞机和喷气式飞机两
14 第 三 章 飞 机 结 构 及 飞 行 原 理
机身的主要结构
2.机翼 机翼是飞机的重要部件之一,安装在机
身上,用于产生升力,也起到一定的稳定和 操纵作用。机翼的一些部位(主要是前缘和 后缘)可以活动,飞行员操纵这些部位控制 机翼升力或阻力的分布,以达到增加升力或 改变飞机姿态的目的。
(1)机翼上的操纵面
32 第 三 章 飞 机 结 构 及 飞 行 原 理
4.燃料舱 空中客车A380飞机的燃料舱
(即油箱)设置与其他空中客车飞 机类似,主油箱设置在机翼内,机 身上设置有副油箱,其最大载油量 约为250吨,续航约12000千米。
33 第 三 章 飞 机 结 构 及 飞 行 原 理
空中客车A380飞机油箱位置图
41 第 三 章 飞 机 结 构 及 飞 行 原 理
飞机起飞过程示意图
4.飞行控制 (2)巡航 巡航阶段是指飞机完成起
航空航天概论第2,3,5章总结
第一章第二章飞行环境及飞行原理2.1 飞行环境大气环境根据大气中温度随高度的变化可将大气层划分为对流层、平流层、中间层、热层和散逸层。
1.对流层:大气中最低的一层,特点是其温度随高度增加而逐渐降低。
(0 ~18公里)2.平流层:位于对流层的上面,特点是该层中的大气主要是水平方向流动,没有上下对流。
(18~50公里)3、中间层:中间层为离地球50到80公里的一层。
在该层内,气温随高度升高而下降,且空气有相当强烈的铅垂方向的运动.4.热层:该层空气密度极小,由于空气直接受到太阳短波辐射,空气处于高度电离状态,温度又随高度增加而上升。
(80~800公里)5.散逸层:散逸层是大气层的最外层。
在此层内,空气极其稀薄,又远离地面,受地球引力很小,因而大气分子不断向星际空间逃逸。
空间环境空间飞行环境主要是指真空、电磁辐射、高能粒子辐射、等离子和微流星体等所形成的飞行环境。
(空间飞行器处于地球磁场之外,因此容易受到太阳风等因素的影响)。
为了准确描述飞行器的飞行性能,必须建立一个统一的标准,即标准大气。
目前我国所采用的国际标准大气,是一种“模式大气”。
它依据实测资料,用简化方程近似地表示大气温度、密度和压强等参数的平均铅垂分布,并将计算结果排列成表,形成国际标准大气表。
大气的物理性质大气的状态参数和状态方程大气的状态参数是指压强P、温度T和密度ρ这三个参数。
它们之间的关系可以用气体状态方程表示,即P=ρRT。
航空器在空中的飞行必须具备动力装置产生推力或拉力来克服前进的阻力。
根据产生升力的基本原理不同,航空器分为轻于(或等于)同体积空气的航空器和重于同体积空气的航空器两大类。
大气的物理性质:连续性在研究飞行器和大气之间的相对运动时,气体分子之间的距离完全可以忽略不计,即把气体看成是连续的介质。
这就是在空气动力学研究中常说的连续性假设。
粘性大气的粘性力是相邻大气层之间相互运动时产生的牵扯作用力,即大气相邻流动层间出现滑动时产生的摩擦力,也叫做大气的内摩擦力。
无人机操控技术课件第3章飞行原理与性能第5节多旋翼基础知识
5.2.3 动力系统—电调
建议最基础测试电机与电调兼容性的方案: 在地面拆除螺旋桨,姿态或增稳模式启动,启 动后油门推至50%,大角度晃动机身、快速大范围 变化油门量,使飞控输出动力。仔细聆听电机转动 声音,并测量电机温度,观察室否出现缺相。 在调试前,用遥控器设置电调时,需要接上电 机。
5.3 多旋翼气动布局—Y字型、H字型
Y型
优点:动力组较少,成本 低;外形炫酷,前方视线开阔。
缺点:尾旋翼需要使用一 个舵机来平衡扭矩,增加了机 械复杂性和控制难度。
H型
H型比较容易设计成折叠 结构,且拥有X型相当的特点。
5.3 多旋翼气动布局—4\6\8旋翼
单纯从气动效率出发,旋翼越大,效率越高,同样 起飞重量的4轴飞行器比8轴飞行器的效率高,故轴数越 多载重能力不一定越大。
一般锂聚合物电池上都有2组线。1组是输出线(粗, 红黑各1根);1组是单节锂电引出线(细,与S数有关), 用以监视平衡充电时的单体电压。
多轴飞行器飞行中,图像叠加OSD信息显示的电压 一般为电池的负载电压。
5.2.3 动力系统—电池
锂电池在使用时必须串联才能达到使用电压需要,因此 聚合物电池需要专用的充电器,尽量选用平衡充电器。 根据充电原理的不同分为串型式平衡充电器和并行式平衡充 电器。并行式平衡充电器使被充电的电池块内部每节串联电 池都配备一个单独的充电回路,互不干涉,毫无牵连。
5.2.2 飞控系统—飞控软件
飞控
基本情况
优点
缺点
KK飞控
开源,只使用 三个成本低廉
的单轴陀螺
价格便宜,硬件 结构简单
飞行器飞行原理
飞行器飞行原理飞行器的飞行原理是通过运用空气动力学和机械工程的知识,利用动力系统产生推力,通过机翼产生升力,从而使飞行器在大气层中飞行。
飞行器的飞行原理可以分为动力系统、升力产生和飞行控制三个方面来进行解释。
首先,动力系统是飞行器飞行的基础。
动力系统可以分为喷气式动力系统和螺旋桨动力系统两种。
喷气式动力系统是通过燃料燃烧产生高温高压气体,然后将这些气体喷出,产生推力,从而推动飞行器前进。
而螺旋桨动力系统则是通过发动机带动螺旋桨旋转,产生推进力,推动飞行器前进。
动力系统的作用是使飞行器能够克服阻力,保持飞行速度,从而实现飞行。
其次,升力产生是飞行器飞行的关键。
升力是由机翼产生的,机翼的形状和气流的流动状态是产生升力的关键因素。
当飞行器在飞行时,机翼的上表面和下表面之间会形成气压差,这个气压差会产生升力,从而使飞行器能够克服重力,实现飞行。
同时,飞行器的速度和机翼的倾斜角也会影响升力的大小,通过控制飞行器的速度和机翼的倾斜角,可以调整飞行器的升力大小,从而实现飞行高度和飞行速度的控制。
最后,飞行控制是飞行器飞行的保障。
飞行控制系统包括飞行器的操纵系统、自动驾驶系统和飞行仪表系统。
飞行器的操纵系统由操纵杆、踏板和液压系统组成,通过操纵杆和踏板来控制飞行器的姿态和飞行方向。
自动驾驶系统可以通过预设的飞行计划和航线来控制飞行器的飞行,实现自动驾驶和导航。
飞行仪表系统包括高度表、空速表、指南针等仪表,用来监测飞行器的飞行状态,提供飞行数据和指导飞行员进行飞行。
总的来说,飞行器的飞行原理是通过动力系统产生推力,机翼产生升力,飞行控制系统控制飞行方向和姿态,从而实现在大气层中的飞行。
飞行器的飞行原理是多个方面的综合作用,需要飞行器的设计和制造人员以及飞行员的协同配合,才能够实现飞行任务的顺利完成。