轴对称中几何动点最值问题总结

轴对称中几何动点最值问题总结
轴对称中几何动点最值问题总结

轴对称中几何动点最值问题总结

轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。

利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:

(1)两点之间线段最短;

(2)三角形两边之和大于第三边;

(3)垂线段最短。

初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。

(1)两点一线的最值问题:(两个定点+ 一个动点)

问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。

核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。

方法:1.定点过动点所在直线做对称。

2.连结对称点与另一个定点,则直线段长度就是我们所求。

变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。

1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。

(2)一点两线的最值问题:(两个动点+一个定点)

问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。

核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。

变异类型:

1.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。使∠PAB 的周长最小。

2.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小。

(3) 两点两线的最值问题: (两个动点+两个定点)

问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。

核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。

变异类型:

1.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的周长最小。

2.如图,已知A(1,3),B(5,1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB的值最小时,点P的坐标为( )

3.

(4)两点两线的最值问题:(两个动点+两个定点)

问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。

核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。

变异类型:演变为多边形周长、折线段等最值问题。

1. 如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使PA 与点P 到射线OM 的距离之和最小。

二、常见题目

Part1、三角形

1.如图,在等边∠ABC 中,AB=6,AD∠BC ,E 是AC 上的一点,M 是AD 上的一点,且AE=2,求EM+EC 的最小值。

2.如图,在锐角∠ABC 中,AB=42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____。

3.如图,∠ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值。

Part2、正方形

1.如图,正方形ABCD 的边长为8,M 在DC 上,丐DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。 即在直线AC 上求一点N ,使DN+MN 最小 。

2.如图所示,正方形ABCD 的面积为12,∠ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )

A .32

B .62

C .3

D .6

3.在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则∠PBQ周长的最小值为____________㎝(结果不取近似值)。

4.如图,四边形ABCD是正方形,AB = 10cm,E为边BC的中点,P为BD上的一个动点,求PC+PE 的最小值;

Part3、矩形

1.如图,若四边形ABCD是矩形,AB = 10cm,BC = 20cm,E为边BC上的一个动点,P为BD上的一个动点,求PC+PD的最小值;

Part4、菱形

1.如图,若四边形ABCD是菱形,AB=10cm,∠ABC=45°,E为边BC上的一个动点,P为BD上的一个动点,求PC+PE

的最小值;

Part5、直角梯形

1.已知直角梯形ABCD中,AD∠BC,AB∠BC,AD=2,BC=DC=5,点P在BC上秱动,则当P A+PD取最小值时,∠APD 中边AP 上的高为()

Part6、一次函数

一次函数 b kx y +=的图象与y x , 轴分别交于点).4,0(),0,2(B A

(1)求该函数的解析式;

(2)O 为坐标原点,设AB OA ,的中点分别为D C ,,P 为OB 上一动点,求 PD PC +的最小值,并求取得最小值时P 点坐标.

立体几何动点问题

立体几何与平面解析几何的交汇问题 在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。 一、动点轨迹问题 这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。 例1定点A 和B 都在平面α内,定点α?P ,α⊥PB , C 是α内异于A 和B 的动点,且AC PC ⊥。那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B. 一个圆,但要去掉两个点 C. 一个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点 例2若三棱锥A —BCD 的侧面ABC 内一动点P 到平面BCD 距离与到棱AB 距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) ) 解:设二面角A —BC —D 大小为θ,作PR ⊥面BCD ,R 为垂足,PQ ⊥BC 于Q ,PT ⊥AB 于T ,则∠PQR =θ, 且由条件PT=PR=PQ·sinθ,∴ 为小于1的常数,故轨迹图形应选(D )。 二、几何体的截痕

例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab ,其中a,b 为长、短半轴长)。 解:由于太阳光线可认定为平行光线,故广告球的投影 椭园等价于以广告球直径为直径的圆柱截面椭园:此时 b=R ,a= =2R ,∴离心率 , 投影面积S=πab=π·k·2R=2πR 2=18π。 三、动点与某点(面)的距离问题 , 例4.正方体1111D C B A ABCD -中,棱长为a ,E 是 1AA 的中点, 在对角面D D BB 11上找一动点M ,使AM+ME 最小.a 23. 四、常见的轨迹问题 (1) 轨迹类型识别 此类问题最为常见,求解时,关注几何体的特征,灵活选择几何法与代数法. 例5、(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交 α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支 【解析】直线l 运动后形成的轨迹刚好为线段AB 的垂面,由公理二易知点C 刚好落在平面α与线段AB 的垂面的交线上,所以动点C 的轨迹是一条直线.选择 A. 总结:空间的轨迹最简单的一直存在形式就是两个平面的交线,处理问题中注意识别即可. 例6、如图,在正方体ABCD A 1 B 1C 1D 1 中,若四边形A 1BCD 1 内一动点P 到AB 1和 BC 的距离相等,则点P 的轨迹为( ) … A .椭圆的一部分 B .圆的一部分 C .一条线段 D .抛物线的一部分 O E 例4题图 A % C D A 1 C 1 D 1 B 1 M - C D B C P O

中考复习-利用轴对称性质求几何最值(完整资料).doc

此文档下载后即可编辑 轴对称中几何动点最值问题总结 轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短; (2)三角形两边之和大于第三边; (3)垂线段最短。 初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。 (1)两点一线的最值问题: (两个定点+ 一个动点) 问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。 核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1. 如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC 边上一点,

若AE=2,EM+CM的最小值为( ) A.4 B.8 C. D. 2.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15° B.22.5° C.30° D. 45° 3.如图,Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,在CD上找一点P,使PA+PE最小,则这个最小值是_____________.

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

立体几何动态问题专题

立体几何的动态问题 立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨迹问题。基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。 动点轨迹问题 空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。很少有题目会脱离这三个方向。(注意:阿波罗尼斯圆,圆锥曲线第二定义) 1.(2015·浙江卷8)如图11-10,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB =30°,则点P的轨迹是( ) A.直线 B.抛物线C.椭圆 D.双曲线的一支 式题如图,平面α的斜线AB交α于B点,且与α所成的角为θ,平面α内有一动点满足∠=π 6 ,若动 点C的轨迹为椭圆,则θ的取值范围为________. 3.(2015春?龙泉驿区校级期中)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题: ①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线; ②若点P到点A的距离为,则动点P的轨迹所在的曲线是圆; ③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆; ④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线; ⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线. 其中真命题的个数为() A.4 B.3 C.2 D.1

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

立体几何中的动点问题

立体几何中的动点问题 1、如图,四棱锥ABCD P -的底面是边长为2的正方形,⊥PA 平面ABCD ,且4=PA ,M 是PB 上的一个动点(不与B P ,重合),过点M 作平面//α平面PAD ,截棱锥所得图形的面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()x f y =的图象是C 2、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑BCD A -中,⊥AB 平面BCD ,且CD BD ⊥,CD BD AB ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ?的面积为()x f ,则()x f 的图象大致是A

3、 如图所示,侧棱与底面垂直,且底面为正方形的四棱柱1111D C B A ABCD -中,21=AA ,1=AB ,N M ,分别在BC AD ,1上移动,始终保持//MN 平面11D DCC ,设x BN =,y MN =,则函数()x f y =的图象大致是 C 4、如图,已知正方体1111D C B A ABCD -的棱长为2,长为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________2π 5、点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,给出下列命 题: ①三棱锥PC D A 1-的体积不变; ②//1P A 平面1ACD ; ③1BC DP ⊥; ④平面⊥1PDB 平面1ACD ; 其中正确的命题序号是_______①②④

6、在正方体1111D C B A ABCD -中,F E ,分别为11C B ,11D C 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是_______22 7、已知直三棱柱111C B A ABC -中的底面为等腰直角三角形,AC AB ⊥,点N M ,分别是边C A AB 11,上动点,若直线//MN 平面11B BCC ,点Q 为线段MN 的中点,则点Q 的轨迹为 C .A 双曲线的一支(一部分) .B 圆弧(一部分) .C 线段(去掉一个端点) .D 抛物线的一部分 解:以AB 为轴,AC 为轴,1AA 为轴建系 设()b ta M ,0,1,()tb ta M ,0,,()b ta N ,,01,则()()b t ta N -1,,0,()tb ta M ,0,()10<≤t 则N M ,中点?? ? ??2,2,2b ta ta Q (通过作与平面11B BCC 平行的平面交C A AB 11,来找N M ,进而找中点Q )

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

八年级几何之动点问题

中考数学动点几何问题 ※动点求最值: 两定一动型(“两个定点,一个动点”的条件下求最值。例如上图中直线l的同侧有两个定点A、B,在直线l上有一动点) 例1、以正方形为载体如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是 例2、以直角梯形为载体如图,在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P 在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为 一定两动型(“一个定点”+“两个动点”) 例3、以三角形为载体如图,在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是 例4、以正方形、圆、角为载体正方形ABCD的边长为2,E为AB的中点,P是AC上的一动点.连接BP,EP,则PB+PE的最小值是

例5、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB, ∠AOC=60°,P是OB上的一动点,PA+PC 的最小值是 例6、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是 . 例7:在△ABC中,∠B=60°,BA=24CM,BC=16CM,(1)求△ABC的面积; (2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC的面积的一半? (3)在第(2)问题前提下,P,Q两点之间的距离是多少?A C B

轴对称中几何动点最值问题总结

轴对称中几何动点最值问题总结 轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个: (1)两点之间线段最短; (2)三角形两边之和大于第三边; (3)垂线段最短。 初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线, 点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。 问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。 核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。 方法:1.定点过动点所在直线做对称。 2. 连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线I和I的同侧两点A B,在直线I上求作一点P,使PA+PB最小。 问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个

动点使线段和最短核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。 变异类型: 1.如图,点P是/ MON内的一点,分别在OM ON上作点A, B。使△ PAB的周长最小。 (3)两点两线的最值问题:(两个动点+两个定点) 问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点 间的距离保持不变。 核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。 变异类型: 1.如图,点P, Q为/ MON内的两点,分别在OM ON上作点A,B。使四边形PAQB勺周长最小。 2.如图, 点A是/ MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最 小。 、1 —

立体几何中的最值问题(一)

2 5 2 5 2 5 3 3 立体几何中的最值问题(一) 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常 常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO⊥平面ABCD 于O,SO=2,底面边长为,点P、Q 分别在线 段BD、SC 上移动,则P、Q 两点的最短距离为() A. B. C. 2 D. 1 5 5 解析:如图1,由于点P、Q 分别在线段BD、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动, 当OQ 最小时,PQ 最小。过O 作OQ⊥SC,在Rt△SOC 中,OQ = 中。又P 在BD 上运动,且当 5 P 运动到点O 时,PQ 最小,等于OQ 的长为,也就是异面直线BD 和SC 的公垂线段的长。故选B。 5 图 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB⊥CD,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为。 解析:如图2,过点B 作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。过B 作BE//CD 交平 面α于E,则BE=CD。连结AE,因为AB⊥CD,故AB⊥BE。则在Rt△ABE 中,BE=AB·tan∠BAE≥AB·tan ∠BAO=3·tan30°= 。故CD ≥。 2 5

图 2 三、展成平面求最值 例 3. 如图 3-1,四面体 A-BCD 的各面都是锐角三角形,且 AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱 AB 、BC 、CD 、DA 于点 P 、Q 、R 、S ,则四边形 PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图 3-1 解析:如图 3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且 AB=CD , AC=BD ,AD=BC ,所以,A 与 A’、D 与 D’在四面体中是同一点,且 AD // BC // A ' D ' , AB // CD ', A 、C 、A’共线,D 、 B 、D’共线, AA ' = DD ' = 2BD 。又四边形 PQRS 在展开图中变为折线 S’PQRS , S’与 S 在四面体中是同一点。因而当 P 、Q 、R 在 S’S 上时, S ' P + PQ + QR + RS 最小,也就是四边形 PQRS 周长最小。又 S ' A = SA ',所以最小值 L = SS ' = DD ' = 2BD = 2b 。故选 B 。 图 3-2 四、利用向量求最值 例 4. 在棱长为 1 的正方体 ABCD-EFGH 中,P 是 AF 上的动点,则 GP+PB 的最小值为 。

立体几何动点问题

1 A 1.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=2 2 , 则下列结论中错误 ..的个数是( ) (1) AC⊥BE. (2) 若P为AA1上的一点,则P到平面BEF的距离为2 2 . (3) 三棱锥A-BEF的体积为定值. (4) 在空间与DD1,AC,B1C1都相交的直线有无数条. (5) 过CC1的中点与直线AC1所成角为40?并且与平面BEF所成角为50?的直线有2条. A.0 B.1 C.2 D.3 2.如图,正方体的棱长为1,线段上有两个动点 ,且 2 2 = EF,则下列结论中错误 ..的是() A.B.∥平面 C.三棱锥的体积为定值 D.△AEF与△BEF的面积相等 3.关于图中的正方体1 1 1 1 D C B A ABCD-,下列说法正确的有 ___________________. ①P点在线段BD上运动,棱锥1 1 D AB P-体积不变; ②P点在线段BD上运动,二面角 A D B P- - 1 1不变; ③一个平面 α截此正方体,如果截面是三角形,则必为锐角三角形; ④一个平面 α截此正方体,如果截面是四边形,则必为平行四边形; ⑤平面 α截正方体得到一个六边形(如图所示),则截面α在平面 1 1 D AB 与平面1 BDC 间平行移动时此六边形周长先增大,后减小。 4、如图,正方体1111 ABCD A BC D - 的棱长为1,P为BC的中点,Q为线段1 CC 上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是___________(写 出所有正确命题的编号). ①当 1 2 CQ << 时,S为四边形; ②当 1 2 CQ= 时,S不为等腰梯形; ③当 3 4 CQ= 时,S与11 C D 的交点R满足 1 1 3 C R= ; 1 1 1 1 D C B A ABCD- 1 1 D B F E, BE AC⊥EF ABCD BEF A-

几何最值—轴对称求最值(含答案)

学生做题前请先回答以下问题 问题1:几何最值问题的理论依据是什么? 答:两点之间,________________;(已知两个定点) _______________最短(已知一个定点、一条定直线); 三角形____________________(已知两边长固定或其和、差固定). 答: 问题2:做题前,读一读,背一背: 答:直线L及异侧两点A B 求作直线L上一点P,使P与A B 两点距离之差最大 作A点关于L的对称点A1,连接A1B,并延长交L的一点就是所求的P点. 这样就有:PA=PA1,P点与A,B的差PA-PB=PA1-PB=A1B. 下面证明A1B是二者差的最大值. 首先在L上随便取一个不同于P点的点P1,这样P1A1B就构成一三角形,且P1A1=P1A. 根据三角形的性质,二边之差小于第三边,所以有: P1A1-P1B

几何最值—轴对称求最值 一、单选题(共7道,每道14分) 1.如图,正方形ABCD的面积为12,△ABE是等边三角形,且点E在正方形ABCD的内部,在对角线AC上存在一点P,使得PD+PE的值最小,则这个最小值为( ) B. . 答案:C 《 解题思路:

试题难度:三颗星知识点:轴对称—线段之和最小 2.如图,在△ABC中,∠ACB=90°,以AC为一边在△ABC外侧作等边三角形ACD,过点D作 DE⊥AC,垂足为F,DE与AB相交于点E.AB=10cm,BC=6cm,P是直线DE上的一点,连接PC,PB,则△PBC 周长的最小值为( ) 答案:A 解题思路:

高中数学立体几何动点和折叠问题-含答案

立体几何折叠动点问题 1.(2020?湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( ) A . B .36 C .24 D . 2.(2020?德阳模拟)ABC ?是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( ) A B C D 3.(2020?德阳模拟)ABC ?是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ?折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为( ) A . B C .3 D .2 4.(2020春?江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ?中,6AB =,8AC =,AB AC ⊥, D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截 面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π

5.(2020春?沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为1 6,则球O 的表面积为( ) A .32 π B .2π C . 94 π D . 83 π 6.(2020春?五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=?, 且三棱锥O ABC -,则球O 的体积为( ) A .24π B .48π C . D . 7.(2020?东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且1111 2 C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12 B . 16 C .4 D . 43 8.(2020?江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=?,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( ) A . B . C . D .

2014高考理科立体几何难建系和动点问题(考前必做的立几大题)

学生姓名 年级 授课时间 教师姓名 课时 2 1.(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))如图四棱锥P ABCD -902,ABC BAD BC AD PAB ∠=∠==?,与PAD ?都是等边三角形 (I)证明:; PB CD ⊥ (II)求二面角A PD C --的大小 (2012年高考(四川理))如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC . (Ⅰ)求直线PC 与平面ABC 所成角的大小; (Ⅱ)求二面角B AP C --的大小. (2012年高考(辽宁理)) 如图,直三棱柱///ABC A B C -,90BAC ∠=, /,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点. (Ⅰ)证明:MN ∥平面//A ACC ; (Ⅱ)若二面角/A MN C --为直二面角,求λ的值 .

(2012年高考(北京理))如图1,在Rt△ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC,AB 上的点, 且DE∥BC,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C⊥CD,如图2. (1)求证:A 1C⊥平面BCDE; (2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由. (2012年高考(安徽理))平面图形111ABB AC C 如图4所示,其中11BB C C 是矩 形,12,4BC BB ==,AB AC ==1111A B AC ==现将该平面图形分别沿 BC 和11B C 折叠,使ABC ?与111A B C ?所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答下列问题 . (Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长; (Ⅲ)求二面角1A BC A --的余弦值.

初中数学几何的动点问题专题练习

动点问题专题训练 1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ·················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 32104 x x =+?, 解得80 3 x = 秒.

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》易错题汇编附答案

数学《空间向量与立体几何》期末复习知识要点 一、选择题 1.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A . 64 B . 62 C . 32 D . 34 【答案】A 【解析】 【分析】 根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】 如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点, 1AB =,则2113122OC =+=,2113424OE =+=,2 119244 EC =+=, ∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A , 1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE , 且1136 222BDE S BD OE ?= =??= g , 即α截该正方体所得截面图形的面积为6 . 故选:A . 【点睛】 本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题. 2.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )

A . 132 π B .7π C . 152 π D .8π 【答案】B 【解析】 【分析】 画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】 由题意可知:几何体是一个圆柱与一个1 4 的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为: 221 41212274 ππππ??+??+?=. 故选:B . 【点睛】 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 3.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面.. 1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )

初中数学几何动点问题专题训练

初中数学几何动点问题专题训练 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问: (1)t为何值时,四边形PQCD是平行四边形? (2)t为何值时,四边形PQCD是直角梯形? (3)在某个时刻,四边形PQCD可能是菱形吗?为什么? (4)t为何值时,四边形PQCD是等腰梯形? 练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C —D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD也为矩形?

数学高考题型专题讲解44---立体几何中最值问题

数学高考题型专题讲解44 ---立体几何中最值问题 一.方法综述 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练. 立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体, 涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解. 二.解题策略 类型一距离最值问题 【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为() A.B.1 C.D.2 【答案】B 【解析】 以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z∈[0,4],F(x,0,0),x∈[0,4],则|AF|=x.=(4,4,4﹣z),=(x,0,﹣z).因为C1E⊥EF,

所以,即:z2+4x﹣4z=0,x=z﹣. 当z=2时,x取得最大值为1.|AF|的最大值为1. 故选:B. 【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D. 【举一反三】 1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为 A.B.C.D. 【答案】A 【解析】 解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;

立体几何中的动态问题

立体几何中的动态问题 立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等;求解方法一般根据圆锥曲线的定义判断动点轨迹是什么样的曲线;利用空间向量的坐标运算求轨迹的长度等. 一、常见题目类型 (优质试题·金华十校高考模拟)在正方体ABCD -A 1B 1C 1D 1中,点 M 、N 分别是直线CD 、AB 上的动点,点P 是△A 1C 1D 内的动点(不包 括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为π3 ,则点P 的轨迹是( ) A .圆的一部分 B .椭圆的一部分 C .抛物线的一部分 D .双曲线的一部分 【解析】 把MN 平移到平面A 1B 1C 1D 1中,直线D 1P 与MN 所成角为 θ,直线D 1P 与MN 所成角的最小值是直线D 1P 与平面A 1B 1C 1D 1所成角, 即原问题转化为:直线D 1P 与平面A 1B 1C 1D 1所成角为π3 ,点P 在平面A 1B 1C 1D 1的投影为圆的一部分, 因为点P 是△A 1C 1D 内的动点(不包括边界), 所以点P 的轨迹是椭圆的一部分.故选B. 【答案】 B (优质试题·浙江名校协作体高三联考)已知平面ABCD ⊥平面ADEF ,AB ⊥AD ,CD ⊥AD ,且AB =1,AD =CD =2.ADEF 是正方形,在正方形ADEF 内部有一点M ,满足MB ,MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( ) A.43 B.163 C.49π D.83 π 【解析】 根据题意,以D 为原点,分别以DA ,DC ,DE 所在直线为x ,y ,z 轴,建立空间直角坐标系Dxyz ,如图1所示,则B (2,1,0),C (0,2,0),设M (x ,0,z ),易知直线MB ,MC 与平面ADEF 所成的角分别为∠AMB ,∠DMC ,均为锐角,且∠AMB =∠DMC ,所 以sin ∠AMB =sin ∠DMC ?AB MB =CD MC ,即2MB =MC ,因此2(2-x )2+12+z 2=x 2+22+z 2,

相关文档
最新文档