微分积分公式全集

合集下载

三十个基本积分公式

三十个基本积分公式

三十个基本积分公式积分是微积分中的重要概念,它在数学、物理学、工程学等众多领域都有着广泛的应用。

而掌握基本的积分公式,是进行积分运算的基础。

下面,我们就来详细介绍三十个基本积分公式。

公式一:∫k dx = kx + C (k 为常数)这是最简单的积分公式,常数的积分就是常数乘以自变量再加上常数 C。

公式二:∫x^n dx =(1/(n + 1))x^(n + 1) + C (n ≠ -1)当自变量 x 的幂次为 n 时,积分结果是幂次加 1 后除以新的幂次加1,再加上常数 C。

公式三:∫1/x dx = ln|x| + C这个公式在处理分式形式的积分时经常用到。

公式四:∫e^x dx = e^x + C指数函数 e^x 的积分还是它本身。

公式五:∫a^x dx =(1/ln a)a^x + C (a > 0,a ≠ 1)对于底数为 a 的指数函数,其积分公式如上。

公式六:∫sin x dx = cos x + C正弦函数的积分是负的余弦函数。

公式七:∫cos x dx = sin x + C余弦函数的积分是正弦函数。

公式八:∫tan x dx = ln|cos x| + C正切函数的积分与余弦函数的对数有关。

公式九:∫cot x dx = ln|sin x| + C余切函数的积分与正弦函数的对数有关。

公式十:∫sec x dx = ln|sec x + tan x| + C 正割函数的积分较为复杂。

公式十一:∫csc x dx = ln|csc x + cot x| + C 余割函数的积分也有一定的特殊性。

公式十二:∫sec^2 x dx = tan x + C正割平方的积分是正切函数。

公式十三:∫csc^2 x dx = cot x + C余割平方的积分是负的余切函数。

公式十四:∫sec x tan x dx = sec x + C正割与正切的乘积的积分是正割函数。

公式十五:∫csc x cot x dx = csc x + C余割与余切的乘积的积分是负的余割函数。

微分积分公式大全

微分积分公式大全

1 1+ x2
dx

d
(arc cot
x)
=
−1 1+ x2
dx
九、微分运算法则
⑴ d (u ± v) = du ± dv
⑵ d (cu) = cdu
考无忧论坛-----考霸整理版
⑶ d (uv) = vdu + udv
十、基本积分公式
⑴ ∫ kdx = kx + c

d
⎛ ⎜⎝
u v
⎞ ⎟⎠
=
vdu − udv v2
(1) a2 − x2 x = a sin t (2) a2 + x2
【特殊角的三角函数值】
x = a tan t
(3) x2 − a2 x = a sec t
(1) sin 0 = 0 (2) sin π = 1 (3)sin π = 3 (4)sin π = 1 ) (5)sin π = 0
62
⑶ d (sin x) = cos xdx
⑷ d (cos x) = −sin xdx ⑸ d (tan x) = sec2 xdx ⑹ d (cot x) = − csc2 xdx
⑺ d (sec x) = sec x ⋅ tan xdx
⑻ d (csc x) = − csc x ⋅ cot xdx
1
(2)lim (1+ x)x = e x→0
(4) lim n n = 1 n→∞
(7) lim arc cot x = 0 x→∞
(5) lim arctan x = π
x→∞
2
(8) lim arc cot x = π x→−∞
(10) lim ex = ∞ x→+∞

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。

可以理解为小步长地移动拟合函数,接近曲线本身。

可以表示为\frac{dy}{dx} 或f'(x) 。

2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。

可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。

它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。

4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。

可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。

5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。

6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。

微分公式大全24个

微分公式大全24个

微分公式大全24个微分公式是微积分中非常重要的一部分,下面我将列举24个常见的微分公式:1. 常数函数微分,(k)' = 0。

2. 幂函数微分,(x^n)' = nx^(n-1)。

3. 指数函数微分,(e^x)' = e^x.4. 对数函数微分,(ln(x))' = 1/x.5. 三角函数微分,(sin(x))' = cos(x),(cos(x))' = -sin(x),(tan(x))' = sec^2(x)。

6. 反三角函数微分,(arcsin(x))' = 1/√(1-x^2),(arccos(x))' = -1/√(1-x^2),(arctan(x))' = 1/(1+x^2)。

7. 和差函数微分,(f(x) ± g(x))' = f'(x) ± g'(x)。

8. 积函数微分,(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)。

9. 商函数微分,(f(x)/g(x))' = (f'(x)g(x)f(x)g'(x))/g(x)^2。

10. 复合函数微分,(f(g(x)))' = f'(g(x)) g'(x)。

11. 反函数微分,如果y = f(x)和x = g(y)是互为反函数的函数,那么有dy/dx = 1/(dx/dy)。

12. 参数方程的微分,如果x = f(t)和y = g(t)是参数方程,那么dy/dx = (dy/dt)/(dx/dt)。

13. 隐函数微分,如果F(x, y) = 0定义了y作为x的隐函数,那么dy/dx = (∂F/∂x) / (∂F/∂y)。

14. 对数微分,d(ln(x)) = 1/x dx.15. 指数微分,d(e^x) = e^x dx.16. 对数函数微分,d(log_a(x)) = (1/xln(a)) dx.17. 幂函数微分,d(x^n) = nx^(n-1) dx.18. 三角函数微分,d(sin(x)) = cos(x) dx,d(cos(x)) = -sin(x) dx,d(tan(x)) = sec^2(x) dx.19. 反三角函数微分,d(arcsin(x)) = 1/√(1-x^2) dx,d(arccos(x)) = -1/√(1-x^2) dx,d(arctan(x)) = 1/(1+x^2) dx.20. 对数函数的微分,d(log_b(x)) = (1/xln(b)) dx.21. 反双曲函数微分,d(arcsinh(x)) = 1/√(x^2+1) dx,d(arccosh(x)) = 1/√(x^2-1) dx,d(arctanh(x)) = 1/(1-x^2) dx.22. 反双曲函数微分,d(arccsch(x)) = -1/|x|√(1+x^2) dx,d(arccoth(x)) = -1/(1-x^2) dx.23. 反双曲函数微分,d(arccsech(x)) = -1/(x√(1-x^2)) dx.24. 反双曲函数微分,d(arccoth(x)) = -1/(1-x^2) dx.这些是常见的微分公式,它们在求导过程中经常被使用。

高等数学微积分公式大全

高等数学微积分公式大全

高等数学完整版计算公式一、0101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m−−→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况)二、重要公式(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)lim 1n →∞= (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→−∞=−(7)lim arccot 0x x →∞= (8)lim arc cot x x π→−∞= (9)lim 0xx e →−∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=三、下列常用等价无穷小关系(0x→)sin x x ∼ tan x x ∼ arcsin x x ∼ arctan x x ∼ 211cos 2x x −∼()ln 1x x +∼ 1x e x −∼ 1ln x a x a −∼ ()11x x ∂+−∂∼四、导数的四则运算法则()u v u v ′′′±=± ()uv u v uv ′′′=+ 2u u v uv v v ′′′−⎛⎞=⎜⎟⎝⎠五、基本导数公式⑴()0c ′= ⑵1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− ⑺()sec sec tan x x x ′=⋅ ⑻()csc csc cot x x x ′=−⋅ ⑼()xxee′= ⑽()ln xxaaa ′= ⑾()1ln x x′=⑿()1log ln xax a ′=⒀()arcsin x ′= ⒁()arccos x ′=⒂()21arctan 1x x ′=+ ⒃()21arccot 1x x′=−+⒄()1x ′=⒅′=六、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x −=⋅=⎡⎤⎣⎦∑七、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎞+=++⋅⎡⎤⎜⎟⎣⎦⎝⎠(5) ()()cos cos 2n n ax b a ax b n π⎛⎞+=++⋅⎡⎤⎜⎟⎣⎦⎝⎠(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎞=−⎜⎟+⎝⎠+ (7) ()()()()()11!ln 1n n n na n axb ax b −⋅−+=−⎡⎤⎣⎦+八、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ−= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =− ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =− ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =−⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a= ⒀()arcsin d x dx = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =−+九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu =⑶()d uv vdu udv =+ ⑷2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠十、基本积分公式⑴kdx kx c =+∫ ⑵11x x dx c μμμ+=++∫ ⑶ln dxx c x=+∫ ⑷ln xxa a dx c a=+∫ ⑸x x e dx e c =+∫ ⑹cos sin xdx x c =+∫ ⑺sin cos xdx x c =−+∫ ⑻221sec tan cos dx xdx x c x ==+∫∫⑼221csc cot sin xdx x c x ==−+∫∫⑽21arctan 1dx x c x =++∫ ⑾arcsin x c =+十一、下列常用凑微分公式十二、补充下面几个积分公式tan ln cos xdx x c =−+∫ cot ln sin xdx x c =+∫ sec ln sec tan xdx x x c =++∫ csc ln csc cot xdx x x c =−+∫2211arctan xdx c a x a a=++∫ 2211ln 2x adx c x a a x a−=+−+∫c ln c =+十三、分部积分法公式⑴形如n ax x e dx ∫,令n u x =,axdv e dx = 形如sin n x xdx ∫令nu x =,sin dv xdx = 形如cos n x xdx ∫令nu x =,cos dv xdx = ⑵形如arctan n x xdx ∫,令arctan u x =,ndv x dx = 形如ln n x xdx ∫,令ln u x =,ndv x dx =⑶形如sin axe xdx ∫,cos ax e xdx ∫令,sin ,cos axu e x x =均可。

导数微积分公式大全

导数微积分公式大全

导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。

微分积分公式(全集)

微分积分公式(全集)

微分与积分公式(全集)一、0101101lim0n n n m m x m a n m b a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况) 二、重要公式(1)0sin lim1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >= (4)1n = (5)lim arctan 2x x π→∞= (6)lim tan 2x arc x π→-∞=-(7)lim arc cot 0x x →∞= (8)lim arc cot x x π→-∞= (9)lim 0xx e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=三、下列常用等价无穷小关系(0x →)sin xx tan x x a r c s i n x x arctan xx 211c o s2x x -()ln 1x x + 1x e x - 1l n x a x a - ()11x x ∂+-∂四、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭五、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'=⒀()arcsin x '=⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=六、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑七、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+八、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫=⎪⎝⎭十、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin dx x c =+十一、下列常用凑微分公式十二、补充下面几个积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十三、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

微分积分公式大全总汇

微分积分公式大全总汇

微分积分公式大全总汇一、微分公式1.导数的定义:若函数f(x)在点x0处可导,那么导数f’(x)在点x0处的定义是f’(x0)=lim(h→0)[f(x0+h)-f(x0)]/h可以用导数定义计算一些特殊函数的导数。

2.基本导数法则:(1)常数导数法则:d(c)/dx=0,其中c为常数。

(2)幂函数导数法则:d(x^n)/dx=nx^(n-1),其中n为实数。

(3)指数函数导数法则:d(e^x)/dx=e^x。

(4)对数函数导数法则:d(lnx)/dx=1/x。

3.四则运算法则:(1)和差法则:[f(x)+g(x)]’=f’(x)+g’(x),[f(x)-g(x)]’=f’(x)-g’(x)。

(2)乘积法则:[f(x)g(x)]’=f’(x)g(x)+f(x)g’(x)。

(3)商法则:[f(x)/g(x)]’=[f’(x)g(x)-f(x)g’(x)]/g(x)^2 4.链式法则:如果想对复合函数y=f[g(x)]求导数,可以使用链式法则来计算。

dy/dx=dy/du * du/dx,其中u=g(x)。

5.高阶导数:若函数f(x)的n阶导数f^(n)(x)存在,则(f^(n)(x))’=f^(n+1)(x)。

高阶导数可以用来描述曲线的曲率和弯曲程度。

二、积分公式1.不定积分的定义:若函数F’(x)=f(x),那么F(x)称为函数f(x)的一个原函数,记作F(x)=∫f(x)dx。

在求不定积分时,需要注意加上积分常数C。

2.基本积分法则:(1)幂函数积分法则:∫x^n dx=x^(n+1)/(n+1)+C,其中n≠-1(2)指数函数积分法则:∫e^x dx=e^x+C。

(3)对数函数积分法则:∫1/x dx=ln,x,+C。

(4)三角函数积分法则:∫sinx dx=-cosx+C,∫cosx dx=sinx+C。

3.分部积分法:若u=u(x),v=v(x)是可导函数,那么(uv)’=u’v+uv’对上述等式两边进行不定积分,可以得到分部积分公式:∫u d(v)=uv - ∫v d(u)4.替换积分法(换元积分法):设u=g(x)是可导的,可逆函数,如果f(g(x))g’(x)能积出表达式,也就是∫f(g(x))g’(x)dx能由∫f(u)du表示,那么可进行替换积分,即∫f(g(x))g’(x)dx=∫f(u)d u。

高等数学微积分公式大全

高等数学微积分公式大全

大学 《高等数学》微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

微分积分公式

微分积分公式

微分积分公式微分积分学是高等数学的核心内容,也是数学科学的基础。

它主要用来研究函数及其极限、导数、积分等概念,从而理解、解释和应用数学模型的变化。

微分积分的基本公式如下:微分公式:一阶导数:如果函数f(x)在[a,b]上连续可微,那么f'(x)定义为:f'(x)=lim()→0 f(x+h)-f(x)/h。

二阶导数:如果函数f(x)在[a,b]上连续可微,那么f''(x)定义为:f''(x)=lim()→0 f'(x+h)-f'(x)/h。

曲线长度:如果函数y=f(x)在[a,b]上连续可微,那么曲线长度L=∫baf(x)dx。

曲面积:如果函数z=f(x,y)在[a,b]×[c,d]范围内连续可微,那么S=∫dcf(x,y)dydx。

泰勒级数:如果函数f(x)在(a,b)上可微,并且函数f(n)(x)在(a,b)上可以定义,那么函数f(x)可以用它的泰勒级数表示:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+…积分公式:定积分:如果函数y=f(x)在[a,b]范围内可积,那么F=∫baf(x)dx。

不定积分:如果函数y=f(x)在(a,b)范围内可积,那么F=∫bf(x)dx。

幂积分:如果函数y=f(x)在(a,b)范围内可积,那么F=∫baxⁿf(x)dx。

李斯特积分:如果函数z=f(x,y)在[a,b]×[c,d]范围内可积,那么I=∫dca⋅f(x,y)dxdy。

多元积分:如果函数z=f(x1,x2,...xn)在[a1,b1]×[a2,b2]×...×[an,bn]范围内可积,那么I=∫bn an⋅f(x1,x2,...xn)dx1dx2...dxn。

微积分的公式大全

微积分的公式大全

微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。

在微积分中,有许多重要的公式在各个方面被广泛应用。

下面给出了微积分的一些重要公式。

1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。

微分积分公式全集

微分积分公式全集

微分积分公式全集微分公式全集:1.乘法法则若 u 和 v 是关于自变量 x 的函数,则有 (uv)' = u'v + uv'2.除法法则若 u 和 v 是关于自变量 x 的函数,则有 (u/v)' = (u'v -uv')/v^23.反函数法则若 y=f(x) 是 x 的一个可逆函数,则有 dy/dx = 1/(dx/dy)4.复合函数法则若 y=f(u) 和 u=g(x) 都是关于自变量 x 的函数,则有 dy/dx = (dy/du)(du/dx)5.幂函数法则若 y=x^n,其中 n 是常数,则有 dy/dx = nx^(n-1)6.对数函数法则若 y=log_a(x),其中 a 是常数,则有 dy/dx = (1/(xln(a)))7.正弦函数法则若 y=sin(x),则有 dy/dx = cos(x)8.余弦函数法则若 y=cos(x),则有 dy/dx = -sin(x)9.正切函数法则若 y=tan(x),则有 dy/dx = sec^2(x)10.逆正弦函数法则若 y=arcsin(x),则有dy/dx = 1/(√(1-x^2))11.逆余弦函数法则若 y=arccos(x),则有 dy/dx = -1/(√(1-x^2))12.逆正切函数法则若 y=arctan(x),则有 dy/dx = 1/(1+x^2)13.指数函数法则若 y=a^x,其中 a 是常数,则有 dy/dx = (ln(a))a^x 积分公式全集:1.幂函数积分公式∫x^n dx = (x^(n+1))/(n+1),其中n≠-12.正弦函数积分公式∫sin(x) dx = -cos(x) + C3.余弦函数积分公式∫cos(x) dx = sin(x) + C4.正切函数积分公式∫tan(x) dx = -ln,cos(x), + C5.指数函数积分公式∫e^x dx = e^x + C6.对数函数积分公式∫1/x dx = ln,x, + C7.反三角函数积分公式∫1/√(1-x^2) dx = arcsin(x) + C8.逆正弦函数积分公式∫1/√(1-x^2) dx = arccos(x) + C9.逆正切函数积分公式∫1/(1+x^2) dx = arctan(x) + C10.分部积分公式∫u dv = uv - ∫v du,其中 u 和 v 是关于自变量 x 的函数以上是一些常用的微分和积分公式,但实际上微积分领域有很多公式,略为超过1200字的范围。

微积分公式大全

微积分公式大全

微积分公式大全一、基本公式:1.微分基本公式(导数):(1)常量函数导数:(k)'=0;(2)幂函数导数:(x^n)'=n·x^(n-1);(3)指数函数导数:(a^x)'= ln(a)·a^x;(4)对数函数导数:(log_a x)'= 1/(x·ln(a));(5)三角函数导数:(sin x)'=cos x, (cos x)'=-sin x, (tan x)'=sec^2 x;(6)反三角函数导数:(arcsin x)'=1/√(1-x^2), (arccos x)'=-1/√(1-x^2), (arctan x)'=1/(1+x^2);(7)复合函数导数:f(g(x))'=f'(g(x))·g'(x);2.积分基本公式:(1)不定积分:∫(k)dx=kx+C, ∫(x^n)dx= (x^(n+1))/(n+1)+C;(2)定积分:∫(a~b)f(x)dx= F(b)- F(a),其中 F(x) 是 f(x) 在[a, b] 上的一个原函数;(3)换元积分:∫f(g(x))·g'(x)dx=∫f(u)du, 其中 u = g(x);(4)分部积分:∫u·dv = u·v - ∫v·du;二、微分学公式:1.高阶导数:如果函数f(x)的n阶导数存在,则记作f^(n)(x),有以下公式:(1)常函数的n阶导数为0;(2)幂函数的n阶导数为n!(n-1)!·x^(n-m);(3)指数函数的 n 阶导数为a^x·ln^n(a);(4)对数函数的n阶导数为(-1)^(n-1)·(n-1)!/x^n;(5)三角函数的n阶导数:sin(x):n 为奇数时,n 阶导数为sin(x+ nπ/2);n 为偶数时,n 阶导数为cos(x+ nπ/2);cos(x):n 为奇数时,n 阶导数为 -cos(x+ nπ/2);n 为偶数时,n 阶导数为sin(x+ nπ/2);tan(x):n 为奇数时,n 阶导数为 (-1)^(n-1)·2^(n-1)·B_n·(2n)!·x^(2n-1),其中 B_n 为 Bernoulli 数;n为偶数时,n阶导数为0;2.泰勒展开:函数f(x)的泰勒展开式为:f(x)=f(a)+f'(a)·(x-a)+f''(a)·(x-a)^2/2!+......+f^(n)(a)·(x-a)^n/n!+......;当x接近a时,可以使用前n阶导数来估算函数的值;三、积分学公式:1.牛顿-莱布尼茨公式:设函数F(x)是f(x)在[a,b]上的一个原函数,则有∫(a~b)f(x)dx= F(b)- F(a);2.反常积分:(1)瑕积分:∫(1/x)dx 在曲线 y=0, x=0 和 x=1 构成的区域内发散;(2)收敛式积分:∫(1/x)dx 在曲线 y=0, x=0 和 x=1 构成的区域外收敛为 ln,x;(3)点收敛、条件收敛和绝对收敛;3.广义积分:(1)广义积分存在:∫(a~+∞)f(x)d x= A 表示对于任意定义域上的f(x),在 a 之后的任意区间上都是收敛的;(2)比较判别法:若存在p>0和M>0,使得,f(x),<=M·g(x),那么当f(x)的积分是收敛的,那么g(x)的积分也是收敛的;(3)绝对收敛:如果,f(x),在定义域上是收敛的,那么f(x)的积分是绝对收敛的;(4)积分判别法:如果积分是收敛的,但是f(x)的绝对值不是;或者f(x)的绝对值是收敛的,但是积分是发散的,那么f(x)的积分是条件收敛的;以上仅是微积分常用公式的集合,只能作为参考,实际应用仍需根据具体问题进行判断和运用。

导数公式微分公式和积分公式

导数公式微分公式和积分公式

导数公式微分公式和积分公式一、导数公式1.基本导数公式:(1)常数函数的导数为0:(c)'=0(2) 幂函数的导数:(x^n)'=nx^(n-1)(3) 指数函数的导数:(a^x)'=a^xlna (其中a>0,a≠1)(4) 对数函数的导数:(log_ax)'=1/(xlna) (其中a>0,a≠1)(5) 正弦函数和余弦函数的导数:(sinx)'=cosx,(cosx)'=-sinx(6) 正切函数的导数:(tanx)'=sec^2x(7) 反正弦函数、反余弦函数和反正切函数的导数:(arcsinx)'=1/√(1-x^2),(arccosx)'=-1/√(1-x^2),(arctanx)'=1/(1+x^2)2.导数的四则运算:(1)和差的导数:(f+g)'=f'+g',(f-g)'=f'-g'(2) 函数与常数的乘积的导数:(cf)'=cf'(3) 积的导数:(fg)'=f'g+fg'(4) 商的导数:(f/g)'=(f'g-fg')/g^2 (其中g≠0)(5)复合函数的导数:(f(g(x)))'=f'(g(x))g'(x)二、微分公式微分可以看作函数在其中一点上对自变量的微小变化与函数值的微小变化之间的比率。

微分公式是导数概念的一个应用,常用于近似计算。

1.一阶微分公式:(1) 一个变量的微分:df=f'(x)dx(2) 两个变量的微分:df=f_xdx+f_ydy (其中f_x和f_y分别是函数f关于x和y的偏导数)2.高阶微分公式:(1) 一个变量的n阶微分:d^n f/dx^n(2) 两个变量的混合n阶微分:d^n f/dx^mdy^n-m (其中m+n为n阶)三、积分公式积分是微分的逆运算,可将一个函数的导数还原为原函数,同时也可以用于计算曲线下的面积、体积等。

积分微分公式

积分微分公式

积分微分公式
积分微分公式是数学中用于计算函数的导数和不定积分的公式。

以下是几个常见的积分微分公式:
1.导数的基本法则:
-常数法则:如果f(x)是常数c,则f'(x)等于0。

-幂法则:如果f(x) = x^n,则f'(x) = n*x^(n-1)。

-乘法法则:如果f(x) = u(x) * v(x),则f'(x) = u'(x)*v(x) + u(x)*v'(x)。

-商法则:如果f(x) = u(x) / v(x),则f'(x) = (u'(x)*v(x) - u(x)*v'(x)) / v(x)^2。

2.不定积分的基本法则:
-幂法则:∫x^n dx = (x^(n+1))/(n+1) + C,其中C是常数。

-常数法则:∫c dx = cx + C,其中C是常数。

-求和法则:∫(f(x) + g(x)) dx = ∫f(x) dx + ∫g(x) dx。

这些是一些常见的积分微分公式,但在数学中还有更多的公式和技巧可以用于求导和不定积分。

对于特定的函数和问题,可能会使用特定的方法或公式进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
高中大学数学微分与积分公式(全集)
(高中大学数学)
二 _ 、 重要公式(1) sin x
lim
1 1
(2) lim 1 x 匸
e
(3) lim : a(a o) 1
x 0
x
x 0
n
(4)
lim n n 1
(5) limarctan x —
(6) lim arc tan x

n
x
2
x
2
(7)
limarccot x x
0 (8) lim arccot x x
(9) lim e x
0 x
(10) lim e x
x
(11) lim x x
1
x 0
三、 下列常用等价无穷小关系
(x 0)
四、 导数的四则运算法则
五、 基本导数公式
⑴c 0 ⑵x
⑷ cosx
sinx (5) tan
x
(7) secx secx tan x
⑻ cscx cscx cotx
1
x
(3) sin x cosx
2
sec x
⑹ cot x
2
csc x ⑼e x
⑽ a x a x
lna
1 (11) In x
n
n 1
j
a o x a 1x
a n
i m - m 1
b o x b ^x
1
b m
a。

b o
(系数不为0的情况)
lim x 0 n m
1 1
(12) loga x (13) arcsinx (14) arccosx
xln a
1
(15) arcta nx 2 1 x arccot x
(17)
1
(18)
1 2

x
六、高阶导数的运算法则 (1) u x V x (2)
cu
cu
n
(3) u ax b ax
(4)
k c n
u
(k)
七、基本初等函数的 n 阶导数公式
(1)
(2)
ax e
ax
e
x n
ln a
sin ax n .
a sin ax
cos ax n
a cos ax
ax b
n
i
n a n!
n 1
ax b
In ax
n
ax b
八、 微分公式与微分运算法则
x 1dx
(3) d sin x cosxdx
cosx
sin xdx ⑸ d tanx sec xdx (6) d cot x
csc 2 xdx
(7) d secx secx tan xdx
⑻ d cscx cscx cot xdx
1
⑼ d e x e x dx ⑽d a x
a x
ln adx
1
(11) d In x dx
(12) d
log a x
1 dx (13) d arcs in
x I n a (15) d arcta n x 1 2dx 1 x 2
九、 微分运算法则 1
dx (14) d arccosx
(16) d arccot x
⑴ d u v du dv (2) d cu cdu
(3) d uv vdu udv 十、基本积分公式 ⑴ kdx kx c ⑵x dx i
x
c
1
2 dx
1 x 2
vdu udv 2
v
dx
x
In x c
x
⑷ a x dx c In a ⑸ e x dx e x c (6) cosxdx sin x c
(7) sin xdx cosx c 1
⑻ ------ -- dx
cos x sec xdx tan x c
1 _~2-
sin x
csc xdx cot x c 1 dx 1 x
arcta n x c
arcs in x c
F 列常用凑微分公式
十二、补充卜面儿个积分公式
十三、分部积分法公式
⑴形如x n e ax dx,令u n x ,dv ax i
e dx
形如x n sin xdx 令u n x ,dv sin xdx
形如x n cosxdx令u
n
x ,dv cosxdx
⑵形如x n arctanxdx,令u arctanx , dv x n dx
形如x n ln xdx,令u In x , dv x n dx
(3)形女口e ax sinxdx, e ax cosxdx令u e ax,sin x,cos x均可。

十四、第二换元积分法中的三角换元公式
(1) a2x2x asi nt (2) va2x2x ata nt (3) vx2a2x asect
【特殊角的三角函数值】
十五、三角函数公式
1. 两角和公式
2. 二倍角公式
3. 半角公式
4. 和差化积公式
5. 积化和差公式
6. 万能公式
7. 平方关系
8. 倒数关系
(1) sinO 0
1
(2) sin - 6 2
(3) sin
3 (4) sin 1 )
2
(5) sin 0
(1) cosO 1
(2) cos —
6
(3) cos —
3
(4) cos 0 )
2
(5) cos 1
(1) tanO 0
(2) tan 3 6 3 (3) tan 3
(4) 3
tan —不存在
2
(5) tan
(1) cot0不存在(2)
cot — .. 3
6
(3) cot —
3

(4
)
cot
?
0 (5) cot 不存在
9. 商数关系
十六、几种常见的微分方程
1. 可分离变量的微分方程:dy f x g y , x g! y dx f2 x g2 y dy 0
dx
2. 齐次微分方程:f
dx x
3. 一阶线性非齐次微分方程:矽p x y Q x 解为:
dx。

相关文档
最新文档