二次函数的图像和性质导学案

合集下载

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。

误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。

数学九年级上册《二次函数的图像与性质(3)》导学案

数学九年级上册《二次函数的图像与性质(3)》导学案

5.2 二次函数的图像与性质(3)班级______学号_____姓名___________[学习目标]1、理解二次函数y =ax 2+k 中a 、k 和m 对函数图像的影响,能解释..二次函数222)(ax y m x a y k ax y =+=+=和二次函数、的图像的位置关系.2、会用描点法作出函数y =ax 2+k 图像,根据图像认识和理解二次函数y =ax 2+k 性质. 3、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),体会数形结合的数学思想。

[活动方案]活动一 思考与探索(一)思考1:二次函数12+=x y 的图像是个什么图形?是抛物线吗?在同一直角坐标系中画出它们的图像.三个图像中对应点的坐标如何变化? 它们的图像之间有什么关系? 为什么?抛物线12+=x y 的对称轴、顶点、最值、增减性如何?x… -3 -2 -1 0 1 2 3 … 2x y =… … 12+=x y … … 22-=x y……类似的:二次函数k ax y +=2的图像与函数2ax y =的图像有什么关系? 它的对称轴、顶点、最值、增减性如何?活动二 思考与探索(二)二次函数()23+=x y 的图像是抛物线吗?如果结合下表和看课本P 14-15你的解释是什么?x… -8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6 … 2x y =… … 2)3(+=x y … … 2)3(-=x y……类似的:二次函数()2m x a y +=的图像与二次函数2ax y =的图像有什么关系?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢活动三 总结与归纳:1、二次函数222)(ax y m x a y k ax y =+=+=和二次函数、图像的形状,位置的关系是:y=ax 2+k 图像可以看作是由y=ax 2的图像向 平移 个单位得到; y=a (x+m )2图像可以看作是由y=ax 2的图像向 平移 个单位得到;2、它们的性质是:二次函数y=ax 2+k 中,当a>0时,当x 时,y 随x 的增大而减小;当x 时,y 随x 的增大而增大;当x 时,y 有最 值,为 .当a <0时, . y=a (x+m )2的性质是什么?活动四例题点评:1、例1:函数y=4x2+5的图像可由y=4x2的图像向平移个单位得到;y=4x2-11的图像可由 y=4x2的图像向平移个单位得到。

二次函数的图像和性质导学案

二次函数的图像和性质导学案

课题:二次函数的图像和性质导学案一、学习目标:1、会作函数y=ax²和y=ax²+c的图象,并能比较它们的异同;理解a、c对二次函数图象的影响。

能正确说出两函数图象的开口方向、对称轴和顶点坐标;了解抛物线y=ax²上下平移规律。

2、经历探索二次函数y=ax²+c的图象的画法和性质的过程,增强对二次函数图象的理解,体会数形结合的思想与方法。

二、重点:作出函数y=ax²和y=ax²+c的图象,比较它们的异同,了解性质。

难点:函数y=a x+c²的图象与性质的理解,掌握抛物线的上下平移规律。

三、学法指导:侧重学生思、探、究的自主学习,运用类比的学习方法。

四、学习过程:(一)自主完成:1、作二次函数y=2x2的图象。

并思考二次函数y=2x2的图象是什么形状?它与二次函数y=x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?体会并归纳二次项系数a对二次函数图像的影响归纳结论:2、研究y=ax2和y=ax2+c图象之间的关系(1)在同一直角坐标系内作出函数y=2x2与y=2x2+1的图象。

并比较它们的性质。

(二)、小组内合作:(同学们积极探索,合作交流,其他学生纠正补充,教师规范学生的语言表达)(1)、解决自学中存在的问题并做好记录。

(2)、比较y=ax²和y=ax²+c的图象有什么异同。

(3)、讨论抛物线y=x²+1、y=x²、y=x²-1有哪些相同点和不同点?(4)、以小组为单位归纳抛物线y=ax²+c的性质和抛物线y=ax²上下平移的规律。

(5)、解析式中的a、c对图象有什么影响。

(三)、归纳总结:1、类比函数y=ax²图象的性质,总结抛物线y=ax²+c的性质,总结时从以下几点方面进行总结:(1)对称轴(2)顶点坐标(3)开口方向(4)开口大小(5)增减性(6)最高(低)点2、从平移方向和单位两方面总结抛物线y=x²+1与抛物线y=x²-1是由抛物线y=x²通过怎样平移得到的。

§22.1.3.3二次函数的图象和性质 导学案

§22.1.3.3二次函数的图象和性质 导学案

- 1 -今天有进步,如果天天坚持这样,你一定是最棒的!1.会画二次函数的顶点式()k h x a y +-=2的图象; 2.掌握二次函数()k h x a y +-=2的性质; 一、课前准备1.将二次函数2-5y x =的图象向上平移2个单位,所得图象的解析式为 。

2.将抛物线2y x =-的图象向左平移3个单位后的抛物线的解析式为 。

二、新课导学在右面做出1-)1(21-2+=x y 的图象: 观察:1. 抛物线1-)1(21-2+=x y 开口向 ; 顶点坐标是 ;对称轴是直线 。

2. 抛物线1-)1(21-2+=x y 和221-x y =的形状 ,位置 。

(填“相同”或“不同”)3. 抛物线1-)1(21-2+=x y 是由221-x y =如何平移得到的?答: 。

三、巩固拓展归纳:(一)抛物线2()+y a x h k =-的特点:1.当0a >时,开口向 ;当0a <时,开口 ;2. 顶点坐标是 ;3. 对称轴是直线 。

(二)抛物线2()+y a x h k =-与2y ax =形状 ,位置不同,2()+y a x h k =-是由2y ax =平移得到的。

二次函数图象的平移规律:左 右 ,上 下 。

(三)平移前后的两条抛物线a 值 。

今天有进步,如果天天坚持这样,你一定是最棒的! - 2 - 1.二次函数2)1(22+-=x y 的图象可由22x y =的图象( ) A.向左平移1个单位,再向下平移2个单位得到B.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到D.向右平移1个单位,再向上平移2个单位得到 2.抛物线()21653y x =--+开口 ,顶点坐标是 ,对称轴是 ,当x = 时,y 有最 值为 。

3.填表:4.函数()2231y x =--的图象可由函数22y x =的图象沿x 轴向 平移 个单位,再沿y 轴向 平移 个单位得到。

22.3.3二次函数图像和性质导学案

22.3.3二次函数图像和性质导学案

22.3.3 二次函数c bx ax y ++=2的图像和性质导学案主备课人:孟侠 审批:数学组 2015年9月20日 学习目标:1、会画二次函数的顶点式()k h x a y +-=2的图像; 2、知道二次函数()k h x a y +-=2的图像与2ax y =的图像间平移规律; 3、会通过配方法把二次函数的一般式化为顶点式;4、通过动手操作,总结出二次函数c bx ax y ++=2的图像及性质。

学习过程:一、独学1、回顾旧知:填写下表,通过表格回答二次函数2ax y =与()2h x a y -=的图像与性质各是什么?它们之间有何关系?解析式 开口方向顶点坐标 对称轴 最值 221x y -=()2221+-=x y()2221--=x y2、阅读课本P18~21的内容二、合作学习,动手做一做1、在同一坐标系中画出函数()()1221,221,21222+-=-==x y x y x y 的图像,根据此题,回答以下问题:○1抛物线()k h x a y +-=2与2ax y =形状______,位置______,把抛物线2ax y =向______平移______个单位长度,再向______平移______个单位长度,可得到抛物线()k h x a y +-=2的图像,平移方向与距离根据______的值来决定的。

○2抛物线()k h x a y +-=2的顶点坐标是______,对称轴为______,当a ____时,y 有______值;当a ____时,y 有______值。

2、用配方法把下列函数化为()k h x a y ++=2的形式,并指出抛物线的开口方向,顶点坐标,对称轴,然后再用描点画出函数图像:○17822---=x x y ○2x x y 632+-=○312312-+=x x y ○4()()122+-=x x y 3、用配方法把c bx ax y ++=2化为顶点式,并填写课本P21表格4、确定下列抛物线的开口方向,对称轴,顶点坐标和当x 为何值时,二次函数的最值为多少? ○1232-+=x x y ○2x x y 612-+-=○34232+-=x x y ○472212+--=x x y三、学后反思。

《221二次函数的图像和性质》导学案

《221二次函数的图像和性质》导学案

(上册)《22.1二次函数的图像和性质》导学案(第一课时)【学习目标】1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的一般形式;3、通过解决实际问题的过程总结建立数学模型的方法,培养与他人交流的意识和提取合理见解的能力。

【学习课时】1课时。

【导学方法】实验、整理、分析、归纳法。

【导学过程】一、课前导学1、填表一次函数正比例函数反比例函数表达式图形形状2、探究(1)正方体六个面是全等的正方形,设正方形棱长为x,表面积为y,则y关于x的关系式为是什么?①(2)多边形的对角线数 d 与边数n 有什么关系?②n边形有________个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作________条对角线。

因此,n边形的对角线总数d =____________。

(3)某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?这种产品的原产量是20件,一年后的产量是____件,再经过一年后的产量是 件,即两年后的产量为________。

③二、合作探究探究:函数①②③有什么共同特点?你能举例说明吗? 一般地,形如________的函数,叫做二次函数。

其中,x 是自变量,a 为________, b 为________,c 为________,做一做:1、下列函数中,哪些是二次函数?分别说出二次函数的二次项系数、一次项系数和常数项。

(1)2x y = (2)21x y -= (3)122--=x x y (4))1(x x y -=(5))1)(1()1(2-+--=x x x y (6) 23712y x x =+-- 2、函数2y ax bx c =++,当a 、b 、c 满足什么条件时, (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?(第二课时)【导学目标】会用描点法画出二次函数y=ax 2的图象,概括出图象的特点及函数的性质。

二次函数的图像(导学案)

二次函数的图像(导学案)

§5.1二次函数的图像预习案一、学习目标:1 理解二次函数中参数khcba,,,,对其图像的影响2.领会二次函数图像平移的研究方法,并能迁移到其他函数图像的研究二、学习重点:二次函数图像的平移变换规律及应用三、学习难点:探索平移对函数解析式的影响及如何利用平移变换规律产生指数函数背景四、知识链接:1、二次函数的解析式的表示形式(1)一般式:(2)顶点式:(3)交点式:2、二次函数的图像是什么图形?如何快速画出其图像?探究案1、在同一直角坐标系中作出下列函数图像(1)2xy=(2)22xy=(3)221xy=(4)22xy-=结论:二次函数)0(2≠=aaxy的图像可由2xy=的图像各点的得到;决定了图像的开口方向和在同一直角坐标系中的开口大小2、在同一直角坐标系中作出下列函数图像(1)23xy-=(2)2)1(3--=xy(3)1)1(32+--=xy结论:(1)把2axy=的图像得到2)(hxay+=的图像把2)(hxay+=的图像得到khxay++=2)(的图像(2)二次函数中各参数对图像的影响a决定了图像的开口方向和在同一直角坐标系中h决定而且k决定而且3、把二次函数的一般式)0(2≠++=acbxaxy改成顶点式即二次函数)0(2≠++=acbxaxy,通过配方可以得到它的恒等形式二次函数)0(2≠++=acbxaxy决定其图像位置的参数是什么?训练案二次函数)(xf与)(xg的图像开口大小相同,开口方向也相同。

已知函数)(xg的解析式和)(xf图像的顶点,写出函数)(xf的解析式函数)(,)(2xfxxg=图像的顶点是)7,4(-函数)(,)1(2)(2xfxxg+-=图像的顶点是)2,3(-已知函数1)34()(142-++=--xxaxf aa是一个二次函数,求满足条件的a的值。

变式:已知函数1222)()(--+=mmxmmxf是二次函数,求m的值已知抛物线86)(2-+=x ax x f 与直线x y 3-=相交于点),1(m A 求抛物线的解析式该抛物线经过怎样平移可以得到2)(ax x f =的图像训练案1、 在同一坐标系中,图像与22x y = 的图像关于x 轴对称的函数.2、将抛物线12+=x y 向左平移2个单位,再向下平移3个单位,所得抛物线方程.3、二次函数的顶点坐标为(2,-1),且过点(3,1),则解析式.4、已知二次函数)0(2≠++=a c bx ax y 的图像经过A (0,-5),B (5,0)两点,它的对称轴为直线2=x ,求这个二次函数的解析式.。

(九年级数学教案)二次函数图像和性质导学案

(九年级数学教案)二次函数图像和性质导学案

二次函数图像和性质导学案九年级数学教案
1. 二次函数的图像和性质
&gt;0
&lt;0
开口
对称轴
顶点坐标
最值当x= 时,y有最值当x= 时,y有最值
增减性在对称轴左侧y随x的增大而y 随x的增大而在对称轴右侧y随x的增大而y随x的增大而
2. 二次函数用配方法可化成的形式,其中
= , = .
3. 二次函数的图像和图像的关系.
4. 二次函数中的符号的确定.
【思想方法】
数形结合
【例题精讲】
例1.已知二次函数,
(1) 用配方法把该函数化为
(其中a、h、k都是常数且a≠0)形式,并画
出这个函数的图像,根据图象指出函数的对称轴和顶点坐标.
(2) 求函数的图象与x轴的交点坐标.
例2. (____年大连)如图,直线和抛物线
都经过点A(1,0),B(3,2).
⑴求m的值和抛物线的解析式;
⑵求不等式的解集.(直接写出答案)
【当堂检测】
1. 抛物线的顶点坐标是.
2.将抛物线向上平移一个单位后,得到的抛物线解析式是.
3. 如图所示的抛物线是二次函数
的图象,那么的值是&n。

《二次函数的图象和性质》导学案

《二次函数的图象和性质》导学案

《二次函数的图象和性质》导学案【学习目标】通过复习(1)理解二次函数的有关概念,能用a 、b 、c 判断图像特征 (2)掌握二次函数的对称性、增减性 (3)掌握二次函数的平移,进一步体会数形结合思想【学习重点】二次函数的开口、对称轴、顶点、最值、增减性等性质。

【学习难点】二次函数的增减性 【课时安排】1课时 【教具选用】多媒体 【学习过程】一、引发概念1.下列函数解析式中,一定为二次函数的是( )A . y =3x ﹣1B . y =ax 2+bx +cC . s =2t 2﹣2t +1D . y =x 2+2.抛物线y =(x ﹣1)2+2的开口方向 ,对称轴是直线 ,顶点坐标是 。

3..二次函数y =x 2+4x ﹣5的图象的对称轴为( )A . x =4B . x =﹣4C . x =2D . x =﹣24.二次函数y=-(x-3)2+2的最大值是( ). A .3 B .2 C .-3 D .235.已知二次函数y = -31(x ﹣2)2+3,当x 时,y 随x 的增大而减小.6..二次函数y =ax 2+bx +c 的图象如图所示,则下列关系式错误的是( )A . a <0B . b >0C . b 2﹣4ac >0D . a +b +c <07.在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为 ( ) A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y 二、基础再现8.抛物线y=3(x+4)2-5的顶点坐标是( ). A.(4,5) B (4,-5)C.(4,5)-- D.(-4,5)9.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是( ) A .2(6)5y x =-+ B .2(3)5y x =-+ C. 2(3)4y x =--. D .2(3)9y x =+-10.将抛物线25x y =先向右平移2个单位,再向下平移3个单位,可以得到新的抛物线是。

《二次函数 图象和性质》导学案

《二次函数 图象和性质》导学案

《二次函数2ax y =图象和性质》导学案一、自主探究一1.请画出2x y =的图象2.请在上面的坐标系中画出22x y =221x y =的图象. 3.观察以上画的三个图象,它们有哪些共同特征?把你的想法在小组内交流。

自主探究二1、请在同一坐标系中分别画出,2-x y =,221-x y =22-x y =的图象。

2、议一议:观察以上画的三个图象,你又有什么发现?在小组内交流你的想法。

3、理一理:,2-x y =22-x y =,221-x y =的二次项系数a__0,它们的图象都是___________,对称轴___________,顶点_______顶点都是最__点(填“高”或“低”),当x=____时,y 有最___值是_____,当x<0时,y 随着x 值的增大而________,当x>0时呢?小结:(1)观察以上三组图象:2222222121,22,-x y x y x y x y x y x y -==-==-==与与与你能发现它们之间有怎样的关系?(2)观察以上6个图象,你认为抛物线的开口方向和大小分别与什么因素有关? (3)总结归纳:你能总结出二次函数2ax y =图象有哪些性质吗?二、 巩固练习2.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1) x 2的图象开口向下,则m ____________.三、达标检测1.函数y y =37 x x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数mx y = 22-m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.。

二次函数的图象与性质导学案

二次函数的图象与性质导学案

§2-2 二次函数的图象(课本九下第二章2-4节)(一)二次函数2ax y =的图象学习目标1、能够利用描点法作出2x y =表达式与图象之间的联系2、能作出2ax y =a 与c 对图象的影响,能说出ax y =学习重点和难点重点:a 与c 的图象的影及响图象的开口方向、对称轴和顶点坐标难点:根据图象认识和理解二次函数表达式与图象之间的联系学习过程一、复习引入二次函数:一般地,形如 ( )的函数叫做二、自主学习1、作图象的三步骤: 、 、 。

2、作二次函数2x y =的图象(1)列表:(2)描点:在直角坐标系中描点。

(3)连线:用光滑的曲线连接各点,便得到函数2x y =的图象。

二、小组交流3、观察二次函数2x y =的图象,回答下列问题:(1)你能描述图象的形状吗?它像 。

(2)图象与轴 交点,交点坐标是 。

(3)当x <0时,y 的值随着的增大而 ,当的值随着x 的增大而。

(4)当x 取 值时,的值最小,最小值是 。

(5)图象是轴对称图形吗? 它的对称轴是什么? 4、小结归纳:二次函数2x y =的图象是一条 ,它的开口向 ,且关于 轴对称,对称轴与抛物线的交点是抛物线的 ,它是图象的最 点。

三、巩固练习:(1)列表:(2)描点:在直角坐标系中描点。

x12345672x y =坐 标x12345672x y -=坐 标的图象是一条 ,它的开口向 ,且关于 轴对称,对称轴与抛物线的交点是抛物线的 ,它是图象的最 点。

2、二次函数2x y =的图象形状 ,开口方向 ,两个图象关于 轴对称。

四、全班交流:(一)二次函数2ax y =的图象和性质1、些抛物线有什么共同点和不同点。

相同点: 不同点: 2、23x y -=的图象,并思考这些抛物线有什么共同点和不同点。

相同点: 不同点: 3、观察上面两组图象,我们发现:时,抛物线的开口向 ;当时,抛物线的开口向 。

越大,开口越 ;越小,开口越 。

《二次函数》二次函数的图像及性质导学案

《二次函数》二次函数的图像及性质导学案

二次函数()2h x a y -=的图象和性质主备人:姚惠琴 主审人:黄志刚 姚金涛 班级: 姓名:学习目标1.会画二次函数2)(h x a y -=的图象和性质,并会应用;2.知道二次函数2)(h x a y -=与2ax y =的联系.学习过程一、复习引入:1. a 的正负决定抛物线的 ;a 决定开口的 ,即a 不变,则抛物线的形状 。

2.将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为 。

3.将抛物线142+-=x y 的图象向下平移3个单位后的抛物线的解析式为 。

二、自主探究1、画函数y =-12 (x +1)2,y -12 (x -1)2的图象,考虑它们的开口方向.对称轴.顶点以及最值.增减性.2观察图象,填表:2.①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12(x-1)2.x… -2 -1 0 1 2 3 4 …y =-12 (x +1)2… … y =-12(x -1)2 ……函数开口方向顶点对称轴最值增减性y =-12 (x +1)2y =-12(x -1)2三、合作探究四、达标测试:1、填表.2.抛物线y =4 (x -2)2与y 轴的交点坐标是___________,与x 轴的交点坐标为________. 3.把抛物线y =3x 2向右平移4个单位后,得到的抛物线的表达式为____________________. 把抛物线y =3x 2向左平移6个单位后,得到的抛物线的表达式为____________________. 4.将抛物线y =-13 (x -1)x 2向右平移2个单位后,得到的抛物线解析式为____________5.抛物线y =m (x +n)2向左平移2个单位后,得到的函数关系式是y =-4 (x -4)2, 则m =__________,n =___________.6、写出一个顶点是(5,0),形状.开口方向与抛物线y =-2x 2都相同的二次函数解析式________________________.7、已知线抛物2)(h x a y -=的对称轴是x =3,其图像过(1,1)点,试确定该抛物线的解析式二次函数()k h x a y +-=2的图象和性质主备人:姚惠琴 主审人:黄志刚 姚金涛 班级: 姓名:学习目标1.会画二次函数的顶点式()k h x a y +-=2的图象;2.掌握二次函数()k h x a y +-=2的性质;3.会应用二次函数y =a (x -h)2+k 的性质解题. 学习流程 一、复习引入1.将二次函数2-5y x =的图象向上平移2个单位,所得图象的解析式为 。

数学九年级上册《二次函数的图像与性质(1)》导学案

数学九年级上册《二次函数的图像与性质(1)》导学案

第5章第2节 二次函数的图像与性质(1)班级______学号_____姓名___________[学习目标]1.能用描点法画二次函数2ax y =的图像;2.能画y=-ax 2的图像,并说出它与y=ax 2图像的共同特征。

[活动方案]活动一 根据二次函数式y=x 2,你能想象它的图像特征吗?回顾“一次函数、反比例函数的图像的画法”,类似地,研究二次函数图像画法。

填表并观察,“由数想形”,尝试解决新问题。

尝试1:填表尝试2、画出二次函数式y=x 2的图像活动二 画出二次函数y=x 2的图像后,再尝试画出y =-x 2的图像。

思考1:通过1中的表和画出的图像,你能否概括出函数2x y =、y =-x 2的共同点和不同点?记录下来(注意记录的条理性)x… -3 -2 -1 0 1 2 3 … 2x y =……思考2:你能有哪些画y =-x 2图像的方法?活动三 画出二次函数y=21x 2、y=2x 2、y =-21x 2、y =-2x 2的图像,并探讨这些函数图像的共同点和不同点根据图象填空: 抛物线221x y =的开口方向 ,对称轴是 ,顶点坐标是 , 抛物线22x y =的开口方向 ,对称轴是 ,顶点坐标是 , 归纳:对于二次函数2ax y =图像具有什么特征呢?你是怎样理解和记忆这些特征的呢? [检测反馈] 1.根据函数关系式y=31x 2填空:(1)图像开口向 ,顶点坐标 ,对称轴 ; 2. 说出y=-3x 2的图像的开口方向 ,对称轴是 ,顶点坐标是 3、已知二次函数y=5x 2的图像,如果另一个函数的图像与该函数关于x 轴对称,那么这个函数的关系式是 .4、对于函数y=x 2,由其图像可知,下列判断中,正确的是( ) A 、若m 、n 互为相反数,则x=m 与x=n 对应的函数值相等; B 、对于同一自变量x ,有两个函数值与之对应; C 、对于任意一个实数y ,有两个x 值与之对应; D 、对于任何实数x ,都有y>0.4.已知a ≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( )A. B.C .D.【巩固提升】1.在同一坐标系中画出函数y=23x 2、y=3x 2、y =-23x 2、y =-3x 2的图像。

(新人教版) 数学 九年级上册 22.1 二次函数的图象和性质 (导学案)

(新人教版) 数学 九年级上册 22.1 二次函数的图象和性质 (导学案)

22.1二次函数的图象和性质22.1.1二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系.难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列函数中,是二次函数的有__A,B,C__.A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若y=(b-2)x2+4是二次函数,则__b≠2__.探究2某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.(1)求y与x之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y=-10x2+1400x-40000(50<x<100).(2)由题意得:-10x2+1400x-40000=8000,化简得x2-140x+4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如果函数y=(k+1)xk2+1是y关于x的二次函数,则k的值为多少?2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是(A)A.二次函数B.一次函数C.正比例函数D.反比例函数3.已知,函数y=(m-4)xm2-m+2x2-3x-1是关于x的函数.(1)m为何值时,它是y关于x的一次函数?(2)m为何值时,它是y关于x的二次函数?点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD中,AB=2 cm,BC=4 cm,P是BC上的一动点,动点Q仅在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,点P从B点开始沿射线BC方向运动,设BP=x cm,正方形PQRS与矩形ABCD重叠部分面积为y cm2,试分别写出0≤x≤2和2≤x≤4时,y与x之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a≠0.2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2二次函数y=ax2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象.难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y=x2,y=12x2和y=2x2的图象;点拨精讲:根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:__________.(5)在同一坐标系中画出函数y =-x 2,y =-12x 2和y =-2x 2的图象,找出图象的异同. 点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y 轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a 越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.教材P 41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填空:(1)函数y =(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y =x 2,y =12x 2和y =-2x 2的图象如图所示,请指出三条抛物线的解析式. 解:(1)抛物线,(0,0),y 轴,向上;(2)根据抛物线y =ax 2中,a 的值来判断,在x 轴上方开口小的抛物线为y =x 2,开口大的为y =12x 2,在x 轴下方的为y =-2x 2. 点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y =ax 2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2 已知函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求这个最低点;当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0. 解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数. (2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m>-2,∴只能取m =2. ∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x>0时,y 随x 的增大而增大.(3)若函数有最大值,则抛物线开口向下,∴m +2<0,即m<-2,∴只能取m =-3.∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴m =-3时,函数有最大值为0.∴x>0时,y随x的增大而减小.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.二次函数y=ax2与y=-ax2的图象之间有何关系?2.已知函数y=ax2经过点(-1,3).(1)求a的值;(2)当x<0时,y的值随x值的增大而变化的情况.3.二次函数y=-2x2,当x1>x2>0,则y1与y2的关系是__y1<y2__.4.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是(B)点拨精讲:1.二次函数y=ax2的图象的画法是列表、描点、连线,列表时一般取5~7个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2.抛物线y=ax2的开口大小与|a|有关,|a|越大,开口越小,|a|相等,则其形状相同.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(1)1.会作函数y=ax2和y=ax2+k的图象,能比较它们的异同;理解a,k对二次函数图象的影响,能正确说出两函数图象的开口方向、对称轴和顶点坐标.2.了解抛物线y=ax2上下平移规律.重点:会作函数的图象.难点:能正确说出两函数图象的开口方向、对称轴和顶点坐标.一、自学指导.(10分钟)自学:自学课本P32~33“例2”及两个思考,理解y=ax2+k中a,k对二次函数图象的影响,完成填空.总结归纳:二次函数y=ax2的图象是一条抛物线,其对称轴是y轴,顶点是(0,0),开口方向由a的符号决定:当a>0时,开口向上;当a<0时,开口向__下__.当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.抛物线有最__低__点,函数y有最__小__值.当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.抛物线有最__高__点,函数y有最__大__值.抛物线y=ax2+k可由抛物线y=ax2沿__y__轴方向平移__|k|__单位得到,当k>0时,向__上__平移;当k<0时,向__下__平移.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.在抛物线y=x2-2上的一个点是(C)A.(4,4)B.(1,-4)C .(2,2)D .(0,4)2.抛物线y =x 2-16与x 轴交于B ,C 两点,顶点为A ,则△ABC 的面积为__64__. 点拨精讲:与x 轴的交点的横坐标即当y 等于0时x 的值,即可求出两个交点的坐标.3.画出二次函数y =x 2-1,y =x 2,y =x 2+1的图象,观察图象有哪些异同?点拨精讲:可从开口方向、对称轴、形状大小、顶点、位置去找.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1 抛物线y =ax 2与y =ax 2±c 有什么关系?解:(1)抛物线y =ax 2±c 的形状与y =ax 2的形状完全相同,只是位置不同;(2)抛物线y =ax 2向上平移c 个单位得到抛物线y =ax 2+c ;抛物线y =ax 2向下平移c 个单位得到抛物线y =ax 2-c.探究2 已知抛物线y =ax 2+c 向下平移2个单位后,所得抛物线为y =-2x 2+4,试求a ,c 的值.解:根据题意,得⎩⎨⎧a =-2,c -2=4,解得⎩⎪⎨⎪⎧a =-2,c =6. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(13分钟)1.函数y =ax 2-a 与y =ax -a(a ≠0)在同一坐标系中的图象可能是( D )2.二次函数的图象如图所示,则它的解析式为( B )A .y =x 2-4B .y =-34x 2+3 C .y =32(2-x)2 D .y =32(x 2-2) 3.二次函数y =-x 2+4图象的对称轴是y 轴,顶点坐标是(0,4),当x<0,y 随x 的增大而增大.4.抛物线y =ax 2+c 与y =-3x 2的形状大小,开口方向都相同,且其顶点坐标是(0,5),则其表达式为y =-3x 2+5,它是由抛物线y =-3x 2向__上__平移__5__个单位得到的.5.将抛物线y =-3x 2+4绕顶点旋转180°,所得抛物线的解析式为y =3x 2+4.6.已知函数y=ax2+c的图象与函数y=5x2+1的图象关于x轴对称,则a=__-5__,c=__-1__.点拨精讲:1.函数的图象与性质以及抛物线上下平移规律.(可结合图象理解)2.抛物线平移多少个单位,主要看两顶点坐标,确定两顶点相隔的距离,从而确定平移的方向与单位长,有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(2)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.难点:能正确说出图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2的平移规律.一、自学指导.(10分钟)自学:自学课本P33~34“探究”与“思考”,掌握y=a(x-h)2与y=ax2之间的关系,理解并掌握y=a(x-h)2的相关性质,完成填空.画函数y=-12x2、y=-12(x+1)2和y=-12(x-1)2的图象,观察后两个函数图象与抛物线y=-12x2有何关系?它们的对称轴、顶点坐标分别是什么?点拨精讲:观察图象移动过程,要特别注意特殊点(如顶点)的移动情况.总结归纳:二次函数y=a(x-h)2的顶点坐标为(h,0),对称轴为直线x=h.当a>0时,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大,抛物线有最低点,函数y有最小值;当a<0时,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y 随x的增大而减小,抛物线有最高点,函数y有最大值.抛物线y=ax2向左平移h个单位,即为抛物线y=a(x+h)2(h>0);抛物线y=ax2向右平移h个单位,即为抛物线y=a(x-h)2(h>0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.教材P35练习题;2.抛物线y=-12(x-1)2的开口向下,顶点坐标是(1,0),对称轴是x=1,通过向左平移1个单位后,得到抛物线y=-1 2x2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1在直角坐标系中画出函数y =12(x +3)2的图象. (1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答,当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 取最大值或最小值?(3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象? 解:(1)对称轴是直线x =-3,顶点坐标(-3,0);(2)当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的增大而增大;当x =-3时,y 有最小值;(3)将函数y =12x 2的图象沿x 轴向左平移3个单位得到函数y =12(x +3)2的图象. 点拨精讲:二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点. 探究2 已知直线y =x +1与x 轴交于点A ,抛物线y =-2x 2平移后的顶点与点A 重合.(1)求平移后的抛物线l 的解析式;(2)若点B(x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小.解:(1)∵y =x +1,∴令y =0,则x =-1,∴A(-1,0),即抛物线l 的顶点坐标为(-1,0),又抛物线l 是由抛物线y =-2x 2平移得到的,∴抛物线l 的解析式为y =-2(x +1)2.(2)由(1)可知,抛物线l 的对称轴为x =-1,∵a =-2<0,∴当x>-1时,y 随x 的增大而减小,又-12<x 1<x 2,∴y 1>y 2. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.不画图象,回答下列问题:(1)函数y =3(x -1)2的图象可以看成是由函数y =3x 2的图象作怎样的平移得到的?(2)说出函数y =3(x -1)2的图象的开口方向、对称轴和顶点坐标.(3)函数有哪些性质?(4)若将函数y =3(x -1)2的图象向左平移3个单位得到哪个函数图象?点拨精讲:性质从增减性、最值来说.2.与抛物线y =-2(x +5)2顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数关系式是y =2(x +5)2.3.对于函数y =-3(x +1)2,当x>-1时,函数y 随x 的增大而减小,当x =-1时,函数取得最大值,最大值y =0.4.二次函数y =ax 2+bx +c 的图象向左平移2个单位长度得到y =x 2-2x +1的图象,则b =-6,c =9.点拨精讲:比较函数值的大小,往往可根据函数的性质,结合函数图象,能使解题过程简洁明了.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3 二次函数y =a (x -h )2+k 的图象和性质(3)1.进一步熟悉作函数图象的主要步骤,会作函数y =a(x -h)2+k 的图象.2.能正确说出y =a(x -h)2+k 的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y =a(x -h)2+k 的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y =a(x -h)2+k 的图象.难点:能正确说出y =a(x -h)2+k 的图象的开口方向、对称轴和顶点坐标,掌握抛物线y =a(x -h)2+k 的平移规律.一、自学指导.(10分钟)自学:自学课本P 35~36“例3、例4”,掌握y =a(x -h)2+k 与y =ax 2之间的关系,理解并掌握y =a(x -h)2+k 的相关性质,完成填空.总结归纳:一般地,抛物线y =a(x -h)2+k 与y =ax 2的形状相同,位置不同,把抛物线y =ax 2向上(下)向左(右)平移,可以得到抛物线y =a(x -h)2+k ,平移的方向、距离要根据h ,k 的值来决定:当h>0时,表明将抛物线向右平移h 个单位;当k<0时,表明将抛物线向下平移|k|个单位.抛物线y =a(x -h)2+k 的特点是:当a>0时,开口向上;当a<0时,开口向下;对称轴是直线x =h ;顶点坐标是(h ,k).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟1.教材P 37练习题2.函数y =2(x +3)2-5的图象是由函数y =2x 2的图象先向左平移3个单位,再向下平移5个单位得到的;3.抛物线y =-2(x -3)2-1的开口方向是向下,其顶点坐标是(3,-1),对称轴是直线x =3,当x>3时,函数值y 随自变量x 的值的增大而减小.一、小组讨论:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填写下表:探究2 已知y =a(x -h)2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a ,h ,k 的值;(2)在同一坐标系中,画出y =a(x -h)2+k 与y =-12x 2的图象;(3)观察y =a(x -h)2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;(4)观察y =a(x -h)2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:(1)∵抛物线y=-12x2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线是y=-12(x-1)2+2,∴a=-12,h=1,k=2;(2)函数y=-12(x-1)2+2与y=-12x2的图象如图;(3)观察y=-12(x-1)2+2的图象可知,当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小;(4)由y=-12(x-1)2+2的图象可知,对于一切x的值,y≤2.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.将抛物线y=-2x2向右平移3个单位,再向上平移2个单位,得到的抛物线解析式是y=-2(x-3)2+2.点拨精讲:抛物线的移动,主要看顶点位置的移动.2.若直线y=2x+m经过第一、三、四象限,则抛物线y=(x-m)2+1的顶点必在第二象限.点拨精讲:此题为二次函数简单的综合题,要注意它们的图象与性质的区别.3.把y=2x2-1的图象向右平移1个单位,再向下平移2个单位,得到的新抛物线的解析式是y=2(x-1)2-3.4.已知A(1,y1),B(-2,y2),C(-2,y3)在函数y=a(x+1)2+k(a>0)的图象上,则y1,y2,y3的大小关系是y2<y3<y1.点拨精讲:本节所学的知识是:二次函数y=a(x-h)2+k的图象画法及其性质的总结;平移的规律.所用的思想方法:从特殊到一般.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4二次函数y=ax2+bx+c的图象和性质(1)1.会画二次函数y=ax2+bx+c的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.2.能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.3.会求二次函数的最值,并能利用它解决简单的实际问题.重点:会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.难点:能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.一、自学指导.(10分钟)自学:自学课本P 37~39“思考、探究”,掌握将一般式化成顶点式的方法,完成填空. 总结归纳:二次函数y =a(x -h)2+k 的顶点坐标是(h ,k),对称轴是x =h ,当a>0时,开口向上,此时二次函数有最小值,当x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当x<h 时,y 随x 的增大而增大,当x>h 时,y 随x 的增大而减小;用配方法将y =ax 2+bx +c 化成y =a(x -h)2+k 的形式,则h =-b 2a ,k =4ac -b 24a ;则二次函数的图象的顶点坐标是(-b 2a ,4ac -b 24a ),对称轴是x =-b 2a ;当x =-b 2a时,二次函数y =ax 2+bx +c 有最大(最小)值,当a<0时,函数y 有最大值,当a>0时,函数y 有最小值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.求二次函数y =x 2+2x -1顶点的坐标、对称轴、最值,画出其函数图象.点拨精讲:先将此函数解析式化成顶点式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,画出的抛物线才能准确反映这个抛物线的特征.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 将下列二次函数写成顶点式y =a(x -h)2+k 的形式,并写出其开口方向、顶点坐标、对称轴.(1)y =14x 2-3x +21;(2)y =-3x 2-18x -22. 解:(1)y =14x 2-3x +21 =14(x 2-12x)+21 =14(x 2-12x +36-36)+21 =14(x -6)2+12 ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x =6.(2)y =-3x 2-18x -22=-3(x 2+6x)-22=-3(x 2+6x +9-9)-22=-3(x +3)2+5∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x =-3.点拨精讲:第(2)小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.探究2用总长为60 m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?(1)S与l有何函数关系?(2)举一例说明S随l的变化而变化?(3)怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225).点拨精讲:二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.y=-2x2+8x-7的开口方向是向下,对称轴是x=2,顶点坐标是(2,1);当x=2时,函数y有最大值,其值为y=1.2.已知二次函数y=ax2+2x+c(a≠0)有最大值,且ac=4,则二次函数的顶点在第四象限.3.抛物线y=ax2+bx+c,与y轴交点的坐标是(0,c),当b2-4ac=0时,抛物线与x轴只有一个交点(即抛物线的顶点),交点坐标是(-b2a,0);当b2-4ac>0时,抛物线与x 轴有两个交点,交点坐标是2a,0);当b2-4ac<0时,抛物线与x轴没有交点,若抛物线与x轴的两个交点坐标为(x1,0),(x2,0),则y=ax2+bx+c=a(x-x1)(x-x2).点拨精讲:与y轴的交点坐标即当x=0时求y的值;与x轴交点即当y=0时得到一个一元二次方程,而此一元二次方程有无解,两个相等的解和两个不相等的解三种情况,所以二次函数与x轴的交点情况也分三种.注意利用抛物线的对称性,已知抛物线与x轴的两个交点坐标时,可先用交点式:y=a(x-x1)(x-x2),x1,x2为两交点的横坐标.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4二次函数y=ax2+bx+c的图象和性质(2)能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.重难点:能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.一、自学指导.(10分钟)自学:自学课本P 39~40,自学“探究、归纳”,掌握用待定系数法求二次函数的解析式的方法,完成填空.总结归纳:若知道函数图象上的任意三点,则可设函数关系式为y =ax 2+bx +c ,利用待定系数法求出解析式;若知道函数图象上的顶点,则可设函数的关系式为y =a(x -h)2+k ,把另一点坐标代入式中,可求出解析式;若知道抛物线与x 轴的两个交点(x 1,0),(x 2,0),可设函数的关系式为y =a(x -x 1)(x -x 2),把另一点坐标代入式中,可求出解析式.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.二次函数y =4x 2-mx +2,当x<-2时,y 随x 的增大而减小;当x>-2时,y 随x 的增大而增大,则当x =1时,y 的值为22.点拨精讲:可根据顶点公式用含m 的代数式表示对称轴,从而求出m 的值.2.抛物线y =-x 2+6x +2的顶点坐标是(3,11).3.二次函数y =ax 2+bx +c 的图象大致如图所示,下列判断错误的是( D )A .a<0B .b>0C .c>0D .ac>0第3题图 第4题图 第5题图4.如图,抛物线y =ax 2+bx +c(a>0)的对称轴是直线x =1,且经过点P(3,0),则a -b +c 的值为( A )A .0B .-1C .1D .2点拨精讲:根据二次函数图象的对称性得知图象与x 轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a -b +c 的值.5.如图是二次函数y =ax 2+3x +a 2-1的图象,a 的值是-1.点拨精讲:可根据图象经过原点求出a 的值,再考虑开口方向.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),求函数的关系式和对称轴.解:设函数解析式为y =ax 2+bx +c ,因为二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),则有⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3.解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴函数的解析式为y =x 2-2x -3,其对称轴为x =1.探究2 已知一抛物线与x 轴的交点是A(3,0),B(-1,0),且经过点C(2,9).试求该抛物线的解析式及顶点坐标.解:设解析式为y =a(x -3)(x +1),则有a(2-3)(2+1)=9,∴a =-3,∴此函数的解析式为y =-3x 2+6x +9,其顶点坐标为(1,12).点拨精讲:因为已知点为抛物线与x 轴的交点,解析式可设为交点式,再把第三点代入即可得一元一次方程,较之一般式得出的三元一次方程组简单.而顶点可根据顶点公式求出.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.已知一个二次函数的图象的顶点是(-2,4),且过点(0,-4),求这个二次函数的解析式及与x 轴交点的坐标.2.若二次函数y =ax 2+bx +c 的图象过点(1,0),且关于直线x =12对称,那么它的图象还必定经过原点.3.如图,已知二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.点拨精讲:二次函数解析式的三种形式:1.一般式y =ax 2+bx +c ;2.顶点式y =a(x -h)2+k ;3.交点式y =a(x -x 1)(x -x 2).利用待定系数法求二次函数的解析式,需要根据已知点的情况设适当形式的解析式,可使解题过程变得更简单.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)。

二次函数的性质与图象导学案

二次函数的性质与图象导学案

导学案:二次函数的性质与图象(一)编撰人:李斌 审定:阜阳四中高一数学组学习目的:掌握研究二次函数图像和性质的配方法。

进一步掌握二次函数的图像和性质。

会综合运用二次函数图像和性质解决有关问题。

【预习要点及要求】1.二次函数的一般方法——配方法。

2.二次函数的图像的画法。

3.二次函数的图像的顶点坐标、对称轴方程、单调区间和最值的求法。

4.掌握研究二次函数图像和性质的配方法。

5.进一步掌握二次函数的图像和性质。

6.会综合运用二次函数图像和性质解决有关问题。

【知识再现】1. 二次函数的一般形式)0(2≠++=a c bx axy 2.二次函数的顶点坐标()44,22a b ac a b--【概念探究】 1、阅读课本57页到例1的上方,完成下列问题1、二次函数的定义及图象的形状是怎样的?2、函数_____________________叫二次函数,它的定义域是_________________.3、当0==c b 时,二次函数)0(2≠++=a c bx ax y 变为___________,它的图像和性质特征为:(1)顶点坐标________,奇偶性为_______,图形关于_______对称;(2)当0>a 时,抛物线的开口______,在_________上是增函数,在_________上是减函数,当x=_____有最小值_______;当0<a 时,抛物线的开口_______,在_________上是增函数,在____________上是减函数,当x=______有最大值_______.(3) 当0>a 时,抛物线在x 轴的______,开口向上并随a 的增大逐渐______;当0<a 时,抛物线在x 轴的______,开口向下并随a 的增大逐渐______;2、阅读课本例1与例2,完成下列问题1.不看课本你能否独立完成两个例题例1、 论述二次函数6421)(2++=x x x f 的性质,并作出它的图象。

二次函数的图像与性质导学案

二次函数的图像与性质导学案

二次函数的图像与性质导学案第二节二次函数的图像与性质环节一:回顾旧知,导入新课。

1.一次函数的图像是直线,反比例函数的图像是双曲线。

2.画函数图像的一般步骤是确定定义域和值域,列出函数表达式,选择合适的坐标系,计算出函数对应的点,然后用平滑的曲线将这些点连接起来。

环节二:小组合作,探究新知。

1.试画出二次函数 $y=x^2$ 的图像。

由 1、2、3 组用黑色笔完成以下步骤:1)列出函数表格:x$ | $2y=x$ | $y=2x^2$8$| $-16$ | $128$6$| $-12$ | $72$4$| $-8$。

| $32$2$| $-4$。

| $8$0$ | $0$。

| $0$2$ | $4$。

| $8$4$ | $8$。

| $32$6$ | $12$。

| $72$8$ | $16$。

| $128$2)描点3)连线2.试画出二次函数 $y=-x^2$ 的图像。

由 4、5、6 组用黑色笔完成以下步骤:1)列出函数表格:x$ | $y=-x^2$ | $y=-2x^2$8$| $-64$。

| $-128$6$| $-36$。

| $-72$4$| $-16$。

| $-32$2$| $-4$。

| $-8$0$ | $0$。

| $0$2$ | $-4$。

| $-8$4$ | $-16$。

| $-32$6$ | $-36$。

| $-72$8$ | $-64$。

| $-128$2)描点3)连线3.在第一题中画出二次函数 $y=2x^2$ 的图像。

由 1、2、3 组用红色笔完成。

4.在第二题中画出二次函数 $y=-2x^2$ 的图像。

由 4、5、6 组用红色笔完成。

环节三:归纳总结,提炼升华。

二次函数 $y=ax^2(a>0)$ 和 $y=ax^2(a<0)$ 的性质如下:对称轴:$x=0$。

顶点坐标:$(0,0)$。

位置:$y=ax^2$ 的图像上下平移 $|a|$ 个单位。

开口方向:$y=ax^2$ 的图像开口向上;$y=ax^2$ 的图像开口向下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的图像和性质导学案
【学习目标】
1、经历探索二次函数y=a(x-h)2(a ≠0)的图象作法和性质的过程;
2、能够理解函数y= y=a(x-h)2与y=ax 2的图象的关系,知道a 、h 对二次函数的图象的影响;
3、能正确说出函数y=a(x-h)2的图象的性质.
【课前导学】:叙述二次函数y=ax 2+k(a ≠0)的图象和性质。

【课堂导学】
自主学习:二次函数y=a(x-h)2(a ≠0)的图象作法和性质:
画出函数2y x = y=(x+3)2的图象 (1) 列表:
2y x = y=(x+3)2的图象;
【交流互动】:
(1)函数y=(x+3)2的图象与y=x 2的图象有什么关系? (2)函数y=(x+3)2的图象与y=x 2的图象的形状相同吗?
(3)从表格中的数值看,函数y=(x+3)2的函数值与函数y=x 2的函数值相等时,它们所对应
的自变量的值有什么关系?
(4)从点的位置看,函数y=(x+3)2的图象与函数y=x 2的图象的位置有什么关系?它是轴对
称图形吗?它的对称轴和顶点坐标分别是什么?
3、结论:函数y=(x+3)2的图象可以由函数y=x 2
的图像沿x 轴向 平移 个单位长度得到,
所以它是 ,这条抛物线的对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小. 4、观察右图,思考并回答下列问题:
①抛物线y=-3(x-1)2可以看作是抛物线y=-3x 2
沿x 轴 平移了 个单位;抛物线
y=-3(x+1)2可以看作是抛物线y=-3x 2
沿x 轴 平移了 个单位. ②图象向左平移还是向右平移,移多少个单位长度,有什么规律吗?
【课堂小结】二次函数y=a(x-h)2(a ≠0)的图象和性质: 【巩固练习】
1、二次函数y=2(x+5)2的图像是 ,开口 ,对称轴是 ,当
x= 时,y 有最 值,是 。

它是由二次函数y=2x 2向____平移______个单位得到。

它向左平移6个单位后的二次函数的解析式为___________。

2、将函数y=3(x -4)2
的图象沿x 轴对折后得到的函数解析式是 ;将函数y=3(x -4)2的图象沿y 轴对折后得到的函数解析式是 。

3、把抛物线y=a (x-4)2
向左平移6个单位后得到抛物线y=- 3(x-h )2
的图象,则a= ,
h= 。

若抛物线y= a (x-4)2的顶点A ,且与y 轴交于点B ,抛物线y= - 3(x-h )2
的顶点是M ,则S ΔMAB = . 4、如图所示,在直角坐标系中,函数1y x =-+与21
(1)2
y x =-
-的图象大致是( ) 5、将抛物线2(2)(0)y a x a =+>向右平移2个单位后与直线AB 相交于B,C 两点,如图,已知A 点的坐标是(2,0),B 点坐标是(1,1).
(1)求直线AB 和平移后的抛物线所表示的函数解析式;
(2)如果平移后的抛物线上有一点D,使得OAD OBC S S = ,求这时点D 的坐标.
作业:新课堂。

相关文档
最新文档