江苏省高一上学期数学第一次月考试卷
2024-2025学年江苏省南通市如皋中学高一(上)月考数学试卷(一)(含答案)

2024-2025学年江苏省南通市如皋中学高一(上)月考数学试卷(一)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.函数y=2sin(−x2+π3)的最小正周期是( )A. πB. −4πC. 4πD. 2π2.下列三角函数值为正数的是( )A. tan300°B. sin210°C. cos210°D. sin(−5π3)3.全集U=R,集合A={x|xx−4≤0},集合B={x|log2(x−1)>2},则∁U(A∪B)为( )A. (−∞,0]∪[4,5]B. (−∞,0)∪(4,5]C. (−∞,0)∪[4,5]D. (−∞,4]∪(5,+∞)4.已知幂函数f(x)=(m2−5m+7)x m+1为奇函数,则实数m的值为( )A. 4或3B. 2或3C. 3D. 25.若a=(1.1)−12,b=(0.9)−12,c=log1.10.6,则它们的大小顺序是( )A. a<b<cB. b<a<cC. c<a<bD. a<c<b6.幂函数y=x a,当a取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A(1,0),B(0,1),连结AB,线段AB恰好被其中的两个幂函数y=x a,y=x b的图象三等分,即有BM=MN=NA,那么a−1b=( )A. 0B. 1C. 12D. 27.已知a>0且a≠1,函数在区间(−∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a||x|−b|的图象是( )A. B. C. D.8.已知函数其中ω>0.若f(x)= 2sin (ωx +π4),f(x)在区间(π2,3π4)上单调递增,则ω的取值范围是( )A. (0,4] B. (0,13] C. [52,3] D. (0,13]∪[52,3]二、多选题:本题共3小题,共18分。
最新江苏省2022-2022年高一(上)第一次月考数学试卷

高一(上)第一次月考数学试卷一、选择题(每小题5分,共60分)1.设集合(jíhé)A={x∈Q|x>﹣1},则()A.∅∈A B.C.D.⊈A2.函数(hánshù)f(x)=的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2)D.[1,+∞)3.若函数(hánshù)y=f(x)在R上单调递减且f(2m)>f(1+m),则实数(shìshù)m的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,1)C.(﹣1,+∞)D.(1,+∞)4.在下列四组函数(hánshù)中,f(x)与g(x)表示同一函数的是()A.B.C.D.5.函数f(x)=x+1,x∈{﹣1,1,2}的值域是()A.0,2,3 B.0≤y≤3 C.{0,2,3}D.[0,3]6.已知集合A={1,2,3},那么A的真子集的个数是()A.8 B.7 C.6 D.37.全集U={1,2,3},M={x|x2﹣3x+2=0},则∁U M等于()A.{1}B.{1,2}C.{2}D.{3}8.若一次函数y=kx+b在集合R上单调(dāndiào)递减,则点(k,b)在直角坐标系中的()A.第一(dìyī)或二象限B.第二或三象限C.第一或四象限D.第三或四象限9.已知集合(jíhé)P={1,2,3,4,5},Q={X∈R|2≤X≤5},那么下面结论(jiélùn)正确的是()A.P∪Q=P B.P∩Q⊇Q C.P∪Q=Q D.P∩Q⊆P10.函数(hánshù)的图象是()A.B.C.D.11.函数的减区间是()A.(﹣1,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣1)∪(﹣1,+∞)D.(﹣∞,﹣1),(﹣1,+∞)12.已知函数(hánshù)y=f(x+1)定义域是[﹣2,3],则y=f(2x﹣1)的定义域()A.B.[﹣1,4] C.[﹣5,5] D.[﹣3,7]二、填空题(每小题5分,共20分)13.已知函数(hánshù),则f(3)=.14.集合(jíhé)M={a|∈N,且a∈Z},用列举法表示(biǎoshì)集合M=.15.若函数(hánshù)f(x)=x2+2(a﹣1)x+2在(﹣∞,4)上是减函数,则实数a的取值范围是.16.已知f(x)=x5﹣ax3+bx﹣6,f(﹣2)=10,则f(2)=.三、解答题(每小题14分,共70分)17.已知集合A={2,3,a2+4a+2},B={0,7,2﹣a,a2+4a﹣2},A∩B={3,7},求a的值及集合A∪B.18.若集合A={x|﹣3≤x≤4}和B={x|2m﹣1≤x≤m+1}.(1)当m=﹣3时,求集合A∩B;(2)当B⊆A时,求实数m取值范围.19.已知函数(hánshù)f(x)=|x﹣2|﹣|x+2|.(1)把函数写成分段函数的形式(xíngshì),并画出函数图象;(2)根据图象写出函数(hánshù)的值域,并证明函数的奇偶性.20.已知f(x)=﹣x2+ax+3.(1)当a=2时,求f(x)的单调递增(dìzēng)区间;(2)若f(x)为偶函数,求f(x)在[﹣1,3]的最大值与最小值.21.已知函数(hánshù)f(x)=x+有如下性质,如果常数a>0,那么该函数在(0,上是减函数,在[,上是增函数.写出f(x)=x+,(x>0)的减区间,并用定义证明.高一(上)第一次月考数学试卷参考答案与试题(shìtí)解析一、选择题(每小题5分,共60分)1.设集合(jíhé)A={x∈Q|x>﹣1},则()A.∅∈A B.C.D.⊈A【考点(kǎo diǎn)】元素(yuán sù)与集合关系的判断.【分析(fēnxī)】先从已知的集合中看出集合中元素的本质属性,再结合元素与集合关系及集合与集合关系对选项进行判断即可.【解答】解:∵集合A={x∈Q|x>﹣1},∴集合A中的元素是大于﹣1的有理数,对于A,符号:“∈”只用于元素与集合间的关系,故错;对于B、C、D,因不是有理数,故B对,C、D不对;故选B.2.函数f(x)=的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2)D.[1,+∞)【考点(kǎo diǎn)】函数(hánshù)的定义域及其求法.【分析(fēnxī)】利用分式分母不为(bù wéi)零,偶次方根非负,得到不等式组,求解即可.【解答(jiědá)】解:由题意解得x∈[1,2)∪(2,+∝)故选A3.若函数y=f(x)在R上单调递减且f(2m)>f(1+m),则实数m的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,1)C.(﹣1,+∞)D.(1,+∞)【考点】函数单调性的性质.【分析】先依据函数y=f(x)在R上单调递减化掉符号:“f”,将问题转化为关于m的整式不等式,再利用一元一次不等式的解法即可求得m的取值范围.【解答】解:∵函数y=f(x)在R上单调递减且f(2m)>f(1+m),∴2m<1+m,∴m<1.故选B.4.在下列四组函数中,f(x)与g(x)表示(biǎoshì)同一函数的是()A.B.C.D.【考点(kǎo diǎn)】判断两个函数(hánshù)是否为同一函数.【分析(fēnxī)】两个函数是同一个函数,当且仅当这两个函数具有相同的定义域、对应关系.考查各个选项中的2个函数是否(shì fǒu)具有相同的定义域和对应关系,从而得出结论.【解答】解:由于函数y=1的定义域为R,而函数y=的定义域为{x|x≠0},这2个函数的定义域不同,故不是同一个函数,故排除A.由于函数的定义域为{x|x>1},而的定义域为{x|1<x 或x<﹣1},这2个函数的定义域不同,故不是同一个函数,故排除B.由于函数y=x与函数 y=具有相同的定义域、对应关系、值域,故是同一个函数.由于函数y=|x|的定义域为R,而函数 y=的定义域为{x|x≥0},这两个函数的定义域不同,故不是同一个函数(hánshù),故排除D.故选C.5.函数(hánshù)f(x)=x+1,x∈{﹣1,1,2}的值域是()A.0,2,3 B.0≤y≤3 C.{0,2,3}D.[0,3]【考点(kǎo diǎn)】函数(hánshù)的值域.【分析(fēnxī)】将定义域内的每一个元素的函数值逐一求出,再根据值域中元素的性质求出所求.【解答】解:∵f(x)=x+1,x∈{﹣1,1,2}∴当x=﹣1时,f(﹣1)=0当x=1时,f(1)=2当x=2时,f(2)=3∴函数f(x)=x+1,x∈{﹣1,1,2}的值域是{0,2,3}故选C6.已知集合A={1,2,3},那么A的真子集的个数是()A.8 B.7 C.6 D.3【考点(kǎo diǎn)】子集(zǐ jí)与真子集.【分析(fēnxī)】若集合(jíhé)A中有n个元素,则集合A有2n﹣1个真子集(zǐ jí).【解答】解:∵集合A={1,2,3},∴A的真子集的个数为:23﹣1=7.故选:B.7.全集U={1,2,3},M={x|x2﹣3x+2=0},则∁U M等于()A.{1}B.{1,2}C.{2}D.{3}【考点】补集及其运算.【分析】求出集合M中方程的解确定出M,根据全集U求出M的补集即可.【解答】解:由集合M中的方程解得:x=1或x=2,即M={1,2},∵全集U={1,2,3},∴∁U M={3}.故选D8.若一次函数y=kx+b在集合R上单调递减,则点(k,b)在直角坐标系中的()A.第一(dìyī)或二象限B.第二或三象限C.第一或四象限D.第三或四象限【考点(kǎo diǎn)】一次函数的性质(xìngzhì)与图象.【分析(fēnxī)】由一次函数y=kx+b在集合(jíhé)R上单调递减,知,由此能推导出结果.【解答】解:∵一次函数y=kx+b在集合R上单调递减,∴,∴点(k,b)在直角坐标系中的第二或三象限.故选B.9.已知集合P={1,2,3,4,5},Q={X∈R|2≤X≤5},那么下面结论正确的是()A.P∪Q=P B.P∩Q⊇Q C.P∪Q=Q D.P∩Q⊆P【考点】集合的包含关系判断及应用.【分析】利用集合P={1,2,3,4,5},Q={X∈R|2≤X≤5},即可得出结论.【解答】解:∵集合P={1,2,3,4,5},Q={X∈R|2≤X≤5},∴P∩Q⊆P,故选D.10.函数(hánshù)的图象(tú xiànɡ)是()A.B.C.D.【考点(kǎo diǎn)】函数(hánshù)的图象.【分析(fēnxī)】对x进行讨论将函数转化为所熟知的基本初等函数既可作图.【解答】解:当x>0时,f(x)=x+1故图象为直线f(x)=x+1(x>0的部分)当x<0时,f(x)=x﹣1故图象为直线f(x)=x﹣1(x<0的部分)当x=0时f(x)无意义既无图象综上:f(x)=的图象为直线y=x+1(x>0的部分,y=x﹣1(x<0的部分)即两条射线故答案选C11.函数(hánshù)的减区间(qū jiān)是()A.(﹣1,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣1)∪(﹣1,+∞)D.(﹣∞,﹣1),(﹣1,+∞)【考点(kǎo diǎn)】函数(hánshù)的单调性及单调区间.【分析(fēnxī)】求出函数的定义域,求出函数的导数,求出函数的单调区间即可.【解答】解:函数的定义域是(﹣∞,﹣1)∪(﹣1,+∞),y′=﹣<0,故函数在(﹣∞,﹣1),(﹣1,+∞)递减,故选:D.12.已知函数y=f(x+1)定义域是[﹣2,3],则y=f(2x﹣1)的定义域()A.B.[﹣1,4] C.[﹣5,5] D.[﹣3,7]【考点】函数的定义域及其求法.【分析】根据题目给出的函数y=f(x+1)定义域,求出函数y=f(x)的定义域,然后由2x﹣1在f(x)的定义域内求解x即可得到函数y=f(2x﹣1)定义域【解答(jiědá)】解:解:∵函数(hánshù)y=f(x+1)定义域为[﹣2,3],∴x∈[﹣2,3],则x+1∈[﹣1,4],即函数(hánshù)f(x)的定义域为[﹣1,4],再由﹣1≤2x﹣1≤4,得:0≤x≤,∴函数(hánshù)y=f(2x﹣1)的定义域为[0,].故选A.二、填空题(每小题5分,共20分)13.已知函数(hánshù),则f(3)=6.【考点】函数的值.【分析】根据函数的解析式求出f(3)的值即可.【解答】解:∵,∴f(3)=﹣2×3=﹣6,故答案为:﹣6.14.集合M={a|∈N,且a∈Z},用列举法表示集合M={﹣1,2,3,4}..【考点(kǎo diǎn)】集合(jíhé)的表示法.【分析(fēnxī)】由题意可知5﹣a是6的正约数,然后分别确定(quèdìng)6的正约数,从而得到a的值为﹣1,2,3,4,即A={﹣1,2,3,4}.【解答(jiědá)】解:由题意可知5﹣a是6的正约数,当5﹣a=1,a=4;当5﹣a=2,a=3;当5﹣a=3,a=2;当5﹣a=6,a=﹣1;即M={﹣1,2,3,4}.故答案为:{﹣1,2,3,4}.15.若函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4)上是减函数,则实数a的取值范围是a≤﹣3.【考点】二次函数的性质.【分析】利用二次函数的对称轴公式求出二次函数的对称轴,据对称轴与单调区间的关系,令1﹣a≥4求出a的范围.【解答】解:二次函数的对称轴为:x=1﹣a∵函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4)上是减函数∴1﹣a≥4解得a≤﹣3故答案(dá àn)为:a≤﹣3.16.已知f(x)=x5﹣ax3+bx﹣6,f(﹣2)=10,则f(2)=﹣22.【考点(kǎo diǎn)】函数(hánshù)奇偶性的性质.【分析(fēnxī)】由f(﹣2)=10,a,b的值不确定(quèdìng),可以得出a,b的关系式,整体代入f(2)的表达式中,计算求解.【解答】解:f(x)=x5﹣ax3+bx﹣6,且f(﹣2)=10,即﹣32﹣8a﹣2b﹣6=10,整理得,8a+2b=﹣48,∴f(2)=32+8a+2b﹣6=﹣22.故答案为:﹣22.三、解答题(每小题14分,共70分)17.已知集合A={2,3,a2+4a+2},B={0,7,2﹣a,a2+4a﹣2},A∩B={3,7},求a的值及集合A∪B.【考点】子集与交集、并集运算的转换.【分析(fēnxī)】由A∩B={3,7}知,3,7既是集合A的元素,也是集合B的元素,从而建立关于(guānyú)a的方程,然后利用集合元素的特征检验即可.【解答(jiědá)】解:∵A∩B={3,7}∴7∈A,∴a2+4a+2=7即a=﹣5或a=1当a=﹣5时,B={0,7,7,3}(舍去)当a=1时,B={0,7,1,3}∴B={0,7,1,3}.∴A∪B={0,1,2,3,7}18.若集合(jíhé)A={x|﹣3≤x≤4}和B={x|2m﹣1≤x≤m+1}.(1)当m=﹣3时,求集合(jíhé)A∩B;(2)当B⊆A时,求实数m取值范围.【考点】集合关系中的参数取值问题;交集及其运算.【分析】(1)根据题意,由m=﹣3可得集合B,进而由交集的意义可得答案;(2)分2种情况(qíngkuàng)讨论:①、B=∅时,则B⊆A成立(chénglì),由2m ﹣1>m+1求出m的范围(fànwéi)即可;②、B≠∅时,有2m﹣1≤m+1,且,解可得m的范围(fànwéi),综合①②可得答案(dá àn).【解答】解:(1)m=﹣3时,B={﹣7≤x≤﹣2},则A∩B={x|﹣3≤x≤﹣2};(2)根据题意,分2种情况讨论:①、B=∅时,则2m﹣1>m+1,即m>2时,B⊆A成立;②、B≠∅时,则2m﹣1≤m+1,即m≤2时,必有,解可得﹣1≤m≤3,又由m≤2,此时m的取值范围是﹣1≤m≤2,综合①②可得,m的取值范围是m≥﹣1.19.已知函数f(x)=|x﹣2|﹣|x+2|.(1)把函数写成分段函数的形式,并画出函数图象;(2)根据图象写出函数的值域,并证明函数的奇偶性.【考点(kǎo diǎn)】分段(fēn duàn)函数的应用;绝对值不等式的解法.【分析(fēnxī)】(1)利用绝对值的几何意义,把函数(hánshù)写成分段函数的形式,并画出函数图象;(2)根据图象写出函数(hánshù)的值域,利用奇函数的定义证明函数的奇偶性.【解答】解:(1),函数图象如图所示;(2)f(x)的值域为[﹣4,4],f(x)为奇函数,证明如下:f(﹣x)=|﹣x﹣2|﹣|﹣x+2|=|x+2|﹣|x﹣2|=﹣f(x).所以f(x)为奇函数20.已知f(x)=﹣x2+ax+3.(1)当a=2时,求f(x)的单调(dāndiào)递增区间;(2)若f(x)为偶函数,求f(x)在[﹣1,3]的最大值与最小值.【考点(kǎo diǎn)】利用导数求闭区间上函数的最值;利用导数研究(yánjiū)函数的单调性.【分析(fēnxī)】(1)求出函数(hánshù)f(x)的对称轴,根据二次函数的性质求出函数的单调区间即可;(2)求出f(x)的解析式,根据二次函数的性质求出函数在[﹣1,3]的最值即可.【解答】解:(1)当a=2时,f(x)=﹣x2+2x+3=﹣(x﹣1)2+4,函数的对称轴是:x=1,开口向下,故f(x)的单调递增区间为(﹣∞,1].(2)f(x)为偶函数,则f(﹣x)=f(x),解得a=0,则f(x)=﹣x2+3,f(x)在[﹣1,0)递增,在(0,3]递减,故x=0时f(x)有最大值3,x=3时f(x)有最小值﹣6.21.已知函数f(x)=x+有如下性质,如果常数a>0,那么该函数在(0,上是减函数,在[,上是增函数.写出f(x)=x+,(x>0)的减区间,并用定义证明.【考点(kǎo diǎn)】函数单调性的判断(pànduàn)与证明.【分析(fēnxī)】首先(shǒuxiān),得到f(x)=x+,(x>0)的减区间(qūjiān):(0,2],然后,根据单调性的定义进行证明.【解答】解:f(x)=x+,(x>0)的减区间:(0,2],证明如下:任x1,x2∈(0,2]设,且x1<x2,则,f(x1)﹣f(x2)==x1﹣x2+=(x1﹣x2)(1﹣)∵0<x1<x2≤2,∴x1﹣x2<0,1﹣,∴(x1﹣x2)(1﹣)>0,∴f(x1)﹣f(x2)>0,∴f(x1)>f(x2),∴f(x)=x+,在区间(0,2]上为减函数.内容总结。
江苏省徐州市高一上学期数学第一次月考试卷

江苏省徐州市高一上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题5分,共60分) (共12题;共60分)1. (5分) (2019高一上·大庆月考) 下面与角终边相同的角是()A .B .C .D .2. (5分) (2019高一上·大庆月考) 的值是()A .B .C .D .3. (5分)如图,向量-等于()A .B .C .D .4. (5分)若,则所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (5分) (2018高一下·宜昌期末) 已知非零向量,且则一定共线的三点是()A . A、B、DB . A、B、CC . B、C、DD . A、C、D6. (5分)已知,则化简的结果为()A .B .C .D . 以上都不对7. (5分)函数f(x)=cos(2x﹣)的最小正周期是()A .B . πC . 2πD . 4π8. (5分)函数(其中)的图象如图所示,为了得到的图像,则只要将的图像()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度9. (5分)如图所示为f(x)=Asin(x+φ)(A>0,0<φ<)的部分图象,P,Q分别为f(x)图象的最高点和最低点,点P坐标为(2,A),PR⊥x轴于R,若∠PRQ=.则A及φ的值分别是()A . ,B . ,C . 2,D . 2,10. (5分) (2016高三上·红桥期中) 把函数y=sinx(x∈R)的图象上所有的点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的(纵坐标不变),得到的图象所表示的函数是()A . ,x∈RB . ,x∈RC . ,x∈RD . ,x∈R11. (5分)函数的最小正周期是,若其图像向右平移个单位后得到的函数为奇函数,则函数的图像()A . 关于点对称B . 关于直线对称C . 关于点对称D . 关于直线对称12. (5分)函数y=xcosx是()A . 奇函数B . 偶函数C . 既奇又偶D . 非奇非偶二、填空题(本大题共4小题,每小题5分,共20分) (共4题;共20分)13. (5分) (2017高一上·漳州期末) 半径为2cm的轮子按逆时针方向旋转,若轮周上一点转过的弧长是3cm,则轮子转过的弧度数为________.14. (5分) (2016高一下·赣榆期中) 化简: =________.15. (5分) (2018高一下·东莞期末) 已知,且,则当y取得最大值时________.16. (5分) (2016高三上·海淀期中) 去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsin ( x+ )(a,b为常数).若6月份的月平均气温约为22℃,12月份的月平均气温约为4℃,则该地8月份的月平均气温约为________℃.三、解答题(本大题共6小题,共70分) (共6题;共70分)17. (10分) (2018高一上·鹤岗月考) 已知角的终边过点,且,求和的值.18. (12分)(2020·银川模拟) 在中,内角所对的边分别为,且.(1)求角;(2)若,的面积为,求的值.19. (12分)(2017·南京模拟) 如图扇形AOB是一个观光区的平面示意图,其中∠AOB的圆心角为,半径OA为1Km,为了便于游客观光休闲,拟在观光区内铺设一条从入口A到出口B的观光道路,道路由圆弧AC、线段CD及线段BD组成.其中D在线段OB上,且CD∥AO,设∠AOC=θ,(1)用θ表示CD的长度,并写出θ的取值范围.(2)当θ为何值时,观光道路最长?20. (12分) (2019高一上·广东月考) 已知函数(1)将函数化简成的形式,并指出的最小正周期、振幅、初相和单调递增区间;(2)求函数在区间上的最小值和最大值.21. (12分)已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求A,ω,φ的值.(2)写出函数f(x)图象的对称中心及单调递增区间.(3)当x∈ 时,求f(x)的值域.22. (12分) (2018高一下·福州期末) 函数的部分图象如图所示.(1)求及图中的值;(2)设,求函数在区间上的最大值和最小值.参考答案一、选择题(本大题共12小题,每小题5分,共60分) (共12题;共60分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(本大题共4小题,每小题5分,共20分) (共4题;共20分) 13-1、14-1、15-1、16-1、三、解答题(本大题共6小题,共70分) (共6题;共70分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、。
南京市第九中学2024-2025学年高一上学期第一次月考数学试卷

江苏南京市第九中学2024-2025学年高一数学上第一次月考试卷一.选择题(共4小题)1.若不等式2kx2+kx﹣<0对一切实数x都成立,则k的取值范围为()A.(﹣3,0)B.[﹣3,0)C.[﹣3,0]D.(﹣3,0]2.已知集合,集合,则()A.M∈N B.C.M=N D.3.已知a>b>c,且a+b+c=0,则下列不等式一定成立的是()A.ab2>bc2B.ab2>b2cC.(ab﹣ac)(b﹣c)>0D.(ac﹣bc)(a﹣c)>04.已知正实数a,b满足2a+b=1,则的最小值为()A.3B.9C.4D.8二.多选题(共5小题)(多选)5.下列四个命题中正确的是()A.方程的解集为{2,﹣2}B.由所确定的实数集合为{﹣2,0,2}C.集合{(x,y)|3x+2y=16,x∈N,y∈N}可以化简为{(0,8),(2,5),(4,2)} D.中含有三个元素(多选)6.已知实数a,b∈R+,且2a+b=1,则下列结论正确的是()A.ab的最大值为B.a2+b2的最小值为C.的最小值为6D.(多选)7.下列四个命题是真命题的是()A.若函数f(x)的定义域为[﹣2,2],则函数f(x+1)的定义域为[﹣3,1]B.函数的值域为C.若函数y=x2+mx+4的两个零点都在区间为(1,+∞)内,则实数m的取值范围为(﹣5,﹣4)D.已知f(x)=x2﹣(m+2)x+2在区间[1,3]上是单调函数,则实数m的取值范围是(﹣∞,0]∪[4,+∞)(多选)8.已知集合A={x|﹣1<x<3},集合B={x|x<m+1},则A∩B=∅的一个充分不必要条件是()A.m≤﹣2B.m<﹣2C.m<2D.﹣4<m<﹣3(多选)9.若a<0<b,且a+b>0,则()A.B.C.|a|<|b|D.(a﹣1)(b﹣1)<0三.填空题(共4小题)10.定义在R上的函数f(x)满足,则=.11.若命题“∃x∈[﹣1,2],使得x2+mx﹣m﹣5≥0”是假命题,则m的取值范围是.12.已知关于x的不等式ax+b>0的解集为(﹣3,+∞),则关于x的不等式ax2+bx<0的解集为.13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠B=∠C且7a2+b2+c2=4,则△ABC 的面积的最大值为.四.解答题(共5小题)14.命题p:实数x满足x2﹣4ax+3a2<0(其中a>0),命题q:实数x满足.(1)若a=1,且命题p、q均为真命题,求实数x的取值范围;(2)若q是p的充分不必要条件,求实数a的取值范围.15.已知函数f(x)=是定义域(﹣1,1)上的奇函数,(1)确定f(x)的解析式;(2)用定义证明:f(x)在区间(﹣1,1)上是减函数;(3)解不等式f(t﹣1)+f(t)<0.16.已知函数f(x)=x2+ax+3,a∈R(1)若函数的定义域为R,求实数a的取值范围;(2)若当x∈[﹣2,2]时,函数有意义,求实数a的取值范围.(3)若函数g(x)=f(x)﹣(a﹣2)x+a,函数y=g[g(x)]的最小值是5,求实数a的值.17.若x,y∈(0,+∞),x+2y+xy=30.(1)求xy的取值范围;(2)求x+y的取值范围.18.已知关于x的函数和.(1)若y1≥y2,求x的取值范围;(2)若关于x的不等式(其中0<t≤2)的解集D=[m,n],求证:.参考答案与试题解析一.选择题(共4小题)1.【解答】解:k=0时,﹣<0恒成立,故满足题意;k≠0时,,∴﹣3<k<0.∴实数k的取值范围是(﹣3,0].故选:D.2.【解答】解:={x|x=12k,k∈N*},={x|x=24k,k∈Z},故A错误,C错误,当x=﹣12时,,既不在集合M,也不在集合N,故B错误;当元素满足为24的正整数倍时,比满足为12的正整数倍,故M∩N=,故D正确,故选:D.3.【解答】解:因为a>b>c,且a+b+c=0,所以a>0,c<0,对于A,由于a>c,而当b=0时,ab2=bc2,故A错误;对于B,当b=0时,ab2=b2c,故B错误;对于C,由于a>0,b>c,则b﹣c>0,所以(ab﹣ac)(b﹣c)=a(b﹣c)(b﹣c)>0,故C正确;对于D,因为a>b>c,所以a﹣b>0,a﹣c>0,又c<0,所以(ac﹣bc)(a﹣c)=c(a﹣b)(a﹣c)<0,故D错误.故选:C.4.【解答】解:因为正实数a,b满足2a+b=a+a+b=1,则====5++=9,当且仅当a+b=2a且2a+b=1,即a=b=时取等号.故选:B.二.多选题(共5小题)5.【解答】解:对于A,方程的解集为{(2,﹣2)},故A错误;对于B,当a>0,b>0时,=,当a>0,b<0时,=,当a<0,b>0时,=﹣1+1=0,当a<0,b<0时,=﹣1﹣1=﹣2,故所确定的实数集合为{﹣2,0,2},故B正确;对于C,3x+2y=16,x∈N,y∈N,则或或,故集合{(x,y)|3x+2y=16,x∈N,y∈N}可以化简为{(0,8),(2,5),(4,2)},故C正确;对于D,A=={﹣3,0,1,2}中含有4个元素,故D错误.故选:BC.6.【解答】解:对于A,因为a,b∈R+,2a+b=1,所以,得,当且仅当时,取等号,所以ab的最大值为,所以A正确,对于B,因为a,b∈R+,2a+b=1,所以0<a<1,b=1﹣2a>0,所以,所以,所以当时,a2+b2有最小值,所以B错误,对于C,因为a,b∈R+,2a+b=1,所以,当且仅当,即时,取等号,所以的最小值为,所以C错误,对于D,因为2a+b=1,所以,由选项B知,所以,所以,所以,所以,所以,所以D正确.故选:AD.7.【解答】解:由﹣2≤x+1≤2,解得﹣3≤x≤1,即函数f(x+1)的定义域为[﹣3,1],故A正确;函数的定义域为[2,+∞),易知函数在[2,+∞)上单调递增,则函数的值域为[2,+∞),故B错误;若函数y=x2+mx+4的两个零点x1,x2都在区间为(1,+∞)内,则x1>1,x2>1,∴x1﹣1>0,x2﹣1>0,且x1+x2=﹣m,x1x2=4,故即解得﹣5<m <﹣4,故C正确,若f(x)=x2﹣(m+2)x+2在[1,3]单调递增,则,若f(x)=x2﹣(m+2)x+2在[1,3]单调递减,则,故实数m的取值范围是(﹣∞,0]∪[4,+∞),D正确.故选:ACD.8.【解答】解:根据题意,A={x|﹣1<x<3},集合B={x|x<m+1},若A∩B=∅.则m+1≤﹣1≤﹣2,对于A,m≤﹣2为A∩B=∅的充分必要条件,故A错,对于B,m<﹣2为A∩B=∅的一个充分不必要条件,故B正确,对于C,m<2为A∩B=∅的一个必要不充分条件,故C错,对于D,﹣4<m<﹣3为A∩B=∅的一个充分不必要条件,故D正确,故选:BD.9.【解答】解:A选项:∵a<0<b,且a+b>0,∴b>﹣a>0,可得,即,A正确;B选项,,B错误;C选项,a<0<b即|a|=﹣a,|b|=b,由a+b>0可得|b|>|a|,C正确;D选项,因为当,所以(a﹣1)(b﹣1)>0,D错误.故选:AC.三.填空题(共4小题)10.【解答】解:∵,∴==2+2+2+1=7.故答案为:7.11.【解答】解;由题意原命题的否定“∀x∈[﹣1,2],使得x2+mx﹣m﹣5<0”是真命题,不妨设,其开口向上,对称轴方程为,则只需f(x)在[﹣1,2]上的最大值[f(x)]max<0即可,我们分以下三种情形来讨论:情形一:当即m≥2时,f(x)在[﹣1,2]上单调递增,此时有[f(x)]max=f(2)=m﹣1<0,解得m<1,故此时满足题意的实数m不存在;情形二:当即﹣4<m<2时,f(x)在上单调递减,在上单调递增,此时有[f(x)]max=max{f(2)(﹣1)}<0,只需,解不等式组得﹣2<m<1,故此时满足题意的实数m的范围为﹣2<m<1;情形三:当即m≤﹣4时,f(x)在[﹣1,2]上单调递减,此时有[f(x)]max=f(﹣1)=﹣2m﹣4<0,解得m>﹣2,故此时满足题意的实数m不存在;综上所述:m的取值范围是(﹣2,1).故答案为:(﹣2,1).12.【解答】解:∵关于x的不等式ax+b>0的解集为(﹣3,+∞),∴﹣=﹣3且a>0,∴b=3a,∴不等式ax2+bx<0,可化为ax2+3ax<0,又∵a>0,∴x2+3x<0,解得﹣3<x<0,即原不等式的解集为(﹣3,0).故答案为:(﹣3,0).13.【解答】解:由∠B=∠C得b=c,代入7a2+b2+c2=4得,7a2+2b2=4,即2b2=4﹣7a2,由余弦定理得,cos C==,所以sin C===,则△ABC的面积S===a==×≤××==,当且仅当15a2=8﹣15a2取等号,此时a2=,所以△ABC的面积的最大值为,故答案为:.四.解答题(共5小题)14.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,又a>0,所以a<x<3a;当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3;由,得,解得2<x≤3,即q为真时,实数x的取值范围是2<x≤3;则p、q均为真命题时,实数x的取值范围是(2,3);(2)由(1)知p:a<x<3a,a>0,q:2<x≤3;当q是p的充分不必要条件时,;解得1<a≤2,所以实数a的取值范围是(1,2].15.【解答】解:(1)根据题意,函数f(x)=是定义域(﹣1,1)上的奇函数,则有f(0)==0,则b=0;此时f(x)=,为奇函数,符合题意,故f(x)=,(2)证明:设﹣1<x1<x2<1,f(x1)﹣f(x2)=﹣=﹣又由﹣1<x1<x2<1,则(x1﹣x2)<0,x1x2+1>0,(﹣1)<0,(﹣1)<0,则有f(x1)﹣f(x2)>0,即函数f(x)在(﹣1,1)上为减函数;(3)根据题意,f(t﹣1)+f(t)<0⇒f(t﹣1)<﹣f(t)⇒f(t﹣1)<f(﹣t)⇒,解可得:<t<1,即不等式的解集为(,1).16.【解答】解:(1)若函数的定义域为R,则对任意的x∈R,x2+ax+3≠0,由于函数f(x)=x2+ax+3为开口向上的二次函数,故只需要Δ=a2﹣12<0,解得,故a的范围为{a|};(2)对x∈[﹣2,2]有意义,则对于x∈[﹣2,2],f(x)﹣a=x2+ax+3﹣a≥0恒成立,记h(x)=x2+ax+3﹣a,对称轴为,当时,即a≥4,此时h(x)在x∈[﹣2,2]单调递增,故,与a≥4矛盾,舍去,当,即a≤﹣4,此时h(x)在x∈[﹣2,2]单调递减,故h(2)=4+2a+3﹣a=7+a≥0⇒a≥﹣7,故﹣7≤a≤﹣4,当,即﹣4<a<4,此时,解得﹣6≤a≤2,故﹣4<a≤2,综上可得:{a|﹣7≤a≤2};(3)g(x)=f(x)﹣(a﹣2)x+a=x2+2x+a+3=(x+1)2+a+2≥a+2,令t=g(x),则t≥a+2,y=g[g(x)]=g(t)=(t+1)2+a+2,t≥a+2,则g(t)为开口向上,对称轴为t=﹣1的二次函数,当a+2≤﹣1⇒a≤﹣3,此时g(t)min=g(﹣1)=a+2=5⇒a=3,不符合要求,舍去,当a+2>﹣1⇒a>﹣3,此时或a=﹣6(舍去),故a=﹣1.17.【解答】解:(1)因为x,y∈(0,+∞),x+2y+xy=30,所以30﹣xy=x+2y,当且仅当x=2y时取等号,解可得,0<xy≤18,(2)因为x,y∈(0,+∞),30=x+2y+xy=x+y+y(x+1)≤x+y+()2,当且仅当x+1=y时取等号,所以(x+1+y)2+4(x+1+y)﹣124≥0,解可得,x+y+1或x+y+1(舍),故x+y≥8﹣3,又x+y=x+2+﹣3,0<x<30,所以由对勾函数的性质可得x+y<30,所以8﹣3≤x+y<30.18.【解答】解:(1)y1≥y2可得x2﹣2|x|≥4x2﹣16,即3x2+2|x|﹣16≤0,即(|x|﹣2)(3|x|+8)≤0,即,则﹣2≤x≤2,则实数x的取值范围是[﹣2,2];证明:(2)因为,所以y1≥y2,由(1)知x∈[﹣2,2],所以D=[m,n]⊆[﹣2,2];(i)0<t<1时,当x∈[0,2]时,,所以当x∈[0,2]时,恒成立,当x∈[﹣2,0)时,令=x2+2x﹣(2t﹣2)x+t2=x2+(4﹣2t)x+t2,y=g(x)对称轴x=t﹣2<﹣1,故y=g(x)在[﹣1,0)上为增函数,又g(﹣1)=1+2t﹣4+t2=(t+1)2﹣4<0,g(0)=t2>0,所以存在x0∈(﹣1,0)使得g(x0)=0,故g(x)≥0的解集为[x0,0],所以当x∈[﹣2,2]时,的解集为[x0,2],其中x0∈(﹣1,0),所以D=[m,n]⊆(﹣1,2],则;(ii)当t=1时,y1≥﹣1≥y2,因为,所以y1≥﹣1恒成立,由题意知﹣1≥y2的解集为D=[m,n],所以m,n是方程﹣1=4x2﹣16的两根,所以,所以;(iii)当1<t≤2时,当x∈[0,2]时,由(i)知,当x∈[﹣2,0)时,令,∴在[﹣2,2]恒成立,故只需要考虑(2t﹣2)x﹣t2≥y2在[﹣2,2]的解集即可,由(2t﹣2)x﹣t2≥y2,可得4x2﹣(2t﹣2)x+t2﹣16≤0,由题意m,n是4x2﹣(2t﹣2)x+t2﹣16=0的两根,令φ(x)=4x2﹣(2t﹣2)x+t2﹣16,其对称轴为,φ(2)=16﹣2(2t﹣2)+t2﹣16=t2﹣4t+4=(t﹣2)2≥0,φ(﹣2)=16+2(2t﹣2)+t2﹣16=t2+4t﹣4=(t+2)2﹣8>0,所以m,n∈[﹣2,2],,又h(t)=﹣3t2﹣2t+65在1<t≤2为单调减函数,∴h(t)<h(1)=60,∴,综上,.。
2020-2021学年苏教版高一数学上学期第一次月考检测试题及答案解析

(新课标)最新苏教版高中数学必修一高一(上)9月月考数学试卷一、填空题:(本大题共14个小题,每小题5分,共70分,把答案填写在题中横线上)1.下列所给关系正确的个数是.①π∈R;②∉Q;③0∈N*;④|﹣4|∉N*.2.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M= .3.设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B= .4.已知f(x)=,则f[f(0)]= .5.函数f(x)=+的定义域为.6.函数,使函数值为5的x的值是.7.设A={(x,y)|y=﹣4x+6},B={(x,y)|y=5x﹣3},则A∩B= .8.若函数f(x)在实数集R上是增函数,且f(x)>f(1﹣x),则x的取值范围是.9.满足条件{1,2}⊆M⊆{1,2,3,4,5}的集合M的个数是.10.已知一个函数的解析式为y=x2,它的值域为{1,4},这样的函数有个.11.已知集合A={x|1≤x<5},C={x|﹣a<x≤a+3}.若C∩A=C,则a的取值范围是.12.已知全集U=R,函数y=+的定义域为集合A,函数y=的定义域为集合B.则集合(∁U A)∩(∁U B)= .13.已知函数f(x),g(x)分别由下表给出:则满足f(g(x))=g(f(x))的x值为.x 1 2 3 4f(x) 1 3 1 3x 1 2 3 4g(x) 3 2 3 214.函数f(x)=2x2﹣mx+3,当x∈[2,+∞)时是增函数,当x∈(﹣∞,2]时是减函数,则f(1)= .二、解答题:(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.集合A={﹣2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.16.求下列函数的值域(1)y=﹣,x∈[﹣3,0)∪(0,1];(2)y=x2+4x+1,x∈[﹣3,0].17.已知集合M是由三个元素﹣2,3x2+3x﹣4,x2+x﹣4组成,若2∈M,求x.18.已知f(x)是一次函数,且f[f(x)]=4x﹣1,求f(x)及f(2).19.求证:函数f(x)=﹣﹣1在区间(0,+∞)上是单调增函数.20.函数f(x)是定义在(0,+∞)上的增函数,对任意的x,y∈(0,+∞),都有f(x+y)=f (x)+f(y)﹣1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m﹣2)≤3.参考答案与试题解析一、填空题:(本大题共14个小题,每小题5分,共70分,把答案填写在题中横线上)1.下列所给关系正确的个数是 2 .①π∈R;②∉Q;③0∈N*;④|﹣4|∉N*.【考点】元素与集合关系的判断.【分析】根据元素与集合的关系进行判断.【解答】解:对于①π∈R:R是一切实数集,π是一个元素,所以π∈R是正确的,故A对.②∉Q:无理数,Q是有理数集,所以∉Q是正确的,故B对.③0∈N*:N*是大于0的正整数集,所以0∉N*,故C不对.④|﹣4|∉N*:N*是大于0的正整数集,|﹣4|=4∈N*,故D不对.综上所述:①②正确.故答案为:2.2.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M= {3,5,6} .【考点】补集及其运算.【分析】题目是用列举法给出了两个数集,直接利用补集运算进行求解.【解答】解:因为集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6}.故答案为:{3,5,6}.3.设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B= {x|﹣1<x<3} .【考点】并集及其运算.【分析】利用交集性质直接求解.【解答】解:∵集合A={x|﹣1<x<2},集合B={x|1<x<3},∴A∪B={x|﹣1<x<3}.故答案为:{x|﹣1<x<3}.4.已知f(x)=,则f[f(0)]= ﹣5 .【考点】函数的值.【分析】根据定义域的范围代值计算即可.【解答】解:由题意,f(x)=,当x=0时,则f(0)=﹣1,那么f[f(0)]=f(﹣1),当x=﹣1时,f(﹣1)=﹣5.即f[f(0)]=f(﹣1)=﹣5故答案为﹣55.函数f(x)=+的定义域为[﹣1,2)U(2,+∞).【考点】函数的定义域及其求法.【分析】根据负数不能开偶次方根和分母不能为零来求解,两者求解的结果取交集.【解答】解:根据题意:解得:x≥﹣1且x≠2∴定义域是:[﹣1,2)∪(2,+∞)故答案为:[﹣1,2)∪(2,+∞)6.函数,使函数值为5的x的值是﹣2 .【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】根据分段函数的分段标准进行分类讨论,分别建立方程,求出满足条件的x即可.【解答】解:①当x≤0时,x2+1=5解得x=﹣2②当x>0时,﹣2x=5解得x=﹣(舍去)综上所述,x=﹣2,故答案为﹣27.设A={(x,y)|y=﹣4x+6},B={(x,y)|y=5x﹣3},则A∩B= {(1,2)} .【考点】交集及其运算.【分析】直接联立方程组,求出方程组是解,就是A与B的交集.【解答】解:由题意可知A={(x,y)|y=﹣4x+6},B={(x,y)|y=5x﹣3},所以解得,所以A∩B={(1,2)}.故答案为:{(1,2)}.8.若函数f(x)在实数集R上是增函数,且f(x)>f(1﹣x),则x的取值范围是(,+∞).【考点】函数单调性的性质.【分析】直接利用函数在R上是增函数,f(x)>f(1﹣x)转化为x>1﹣x求解即可.【解答】解:由题意:函数f(x)在实数集R上是增函数,由f(x)>f(1﹣x),可得:x>1﹣x,解得:x故答案为(,+∞).9.满足条件{1,2}⊆M⊆{1,2,3,4,5}的集合M的个数是8 .【考点】集合的包含关系判断及应用.【分析】根据已知中M满足条件{1,2}⊆M⊆{1,2,3,4,5},列举出所有满足条件的集合M,可得答案.【解答】解:若M满足条件{1,2}⊆M⊆{1,2,3,4,5},则M可能为:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}共8个,故答案为:810.已知一个函数的解析式为y=x2,它的值域为{1,4},这样的函数有9 个.【考点】函数的概念及其构成要素.【分析】由题意知,函数的定义域中,1和﹣1至少有一个,2和﹣2中至少有一个.【解答】解:∵一个函数的解析式为y=x2,它的值域为{1,4},∴函数的定义域可以为{1,2},{﹣1,2},{1,﹣2},{﹣1,﹣2},{1,﹣1,2},{﹣1,1,﹣2},{1,2,﹣2},{﹣1,2,﹣2},{1,﹣1,﹣2,2},共9种可能,故这样的函数共9个,故答案为9.11.已知集合A={x|1≤x<5},C={x|﹣a<x≤a+3}.若C∩A=C,则a的取值范围是a≤﹣1 .【考点】交集及其运算.【分析】由C∩A=C,得C⊆A,然后分C是空集和不是空集分类求解实数a的取值范围.【解答】解:由C∩A=C,得C⊆A,∵A={x|1≤x<5},C={x|﹣a<x≤a+3}.当﹣a≥a+3,即a时,C=∅,满足C⊆A;当C≠∅时,有,解得:﹣<a≤﹣1.综上,a的取值范围是a≤﹣1.故答案为:a≤﹣1.12.已知全集U=R,函数y=+的定义域为集合A,函数y=的定义域为集合B.则集合(∁U A)∩(∁U B)= {x|x<﹣2} .【考点】函数的定义域及其求法.【分析】分别求出集合A,B,再求补集,即可得到交集.【解答】解:A={x|}={x|x≥2},A={x|x<2}.UB={x|}={x|x≥﹣2且x≠3},B={x|x<﹣2或x=3},U则(∁U A)∩(∁U B)={x|x<﹣2}.故答案为:{x|x<﹣2}.13.已知函数f(x),g(x)分别由下表给出:则满足f(g(x))=g(f(x))的x值为2,4 .x 1 2 3 4f(x) 1 3 1 3x 1 2 3 4g(x) 3 2 3 2【考点】函数的值.【分析】结合表格,先求出内涵式的函数值,再求出外函数的函数值;分别将x=1,2,3,4代入f[g(x)],g[f(x)],判断出满足f[g(x)]=g[f(x)]的x.【解答】解:x=1时,f(g(1))=f(3)=1;g(f(1))=g(1)=3,不满足f(g(x))=g(f(x));x=2时,f(g(2))=f(2)=3;g(f(2))=g(3)=3,满足f(g(x))=g(f(x));x=3时,f(g(3))=f(1)=1;g(f(3))=g(1)=3,不满足f(g(x))=g(f(x));x=4时,f(g(4))=f(2)=3;g(f(4))=g(3)=3,满足f(g(x))=g(f(x));故答案为:2,414.函数f(x)=2x2﹣mx+3,当x∈[2,+∞)时是增函数,当x∈(﹣∞,2]时是减函数,则f(1)= ﹣3 .【考点】二次函数的性质.【分析】利用当x∈[2,+∞)时是增函数,当x∈(﹣∞,2]时是减函数,得到2是函数的对称轴,然后求出m,直接代入求f(1)即可.【解答】解:函数f(x)=2x2﹣mx+3的对称轴为.∵当x∈[2,+∞)时是增函数,当x∈(﹣∞,2]时是减函数,∴x=2是函数f(x)=2x2﹣mx+3的对称轴,即,解得m=8.∴f(x)=2x2﹣8x+3,即f(1)=2﹣8+3=﹣3.故答案为:﹣3.二、解答题:(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.集合A={﹣2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.【考点】子集与交集、并集运算的转换.【分析】由A∩B=B即得,B⊆A,所以B的可能情况为:B=∅,或B={﹣2},所以得到a=0,或.【解答】解:∵A∩B=B;∴B⊆A;∴B=Ø或B={﹣2};当B=Ø时,方程ax+1=0无解,此时a=0;当B={﹣2}时,﹣2a+1=0,∴;∴a=0,或.16.求下列函数的值域(1)y=﹣,x∈[﹣3,0)∪(0,1];(2)y=x2+4x+1,x∈[﹣3,0].【考点】函数的值域.【分析】(1)可看出函数在[﹣3,0),(0,1]上都是增函数,从而根据单调性求出该函数的值域;(2)只需配方便可求出该函数的最大、最小值,从而得出该函数的值域.【解答】解:(1)在[﹣3,0),(0,1]上都是增函数;∴﹣3≤x<0时,,0<x≤1时,y≤﹣4;∴该函数值域为;(2)y=x2+4x+1=(x+2)2﹣3;∴x=0时,y取最大值1,x=﹣2时,y取最小值﹣3;∴该函数的值域为[﹣3,1].17.已知集合M是由三个元素﹣2,3x2+3x﹣4,x2+x﹣4组成,若2∈M,求x.【考点】元素与集合关系的判断.【分析】集合M由3个元素组成,﹣2是其中一个,若2也是M中元素,需讨论3x2+3x﹣4=2和x2+x﹣4=2两种情况,根据集合的互异性,正确选取合适的答案即可.【解答】解:∵2∈M,当3x2+3x﹣4=2时,即x2+x﹣2=0,则x=﹣2或x=1.经检验,x=﹣2,x=1均不合题意,违反了集合的互异性.当x2+x﹣4=2时,即x2+x﹣6=0,则x=﹣3或2.经检验,x=﹣3或x=2均合题意.故答案为:x=﹣3或x=2.18.已知f(x)是一次函数,且f[f(x)]=4x﹣1,求f(x)及f(2).【考点】函数解析式的求解及常用方法.【分析】设f(x)=ax+b,a≠0,代入已知式子,比较系数可得a、b的方程组,解之可得解析式及f(2).【解答】解:由题意设f(x)=ax+b,a≠0∵f[f(x)]=f(ax+b)=a(ax+b)+b=a2x+ab+b又f[f(x)]=4x﹣1,∴a2x+ab+b=4x﹣1比较系数可得解得或.∴f(x)=2x﹣,或f(x)=﹣2x+1,f(2)=4﹣=,或f(2)=﹣4+1=﹣3.19.求证:函数f(x)=﹣﹣1在区间(0,+∞)上是单调增函数.【考点】函数单调性的判断与证明.【分析】首先,设两个自变量,然后,比较它们函数值的大小,最后,得到结论.【解答】解:任设x1,x2∈(0,+∞),x1<x2,∴f(x1)﹣f(x2)==,∵x1<x2,∴x1﹣x2<0,∴f(x1)﹣f(x2)<0,∴在区间(0,+∞)上是单调增函数.20.函数f(x)是定义在(0,+∞)上的增函数,对任意的x,y∈(0,+∞),都有f(x+y)=f (x)+f(y)﹣1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m﹣2)≤3.【考点】抽象函数及其应用;函数单调性的性质.【分析】(1)令x=y=2,通过f(4)=5以及f(x+y)=f(x)+f(y)﹣1即可求f(2)的值;(2)利用(1)的结果,通过函数的单调性的性质,直接求解不等式f(m﹣2)≤3.【解答】解:(1)对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)﹣1,且f(4)=5,令x=y=2,则f(4)=f(2+2)=2f(2)﹣1=5,解得f(2)=3.(2)由f(m﹣2)≤3,f(2)=3,得f(m﹣2)≤f(2).∵f(x)是(0,+∞)上的增函数,m﹣2≤2且m﹣2>0;⇒m≤4且m>2 ∴2<m≤4.不等式的解集为:{m|2<m≤4}.2017年1月10日。
江苏省扬州大学附属中学东部分校2024-2025学年高一上学期第一次月考数学试卷

江苏省扬州大学附属中学东部分校2024-2025学年高一上学期第一次月考数学试卷一、单选题1.已知集合A ={0,1},则下列关系表示错误的是A .0∈AB .{1}∈AC .∅⊆AD .{0,1}⊆A 2.设集合{}{}3,5,6,8,4,5,8A B ==,则A B =U ( )A .{}3,6B .{}5,8C .{}4,6D .{}3,4,5,6,8 3.设命题2:Z,31p x x x ∃∈≥+,则p 的否定为( )A .2Z,31x x x ∀≠<+B .2Z,31x x x ∃∉<+C .2Z,31x x x ∀∈<+D .2Z,31x x x ∃∈<+ 4.已知R x ∈,则0x >是1x >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.函数245y x x =--的零点为( ).A .()5,0B .()1,5-C .1-和5D .()1,0-和()5,0 6.设()0,m n ∈+∞,,且111m n +=,则2m n +的最小值为( )A.3+B .C .5 D .47.对于实数,,a b c ,下列说法正确的是( )A .若a b >,则11a b <B .若a b >,则22ac bc >C .若0a b >>,则2ab a <D .若c a b >>,则a b c a c b >-- 8.已知命题p :“[1,2]x ∀∈,20x a -≥”,命题q :“x ∃∈R ,2240x ax ++=”.若命题p ⌝和命题q 都是真命题,则实数a 的取值范围是( )A .2a ≤-或1a =B .2a ≤-或12a ≤≤C .1a ≥D .2a ≥二、多选题9.设2{|8150}A x x x =-+=,{|10}B x ax =-=,若A B B =I ,则实数a 的值可以为( )A .15B .0C .3D .1310.已知不等式20ax bx c ++>的解集为1,22⎛⎫- ⎪⎝⎭,则下列结论正确的是( ) A .0a >B .0b >C .0c >D .0a b c ++>11.下列说法正确的是( ). A .已知集合{}0,1M =,则满足条件M N M ⋃=的集合N 的个数为4B .若集合{}210A x ax x =++=中只有一个元素,则4a = C .“0ac <”是“一元二次方程20ax bx c ++=有一正一负根”的充要条件D .a b >的一个必要条件是1a b ->三、填空题12.某班共有38人,其中21人喜爱跑步运动,15人喜爱篮球运动,10人对两项运动都不喜爱,则对两项运动都喜爱的人数为.13.关于x 不等式()()222240a x a x -+--<的解集为R ,则实数a 的取值范围为.14.设常数a ∈R ,集合()(){}{}101A x x x a B x x a =--≥=≥-,.若A B =U R ,则a 的取值范围为.四、解答题15.已知集合{3A x x <-或x >2 ,{}422B x x =-≤-<.(1)求A B ⋂,()()R R A B ⋃痧;(2)若集合{}2121M x k x k =-≤≤+是集合A 的真子集,求实数k 的取值范围.16.已知正数x ,y 满足22x y +=.(1)求xy 的最大值;(2)求21x y+的最小值.17.已知集合{}2430A x x x =-+=,()(){}110B x x a x =-+-=,{}210C x x mx =-+=.(1)若A B A =U ,求实数a 的值;(2)若A C C ⋂=,求实数m 的取值范围.18.已知二次函数22()2(,)f x ax bx b a a b R =++-∈,当(1,3)x ∈-时,()0f x >;当(,1)(3,)x ∈-∞-⋃+∞,()0f x <.(1)求a ,b 的值;(2)解关于x 的不等式:2()20()ax b c x c c R +-+>∈;(3)若不等式()50f x mx +-<在[1,3]x ∈上恒成立,求m 的取值范围.19.《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入:(4)整体求和等.例如,1ab =,求证:11111a b+=++. 证明:原式111111ab b ab a b b b =+=+=++++. 波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.2a b +(0a >,0b >),当且仅当a b =时等号成立,它是解决最值问题的有力工具.例如:在0x >的条件下,当x 为何值时,1x x+有最小值,最小值是多少? 解:0x Q >,10x >,12x x +∴1x x +≥12x x ∴+≥,当且仅当1x x =,即1x =时,1x x+有最小值,最小值为2.请根据以上阅读材料解答下列问题: (1)已知1a b ⋅=,求221111a b +++的值. (2)若1a b c ⋅⋅=,解关于x 的方程5551111ax bx cx ab a bc b ca c ++=++++++. (3)若正数a ,b 满足1a b ⋅=,求11112M a b =+++的最小值.。
江苏省高一第一学期第一次月考数学试卷

江苏省高一第一学期第一次月考数学试卷(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2江苏省高一第一学期第一次月考数学试卷注意:请把所有题目答案答在答题纸上,否则无效。
一.填空题:(每题5分,共70分)1、已知集合{}1,0A =-,集合{}0,1,2B x =+, 且A B ⊆,则实数x 的值为 ▲ .2、函数31--=x x y 的定义域为___ ▲ .3、下列函数:①y=x 与y=2x ;②y=x x 与0x y =;③y=0)(x 与y=x ④y=)1)(1(11-+=-⋅+x x y x x 与中,图象完全相同的一组是(填正确序号) ▲ .4、已知{}A 1,2,3φ⊂⊂≠≠,则集合A 的个数是_____▲______ .5、函数]3,1[,24)(2-∈+-=x x x x f 的值域 ▲ .6、已知)()2(,32)(x f x g x x f =++=,则)(x g =____▲____.7、关于x 的方程57+=a x 有负根,则a 应满足的条件是 ▲ .8、设函数f (x )=⎪⎩⎪⎨⎧>+≤--1||,111||,2|1|2x xx x ,则f [f (21)]= ▲ .39、50名学生参加跳远和铅球两项测试,跳远、铅球测试及格的分别有40人和31人,两项测试均不及格的有4人,两项测试全都及格的人数是 ▲ .10、若f(x)=-x 2+2a x 与g(x)=2+x a 在区间[1,5]上都是减.函数, 则a 的取值范围是 ▲ .11、函数y =a x 在[0,1]上的最大值与最小值和为3,则函数y =123-⋅x a 在[0,1]上的最大值是 ▲ .12、若-1<x <0,在下列四个不等式:①x -5<5x < ; ②<x -5<5x ; ③5x <x -5<;④5x <<x -5中,成立的是(填正确序号) ▲ .13、已知函数()()x g x f ,分别由下表给出:则()[]1g f 的值 ▲ ;不等式()[]()[]x f g x g f >的解为 ▲ .14、下列几个命题:①方程2x 0a <;②函数y =是偶函数,但不是奇函数;③函数()f x 的值域是[2,2]-,则函数(1)f x +的值域为[3,1]-;4④函数()f x 的定义域为[]2,4-,则函数(34)f x -的定义域是[]8,10-, 其中正确的有_____▲_______.二.解答题、证明题:(15,16,17三题每题14分,18,19,20三题每题16分,共90分)。
高一上学期第一次月考数学试卷(含答案解析)

高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省高一上学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()
A . S⫋P⫋M
B . S=P⫋M
C . S⫋P=M
D . P=M⫋S
2. (2分) (2020高二下·衢州期末) 已知集合,则A∩B=()
A .
B .
C .
D .
3. (2分) (2019高一上·喀什月考) 以下5个关系:,,,,
正确的是()
A . 1
B . 2
C . 3
D . 4
4. (2分)(2019·上饶模拟) “ ”是“ ”的()
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
5. (2分) (2018高三上·成都月考) 已知命题,那么命题为()
A .
B .
C .
D .
6. (2分) (2020高一上·天门月考) 若a,b,,且,则下列不等式一定成立的是()
A .
B .
C .
D .
7. (2分) (2020高一上·泉州月考) 如图所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是()
A . ( US)∩(M∩P)
B . ( US)∪(M∩P)
C . ( US)∩(M∪P)
D . ( US)∪(M∪P)
8. (2分) (2020高一上·北京期中) 若,则的最大值是()
A .
B .
C .
D . 1
9. (2分)(2017·衡阳模拟) 设α,β是两个不同的平面,l是直线且l⊂α,则“α∥β”是“l∥β”的()
A . 充分而不必要条件
B . 必要而不充分条件
C . 充分必要条件
D . 既不充分也不必要条件
10. (2分)(2019·上饶模拟) 设满足不等式组,则的最大值为()
A . 3
B . -1
C . 4
D . 5
二、填空题 (共9题;共10分)
11. (1分) (2015高二上·仙游期末) 命题“若a>b,则2a>2b﹣1”的否命题为________.
12. (1分)若集合A={﹣1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为________ .
13. (1分) (2020高一上·吉林期中) 已知集合,则
________.
14. (1分) (2019高三上·盐城月考) 设集合,,则 ________.
15. (1分) (2019高二下·上海期末) 已知表示两个不同的平面, 为平面内的一条直线,则
“ 构成直二面角”是“ ”的________条件(填“充分不必要”、“必要不充分”、“充
要”“或”“既不充分也不必要”).
16. (1分)用集合表示图中阴影部分:________.
17. (1分) (2016高一上·闵行期中) 对于任意两个正实数a,b,定义a*b=λ× .其中常数λ∈(,1),“×”是通常的实数乘法运算,若a≥b>0,a*b与b*a都是集合{x|x= ,n∈Z}中的元素,则a*b=________.
18. (2分) (2017高二下·河口期末) 下列命题正确的是________
⑴若,则;
⑵若,,则是的必要非充分条件;
⑶函数的值域是;
⑷若奇函数满足,则函数图象关于直线对称.
19. (1分)(2017·南阳模拟) 在等腰△ABC中,AB=AC,若AC边上的中线BD的长为6,则△ABC的面积的最大值是________.
三、双空题 (共1题;共1分)
20. (1分)(2019·黄冈模拟) 若关于x的不等式在上恒成立,则实数a的最小值为________.
四、解答题 (共2题;共25分)
21. (15分)对于集合A,B,C,A={x|x2﹣5x+a≥0},B={x|m≤x≤m+7},若对于∀a∈C,∃m∈R,使得A∪B=R.求集合C.
22. (10分) (2016高一上·景德镇期中) 已知集合M={x|x(x﹣a﹣1)<0(a∈R)},N={x|x2﹣2x﹣3≤0},若M∪N=N,求实数a的取值范围.
参考答案一、单选题 (共10题;共20分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
二、填空题 (共9题;共10分)答案:11-1、
考点:
解析:
答案:12-1、
考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、考点:
解析:
三、双空题 (共1题;共1分)答案:20-1、
考点:
解析:
四、解答题 (共2题;共25分)
答案:21-1、
考点:
解析:
答案:22-1、
考点:解析:。