完整word版,化学动力学2(2)

合集下载

新人教版高中化学必修第一册全套教学设计教案word版

新人教版高中化学必修第一册全套教学设计教案word版

新人教版高中化学必修第一册全套教学设计教案word版一、教学目标通过本教学设计,学生应当达到以下目标:1. 熟悉和理解化学的基本概念和原理;2. 掌握化学实验的基本技巧和操作方法;3. 培养学生的观察、实验、分析和解决问题的能力;4. 激发学生对化学的兴趣和好奇心。

二、教学内容本教学设计涵盖了新人教版高中化学必修第一册的全部内容,包括但不限于以下章节:1. 化学基本概念2. 物质的量与化学反应3. 元素周期表与元素4. 化学键与化合物5. 溶液与溶解6. 酸碱与盐7. 离子反应与电化学8. 物质的结构与性质9. 化学能与化学动力学10. 化学与生活、环境与健康三、教学方法为了实现上述教学目标,本教学设计采用了以下教学方法:1. 讲授与演示:通过系统的讲授和生动的演示,向学生传授化学知识和实验技巧;2. 实验操作:组织学生进行化学实验,培养实验技能和观察分析能力;3. 小组讨论和合作研究:组织学生进行小组讨论,促进学生互相交流和合作研究;4. 实践应用:让学生将所学化学知识应用于实际生活和环境问题的解决;5. 提问与激励:通过提问和鼓励,激发学生对化学的兴趣和主动研究的能力。

四、教学资源在教学过程中,我们将使用以下资源:1. 教科书:新人教版高中化学必修第一册;2. 实验器材和试剂:根据不同实验要求准备相应的实验器材和试剂;3. 多媒体设备:使用多媒体设备播放化学实验演示视频和教学PPT等。

五、教学评估为了了解学生对化学知识的掌握情况,我们将进行教学评估,评估方式包括但不限于以下方法:1. 平时表现:观察学生的实验操作技能和实验报告书写情况;2. 作业与小测验:布置课后作业和小测验,检验学生对化学知识的掌握情况;3. 期中与期末考试:进行定期考试,评估学生对整个学期化学知识的综合掌握情况。

以上是本教学设计的大致框架,具体的教学内容和细节可根据实际情况进行调整和补充。

希望通过本教学设计,能够激发学生对化学的兴趣和好奇心,提高学生的学习成绩和综合能力。

化学动力学基础二l

化学动力学基础二l
2021/3/31
双原子分子的莫尔斯势能曲线
AB双原子分子根据该公式画出的势能曲线 如图所示:
当r>r0时,有引力,即化学键力。 当r<r0时,有斥力。
0时的能级为振动基态能级,E0为零点能。
D0为把基态分子离解为孤立原子所需的能量,它的值可从光谱数据得到。
2021/3/31
双原子分子的莫尔斯势能曲线
分子碰撞
•弹性碰撞 •非弹性碰撞 •反应碰撞(有效碰撞)
简单碰撞理论是以硬球碰撞为模型,导出宏观反应速率常数的计算公式, 故又称为硬球碰撞理论。
2021/3/31
双分子的互碰频率和速率常数的推导
两个分子在相互的作用力下,先是互相接近, 接近到一定距离,分子间的斥力随着距离的减 小而很快增大,分子就改变原来的方向而相互 远离,完成了一次碰撞过程。

Z AB
dA2B
L2
(
8 RT
)1/ 2 [A][B]
式中 M A M B
MA MB
NA [A]L NB [B]L
V
V
2021/3/31
两个A分子的互碰频率
当体系中只有一种A分子,两个A分子互碰的相对速度为:
ur
(2
8RT
M A
)1/
2
每次碰撞需要两个A分子,为防止重复计算,在碰撞频率中除以2,所以两 个A分子互碰频率为:
Ep 0 D0 E0
r0
0
r
De
2021/3/31
双原子分子的莫尔斯势能曲线
三原子分子的核间距
以三原子反应为例:
A B C [A B C] A B C
当A原子与双原子分子BC反应时,首先形成三原子分子的活化络合物,该络合物的势 能是3个内坐标的函数

(完整word版)FLAC动力分析

(完整word版)FLAC动力分析
当计算模型中存在刚度差异较大、模型网格尺寸不均匀的情况时,FLAC3D可以采用“动态多步”(Dynamic Multi-stepping)的过程来有效减少计算所需要的时间。在此过程中,模型单元和节点按照相近最大时步进行分组和排序,然后每个组在特定的时步下运行,信息在适当的时候在单元之间进行交换。
动态多步的调用采用如下命令:
(1)FLAC3D动力分析与一般的等效线性方法有什么区别?
(2)FLAC3D动力分析怎么会采用静力本构模型,比如Mohr-Coulomb模型?
下面就这两个问题展开初步的讨论。
11.
在岩土地震工程中,等效线性方法广泛应用于计算地基土体中波的传播及土与结构的动力相互作用。该方法已被工程师、科研人员广泛接受。而FLAC3D采用的完全非线性方法没有获得广泛使用,因此需要对这两种方法之间的差异做简要介绍。
old_time = clock
end
setup ;执行变量赋值
def wave ;定义动荷载函数
wave = sin(omega * dytime);定义动荷载变量
end
apply xvel = 1 hist wave range z=-.1 .1;施加动荷载
apply zvel = 0 range z=-.1 .1
本章将以FLAC3D为例讨论动力计算的相关内容,FLAC的动力分析可以参照执行。
注意:FLAC和FLAC3D的动力计算十分复杂,读者在阅读本章内容之前要对FLAC3D的静力计算、流体计算十分熟悉,具体可以参阅本书的第7章和第12章的内容。
对于初次接触FLAC3D动力计算的读者,大多数都会提以下2个问题:
其实这是对FLAC3D动力计算的误解。FLAC3D的原理是求解动力方程,所以从其算法上来说,不管是进行静力分析还是动力分析,其实质都是求解运动方程。只是对于静力分析而言,采用了特定的阻尼方式以达到快速收敛的目的。所以,有的场合将FLAC3D的静力分析方法称为“拟动力方法”。相应的,FLAC3D在进行动力分析时,通过求解动力方程理所当然地可以得到合适的动力问题解答。对于本构模型的选择,主要是描述单元的应力-应变关系,如果是弹塑性的,则考虑的是单元的屈服准则、流动法则等。

动力学练习题word版

动力学练习题word版

动⼒学练习题word版第⼗⼀章动⼒学练习题⼀、是⾮题(对的画√错的画×)1、反应速率系数k A 与反应物A 的浓度有关。

()2、反应级数不可能为负值。

()3、⼀级反应肯定是单分⼦反应。

()4、对⼆级反应来说,反应物转化为同⼀百分数时,若反应物的初始浓度越低,则所需时间越短。

()5、对同⼀反应,活化能⼀定,则反应的起始温度愈低,反应的速率系数对温度的变化愈敏感。

()6、阿累尼乌斯活化能的定义是dTkd RT Ea ln 2=。

() 7、对于元反应,反应速率系数部随温度的升⾼⽽增⼤。

() 8、若反应A →Y ,对A 为零级,则A 的半衰期 AA k C t 20,21=.。

()9、设对⾏反应正⽅向是放热的,并假定正逆都是元反应,则升⾼温度更利于增⼤正反应的速率系数。

()10、连串反应的速率由其中最慢的⼀步决定,因此速率控制步骤的级数就是总反应的级数。

() 11、鞍点是反应的最低能量途径上的最⾼点,但它不是势能⾯上的最⾼点,也不是势能⾯上的最低点。

()12、过渡态理论中的活化络合物就是⼀般反应历程中的活化分⼦。

() 13、催化剂只能加快反应速率,⽽不有改变化学反应的标准平衡常数。

()14、复杂反应是由若⼲个基元反应组成的,所以复杂反应的分⼦数是基元反应的分⼦数之和.。

()15、质量作⽤定律只适⽤于元反应。

() 16、某反应,若其反应速率⽅程式为A=Ac A 2c B ,则当c B,0>>c A,0时,反应速率⽅程可约化为假⼆级反应。

()17、若反应 A+B ?→?Y +Z 的速率⽅程为υ= kc A c B , 则该反应是⼆级反应,且肯定是双分⼦反应。

()18、对于反应 2NO + Cl 2 ?→? 2NOCl ,只有其速率⽅程为:υ=k {c (NO)}2c (Cl 2),该反应才有可能为元反应。

其他的任何形式,都表明该反应不是元反应。

()19、知道了反应物和产物可写出化学反应⽅程式, 但不能由配平的化学反应式直接写出反应级数和反应分⼦数。

第8章化学动力学ppt课件共68页

第8章化学动力学ppt课件共68页
或: 反应级数为2, 反应分子数为2
例题:根据给出的速率方程,指出反应级数 (1) Na + 2H2O → 2NaOH + H2 vi = ki
解: (1) 零级反应 (2) 5/2 级,对CO是一级,对Cl2是3/2级 (3) 对具有v=k[A]α[B]β 形式的速率方程的反应, 反应级数有意义;对于 (3) 的非规则速率方程, 反应级数无意义。
瞬时速率
时间间隔Δt趋于无限小时的平均速率的极限
limcB dcB
t t0 dt
B
B
d c B 为导数,它的几何意义是c-t曲线上某 dt
点的斜率。
反应刚开始,速率大,然后 不断减小,体现了反应速率 变化的实际情况。 最有实际意义和理论意义的
瞬时速率是初始速率 0
从瞬时速率的定义, 可以归纳出瞬时速率的求法:
8.1 化学反应速率表示法
1 化学反应速率定义及表示法 2 平均速率与瞬时速率
1.化学反应速率定义及表示法 定义
化学反应速率是参与反应的某物质的“物质的 量”随时间变化率的绝对值。 对于反应体积不变的密闭系统,反应速率是参 与反应的物质的物质的量浓度随时间变化率的 绝对值。
Note:取绝对值的原因是因为反应速率总是正值。
基元反应中,同时直接参加反应的分子(或离子、 原子、自由基等)的数目称为反应分子数。
根据反应分子数可将基元反应分为单分子反应、双 分子反应和三分子反应。例如:
单分子反应:SO2Cl2=SO2+Cl2 双分子反应:NO2+CO=NO+CO2 三分子反应:H2+2I=2HI
Note:按照反应的分子数来分类,只适合于基元反应。
1+1 1+1

第七章:化学动力学(物理化学)

第七章:化学动力学(物理化学)
它的物理意义是当反应物的浓度均为单 位浓度时 k 等于反应速率,因此它的数值与 反应物的浓度无关。在催化剂等其它条件确 定时,k 的数值仅是温度的函数。
k 的单位随着反应级数的不同而不同。
6.反应级数
速率方程中各反应物浓度项上的指数称为该反 应物的级数;
所有浓度项指数的代数和称为该反应的总级数, 通常用n 表示。n 的大小表明浓度对反应速率影响 的大小。
时间t/h
4 8 12 16
浓度(a-x)/(mg/100ml) 0.48 0.31 0.24 0.15
求:(1)此药物在血液中的半衰期 (2)若要求每100ml血液中此药物不低于 0.37mg,需隔几小时注射第二次?
一级反应的例子
解: (1)观察法可看出半衰期为8小时
也可作ln(a-x)~t曲线求出斜 率(-k),算出t1/2=8h。
转化率
某一时刻反应物A反应掉的分数称为该时 刻A的转化率xA.。
xA (cA,0 cA ) / cA,0
一级反应积分式可写成
1
ln
kt
1 xA
一级反应的特点
1. 速率常数 k 的单位为时间的负一次方,时间 t可
以是秒(s),分(min),小时(h),天(d)和年(a)等。
2. 半衰期是一个与反应物 起始浓度无关的常数 。
(2)从图中可查出ln0.37时,为6小时, 也可由数据代入公式计算。
3. 二级反应
反应速率方程中,浓度项的指数和等于2 的反应 称为二级反应。常见的二级反应有乙烯、丙烯的二聚 作用,乙酸乙酯的皂化,碘化氢的热分解反应等。
例如,有基元反应:
(1) 2A P (2) A B P
v k2[A]2 v k2[A][B]

专题04 动力学经典问题(Word版,含答案)

专题04 动力学经典问题(Word版,含答案)

2020年高三物理寒假攻关---备战一模第一部分考向精练专题04 动力学经典问题1.已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿第二定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况.2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的某个力.可用程序图表示如下:3.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁。

4.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变量最大时,两端连接体的速率相等.【例1】(2019·四川雅安一模)如图所示,质量为1 kg的物体静止于水平地面上,用大小为6.5 N的水平恒力F作用在物体上,使物体由静止开始运动50 m后撤去拉力F,此时物体的速度为20 m/s,物体继续向前滑行直至停止,g取10 m/s2。

求:(1)物体与地面间的动摩擦因数;(2)物体运动的总位移;(3)物体运动的总时间。

【思路点拨】(1)先做初速度为零的匀加速直线运动,再做匀减速直线运动直到速度为零。

(2)两段运动过程衔接处的速度相同。

【答案】(1)0.25(2)130 m(3)13 s【解析】(1)在拉力F作用下,物体的加速度大小为:a1=v2 2x1对物体,由牛顿第二定律有:F-μmg=ma1,联立解得:μ=0.25。

(2)撤掉拉力F后的加速度大小为:a2=μg=2.5 m/s2撤掉拉力F后的位移为:x2=v22a2=80 m全程总位移为:x =x 1+x 2=50 m +80 m =130 m 。

(完整word版)无机化学知识点归纳

(完整word版)无机化学知识点归纳

第四节:反应速率理论与反应机理简介
1、 r H m = Ea (正)— Ea (负)
2、由普通分子转化为活化分子所需要的能量叫做活化能
第五节:催化剂与催化作用
1、 催化剂是指存在少量就能显著加速反应而本身最后并无损耗的物质。催化剂加快反应速率
3、只有在高温低压条件下气体才能近似看成理想气体。
第二节:气体混合物
1、当两种或两种以上的气体在同一容器中混合时,每一种气体称为该混合气体的组分气体.
2、混合气体中某组分气体对器壁所施加的压力叫做该组分气体的分压。
3、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体
相同体积时所产生的压力。
的作用被称为催化作用。
2、 催化剂的特征:
⑴催化剂只对热力学可能发生的反应起催化作用,热力学上不可能发生的反应,催化剂对它
不起作用。
⑵催化剂只改变反应途径(又称反应机理),不能改变反应的始态和终态,它同时加快了正
逆反应速率,缩短了达到平衡所用的时间,并不能改变平衡状态。
⑶催化剂有选择性,不同的反应常采用不同的催化剂,即每个反应有它特有的催化剂.同种
第四节:Hess 定律
1、 Hess 定律:化学反应不管是一步或分几步完成,其总反应所放出或吸收的热总是相等的。其
实质是化学反应的焓变只与始态和终态有关,而与途径无关.
2、 焓变基本特点:
⑴某反应的
r
H
m
(正)与其逆反应的
r
H
m
(逆)数值相等,符号相反.即
r
H
m
(正)=—
r
H
m
(逆)。
⑵始态和终态确定之后,一步反应的
表现出无限稀释溶液特性时溶质的(假想)状态。标准质量摩尔浓度近似等于 标准物质

(完整版)化学动力学习题及答案

(完整版)化学动力学习题及答案

第一部分:1.对元反应A+2B→C,若将其反应速率方程写为下列形式, 则k A 、k B 、k C 间的关系应为:( )A k A = kB = kC B k A =2 k B = k C C k A =1/2 k B = k C [解]C ,反应速率之比r A :r B :r C =1:2:1,k A :k B :k C=1:2:12.某反应,无论反应物初始浓度为多少, 在相同时间和温度时, 反应物消耗的浓度为定值,此反应是A 负级数反应B 一级反应C 零级反应D 二级反应 [解]C ,一级反应积分速率方程C A ,0-C A =kt ,反应物浓度的消耗C A ,0-C A 就是与k 和t 有关,k 和温度有关,当温度和时间相同时,反应物浓度的消耗是定值。

3.关于反应级数的各种说法中正确的是 A 只有基元反应的级数是正整数 B 反应级数不会小于零C 反应总级数一定大于对任一反应物级数D 反应级数都可通过实验来确定 [解]D ,4.某反应,A→Y,其速率系数k A =6.93min -1,则该反应物A 的浓度从1.0mol ×dm -3变到0.5 mol ×dm -3所需时间是( )A 0.2minB 0.1minC 1min[解]B ,从速率系数的单位判断是一级反应,代入积分速率方程,0lnA AC kt C =,1ln6.930.5t =,t=0.1min 。

5.某反应,A→Y,如果反应物A 的浓度减少一半,它的半衰期也缩短一半,则该反应的级数为( )A 零级B 一级C 二级[解]A ,半衰期与浓度成正比,所以是零级反应。

6.某化学反应的速率常数为2.0mol ·l -1·s -1,该化学反应的级数为 A.1 B.2 C.0 D.-1 [解]C ,从速率常数的单位判断是零级反应。

7.放射性Pb 201的半衰期为8小时,1克放射性Pb 201经24小时衰变后还剩 A.1/3g B.1/4g C.1/8g D.0gBA B B d d c c k t c =-B A C C d d c c k t c =B A A A d d c c k t c =-[解]C ,放射性元素的衰变是一级反应,通过半衰期公式12ln 2t k =,ln 28k =,再代入一级反应积分速率方程,,0lnA AC ktC =,起始浓度为1g ,1ln 2n*248A C =,18A C g =。

物理化学核心教程第二版第七章 化学动力学章末总结

物理化学核心教程第二版第七章  化学动力学章末总结

第七章 化学动力学章末总结一、内容提要 1. 基本概念(1)化学动力学的研究对象研究化学反应的速率和机理以及影响速率的各种因素,如温度、浓度、压力、催 化剂、介质和分子结构等。

(2)动力学曲线动力学曲线即反应物或生成物的浓度随时间的变化曲线。

(3)转化速率对应于指明的化学计量方程,反应进度ξ在t 时刻的变化率称为该反应的转化速率,用d d tξ表示,单位为1mol s - 。

(4)化学反应速率单位体积内的转化率称为反应速率,1d r V dtξ=。

(5)基元反应与非基元反应① 基元反应:反应物分子一经碰撞直接变成产物。

② 非基元反应:若反应物到产物,必须经过中间步骤称为非基元反应或复杂反应。

(6)反应的速率方程表示反应速率与浓度等参数之间的关系,或表示浓度等参数与时间的关系的方程 称为反应的速率方程。

(7)速率系数速率方程中的比例系数称为速率系数或速率常数,用k 表示。

①k 的物理意义:数值上相当于反应物均为单位浓度时的反应速率。

②特点:A. k 数值与反应物的浓度无关。

在催化剂等其他条件确定时,k 的数值仅是温度 的函数;B. k 的单位随着反应级数的不同而不同;C. k 的数值直接反映了反应速率的快慢。

(8)质量作用定律基元反应的速率与各反应物浓度的幂乘积成正比,其中各浓度项的方次即为反应 方程中各物质的系数,这就是质量作用定律,它只适用于基元反应。

(9)反应级数在反应的速率方程中,所有浓度项方次的代数和称为该反应的级数,用n 表示。

n 可以是正数、负数、整数、分数或零,也有的反应无法说出其反应级数。

(10)反应分子数在基元反应中,反应物分子数之和称为反应分子数,其数值为1,2或3。

2. 具有简单级数反应的特点 (1)零级反应定义:反应速率与反应物浓度的零次方成正比,即与反应物的浓度无关。

特点:微分式0d x k d t =积分式 0x k t = 线性关系 ~x t半衰期 1022a t k =0k 的单位 3m o l d m -或 [ -1浓度][时间] (2)一级反应定义:反应速率与反应物浓度的一次方成正比。

origin拟合准一级准二级动力学方程详解Word版

origin拟合准一级准二级动力学方程详解Word版

建立用户自定义函数的步骤:1.选择Tools: Fitting Function Organizer (快捷键F9) ,打开Fitting function organizer. 单击New Category 按钮,创建一个函数类,可以根据自己需要重命名,比如yxz.然后单击New Function,在这个类下面创建一个新的函数,然后命名,比如thepseudosecondorderkinetic 1:2. 对该函数进行简短的描述,Brief Description栏输入:To used for the pseudo second order kinetic fitting,定义函数所需参数,ParameterNames:a,k;输入函数方程。

Function 栏输入需编写的方程:y=((a^2)*k*x)/(1+a*k*x) 这个方程的逻辑关系一定要对!3.然后进行点击Function 右侧的按钮4.编译正确是前提是:方程正确,方程中的相关参数在方程之前进行了创建,参数声明和方程建立完成之后,单击进入编译界面,单击Compile5.当出现上图红框中文字是,证明公式定义成功,否则失败!须重新定义。

6.在file中单击save,然后单击return to dialog,再单击OK。

7.至此,用户自定义函数的建立已经完成。

二、自定义拟合函数的使用:1先建立原文件图用点格式绘图2.完成后点击工具栏里的Analysis----Fitting----3. 选择刚建立的yxz 下的thepseudosecondorderkinetic 1 公式。

4. 点击Parameters5.在参数栏中分别设置a和k 的初始值(可以根据经验任意设置),设置数值是只需在value 这一栏双击鼠标,就可以输入数据!6.随后点击单击一次拟合之后,得到以下结果:7.拟合并不很理想,然后直接拟合到收敛,可以看到拟合结果满意,单击OK:拟合到收敛8 拟合完成结果如图9.拟合曲线数据点,点击上图中Fit NLCURvel 输出10.可以根据上述拟合数据作图。

化学反应工程习题(word版)第二章 均相反应动力学

化学反应工程习题(word版)第二章  均相反应动力学

第二章 均相反应动力学1. 均相反应是指___________________________________。

(参与反应的物质均处于同一相)2. aA + bBpP + sS 对于反应,则=P r _______)(A r -。

(a p)3.着眼反应组分K 的转化率的定义式为_______。

(00K KK K n n n -=χ)4.当计量方程中计量系数的代数和等于零时,这种反应称为_______,否则称为_______。

(等分子反应、非等分子反应) 5. 化学反应速率式为βαBA C AC C K r =-,用浓度表示的速率常数为C K ,假定符合理想气体状态方程,如用压力表示的速率常数P K ,则C K =_______P K 。

()()(βα+RT )6. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用逸度表示的速率常数f K ,则C K =_______f K 。

(nRT )()7. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用气体摩尔分率表示的速率常数y K ,则C K =_______y K。

(np RT ⎪⎪⎭⎫⎝⎛)8.在构成反应机理的诸个基元反应中,如果有一个基元反应的速率较之其他基元反应慢得多,他的反应速率即代表整个反应的速率,其他基元反应可视为处于_______。

(拟平衡常态) 9.当构成反应机理的诸个基元反应的速率具有相同的数量级时,既不存在速率控制步骤时,可假定所有各步基元反应都处于_______。

(拟定常态)10. 活化能的大小直接反映了______________对温度的敏感程度。

(反应速率)11. 一个可逆的均相化学反应,如果正、逆两向反应级数为未知时,采用______________法来求反应级数。

(初始速率法)12.生成主产物的反应称为_______,其它的均为_______。

(主反应、副反应)13.平行反应AP(主)S(副)均为一级不可逆反应,若主E >副E ,选择性S p 与_______无关,仅是_______的函数。

分析化学教材(系列一)Word版

分析化学教材(系列一)Word版

分析化学教材(系列一)目 录第一章 绪论第二章 误差和分析数据处理 第三章 滴定分析法概论 第四章 酸碱滴定法 第五章 配位滴定法 第六章 氧化还原滴定法 第七章 沉淀滴定法和重量分析法 第八章 电位法和永停滴定法 第九章 光谱分析法概论 第十章 紫外可见分光光度法 第十一章 荧光分析法 第十二章 红外吸收光谱法 第十三章 原子吸收分光光度法第十四章核磁共振波谱法第十五章 质谱法 第十六章 色谱分析法概论 第十七章 气相色谱法 第十八章 高效液相色谱法 第十九章 平面色谱法 第二十章 毛细管电泳法 第二十一章 色谱联用分析法 附录一 元素的相对原子质量(2005) 附录二 常用化合物的相对分子质量 附录三 中华人民共和国法定计量单位 附录四 国际制(SI )单位与cgs 单位换算及常用物理化学常数附录五常用酸、碱在水中的离解常数(25℃)附录六配位滴定有关常数附录七常用电极电位附录八难溶化合物的溶度积常数(25℃,I=0)附录九标准缓冲溶液的pH(0—95℃)附录十主要基团的红外特征吸收峰附录十一质子化学位移表附录十二质谱中常见的中性碎片与碎片离子附录十三气相色谱法用表参考文献英文索引中文索引目录第三版前言第二版前言第一版前言第1章绪论第2章误差和分析数据处理第3章重量分析法第4章滴定分析法概论第5章酸碱滴定法第6章络合滴定法第7章沉淀滴定法第8章氧化还原滴定法第9章取样与样品预处理方法附录附录Ⅰ中华人民共和国法定计量单位附录Ⅱ分析化学中常用的物理化学常数及物理量附录Ⅲ国际相对原子质量表附录Ⅳ常用相对分子质量表附录Ⅴ酸、碱在水中的离解常数附录Ⅵ常用标准缓冲溶液的pH(0~60℃)附录Ⅶ络合滴定有关常数附录Ⅷ标准电极电位及条件电位表附录Ⅸ难溶化合物的溶度积(Ksp) 符号表第1章概论1.1 定量分析概述1.1.1 分析化学的任务和作用1.1.2 定量分析过程1.1.3 定量分析方法1.2 滴定分析法概述1.2.1 滴定分析法对反应的要求和滴定方式1.2.2 基准物质和标准溶液1.2.3 滴定分析中的体积测量1.2.4 滴定分析的计算思考题习题第2章误差与分析数据处理2.1 有关误差的一些基本概念2.1.1 误差的表征——准确度与精密度2.1.2 误差的表示——误差与偏差2.1.3 误差的分类——系统误差与随机误差2.2 随机误差的分布2.2.1 频率分布2.2.2 正态分布2.2.3 随机误差的区间概率2.3 有限数据的统计处理2.3.1 数据的集中趋势和分散程度的表示——对μ和σ2.3.2 总体均值的置信区间——对μ的区别间估计2.3.3 显著性检验2.3.4 异常值的检验2.4 测定方法的选择与测定准确度的提高2.5 有效数字思考题习题第3章酸碱平衡与酸碱滴定法3.1 酸碱反应3.1.2 酸碱反应的平衡常数3.1.3 活度与浓度,平衡常数的几种形式3.2 酸度对弱酸(碱)形态分布的影响3.2.1 一元弱酸溶液中各种形态的分布3.2.2 多元酸溶液中各种形态的分布3.2.3 浓度对数图3.3 酸碱溶液的H+浓度计算3.3.1 水溶液中酸碱平衡处理的方法3.3.2 一元弱酸(碱)溶液pH的计算3.3.3 两性物质溶液pH的计算3.3.4 多元弱酸溶液pH的计算3.3.5 一元弱酸及其共轭碱(HA+A)混合溶液pH的计算3.3.6 强酸(碱)溶液pH的计算3.3.7 混合酸和混合碱溶液pH的计算3.4 酸碱缓冲溶液3.4.1 缓冲容量和缓冲范围3.4.2 缓冲溶液的选择3.4.3 标准缓冲溶液3.5 酸碱指示剂3.5.1 酸碱指示剂的作用原理3.5.2 影响指示剂变色间隔的因素3.5.3 混合指示剂3.6 酸碱滴定曲线和指示剂的选择3.6.1 强碱滴定强酸或强酸滴定强碱3.6.2 一元弱酸(碱)的滴定3.6.3 滴定一元弱(弱碱)及其与强酸(强碱)混合物的总结3.6.4 多元酸和多元碱的滴定3.7 终点误差3.7.1 代数法计算终点误差图及其应用3.7.2 终点误差公式和终点误差图及其应用3.8 酸碱滴定法的应用3.8.1 酸碱标准溶液的配制与标定……第4章络合滴定法第5章氧化还原滴定法第6章沉淀重量与沉淀滴定法第7章分光光度法第8章分析化学中常用的分离方法第9章其他常用仪器分析方法附录目录编写说明第1章绪论第1节分析化学的任务与作用第2节分析化学方法的分类第3节试样分析的基本程序第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节误差第2节测量值的准确度和精密度第3节有效数字及其运算法则第4节分析数据的统计处理与分析结果的表示方法第5节相关与回归思考与练习第3章重量分析法第1节挥发法第2节萃取法第3节沉淀法思考与练习第4章滴定分析法概论第1节滴定反应类型与滴定方式第2节基准物质与标准溶液第3节滴定分析的计算思考与练习第5章酸碱滴定法第1节水溶液中的酸碱平衡第2节基本原理第3节滴定终点误差第4节应用与示例第5节非水滴定法思考与练习第6章沉淀滴定法第1节基本原理第2节应用与示例思考与练习第7章配位滴定法第1节配位平衡第2节基本原理第3节滴定条件的选择第4节应用与示例思考与练习第8章氧化还原滴定法第9章电位法和永停滴定法参考资料附录目录符号缩写或简称第一篇概述第1章分析化学的目的及其对社会的重要性1.1 分析化学的目的:对社会的基本重要性1.2 分析化学的目的:作为问题解决者的分析化学家1.3 非常规实验实应用分析化学的目的参考文献第2章分析过程2.1 概述2.2 全分析过程2.3 工作特性2.4 分析化学中的误差参考文献第3章质量保证和质量控制3.1 分析化学的质量和目标3.2 分析方法3.3 如何保证准确度3.4 质是保证和质是控制受规章限制的方面3.5 结论参考文献第二篇化学分析第4章化学分析的基本原理第5章色谱法第6章动力学与催化第7章化学分析的方法及其应用第三篇物理分析第8章元素分析第9章化合物和分子特效分析第10章微束流和表面分析第11章结构分析第四篇基于计算机的分析化学(COBAC)第12章化学计理学第13章计算机软硬件及分析仪器接口第五篇全分析系统第14章联用技术第15章微分析系统第16章过程分析化学VI. 附录汉英索引英汉索引目录总序出版说明第二版前言第一版前言符号表绪论0.1 分析化学的任务与作用0.2 分析方法的分类0.3 发展中的分析化学1 分析质量保证1.1 分析化学中关于误差的一些基本概念 1.2 有效数字及其运算规则1.3 分析数据的统计处理1.4 提高分析结果准确度的方法小结习题分析化学前沿领域简介——化学计量学2 化学分析法2.1 滴定分析概述2.2 滴定分析的基本理论2.3 确定滴定终点的方法2.4 滴定条件选择2.5 滴定分析的应用2.6 重理分析法小结习题化学大师Liebig3 分离分析方法3.1 分析试样的制备和分解3.2 沉淀分离法3.3 溶齐萃取分离法3.4 离子交换分离法3.5 挥发和蒸馏分离法3.6 气相色谱法3.7 高效液相色谱法3.8 色谱分离技术发展简介3.9 膜分离法3.10 激光分离法3.11 复杂试样分析实例3.12 分离技术的发展趋势小结习题科学家及其思维方法简介——色谱学家马丁4 原子光谱分析法4.1 原子吸收分光光度法4.2 原子发射光谱分析法小结习题著名化学家本生对分析化学的贡献5 分子光谱分析法5.1 紫外-可见分光光度法5.2 红外光谱法5.3 分子发光分析法小结习题光分析化学前沿简介——光化学传感器6 核磁共振谱法6.1 基本原理6.2 核磁共振谱仪6.3 化学位移6.4 自旋偶合与自旋裂分6.5 核磁共振谱图解析6.6 13C核磁共振谱小结习题生物分子的革命性分析方法7 质谱法7.1 基本原理7.2 质谱仪7.3 离子的主要类型7.4 有机化合物质谱7.5 质谱图解析7.6 飞行时间质谱简介7.7 UV、IR、NMR和MS四谱综合解析小结习题科学展望——2000年诺贝尔化学奖简介8 电化学分析法8.1 电位分析法8.2 极谱法和伏安法8.3 库仑分析法8.4 电分析化学新进展小结习题2003年诺贝尔化学奖得主阿格雷和麦金农参考文献附录后记目录第1篇分析化学基础第1章分析化学导言1.1 分析化学的定义、任务和作用1.2 分析化学的特点和分类1.3 分析化学的发展趋势1.4 学习分析化学课程的方法思考题第2章试样的采集、制备与分解2.1 试样的采集2.2 固体物料试样的制备2.3 试样的分解思考题第3章定量分析中的误差及数据处理3.1 误差的基本概念3.2 误差的传递3.3 有效数字的表示与运算规则3.4 随机误差的正态分布3.5 少量数据的统计处理3.6 数据的评价——显著性检验、异常值的取舍3.7 回归分析3.8 提高分析结果准确度的方法思考题习题第2篇化学分析法第4章化学分析法概述4.1 化学分析法概述4.2 滴定分析法概述4.3 标准溶液与基准物4.4 化学分析法的计算思考题习题第5章酸碱滴定法第6章配位滴定法第7章氧化还原滴定法第8章沉淀滴定法第9章重量分析法第3篇仪器分析法第10章仪器分析法概述第11章紫外可见吸收光谱法第12章原子吸收光谱法第13章电位分析法第14章气相色谱法第4篇复杂物质分析第15章定量分析中的分离及富集方法第16章复杂物质分析示例附录参考文献目录第1章绪论第1节分析化学的任务和作用第2节分析化学的分类一、化学分析与仪器分析二、定性分析、定量分析和结构分析三、无机分析和有机分析四、常量分析、半微量分析和微量分析五、例行分析和仲裁分析第3节试样分析的基本程序一、取样二、分析试液的制备三、分析测定四、分析结果的计算与评价第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节概述第2节定量分析误差一、系统误差和偶然误差二、绝对误差和相对误差三、准确度与精密度四、提高分析准确度的方法第3节有效数字及其运算法则一、有效数字二、有效数字的运算法则三、有效数字的运算法则在分析化学中的应用第4节分析数据的统计处理与分析结果的表示方法一、偶然误差的正态分布二、实验数据的统计处理三、可疑值的取舍四、分析数据处理与报告第3章重量分析法第1节概述第2节挥发法一、定义二、操作过程三、应用第3节萃取法一、定义及分类二、操作过程三、应用第4节沉淀法一、沉淀重量法二、沉淀的溶解度及影响因素三、沉淀的纯度及其影响因素四、沉淀的类型与沉淀条件五、沉淀法中的计算第5节应用一、药物含量测定二、药物纯度检查第4章滴定分析法概论第1节概述第2节滴定方式一、直接滴定法二、反滴定法三、置换滴定法四、间接滴定法第3节基准物质和标准溶液一、基准物质二、标准溶液三、标准溶液浓度的表示第4节滴定分析中的计算一、计算依据二、计算示例第5章酸碱滴定法第1节概述第2节水溶液中的酸碱平衡一、酸碱质子理论二、溶液中酸碱组分的分布三、酸碱溶液中H+浓度的计算第3节酸碱指示剂一、酸碱指示剂的变色原理二、酸碱指示剂的理论变色点和变色范围三、影响指示剂变色范围的因素四、混合指示剂第4节酸碱滴定法的基本原理……第6章沉淀滴定法第7章配位滴定法第8章氧化还原滴定法第9章电位分析法第10章紫外-可见分光光度法第11章荧光分析法第12章红外分光光度法第13章原子吸收分光光度法第14章经典液相色谱法第15章气相色谱法第16章高效液相色谱法第17章其他分析方法实验部分参考文献附录《分析化学》教学基本要求目录第一章绪论第一节分析化学的任务和作用第二节分析方法的分类一、定性分析、定量分析和结构分析二、无机分析和有机分析三、常量、半微量、微量、超微量分析四、化学分析和仪器分析五、例行分析、仲裁分析和快速分析第三节分析化学的发展趋势一、分析理论与其他学科相互渗透二、分析技术的发展趋势本章小结思考题与习题第二章定量分析误差和分析数据的处理第一节定量分析误差的种类和来源一、系统误差二、随机误差第二节准确度与精密度一、准确度与误差二、精密度与偏差三、准确度与精密度的关系第三节随机误差的正态分布一、频率分布二、正态分布三、随机误差的区间概率第四节有限测定数据的统计处理一、置信度与μ的置信区间二、可疑测定值的取舍三、显著性检验第五节提高分析结果准确度的方法一、选择适当的分析方法二、减小测量的相对误差三、检验和消除系统误差四、减小随机误差第六节有效数字及其运算规则一、有效数字的意义和位数二、数字修约规则三、有效数字的运算规则本章小结思考题与习题第三章滴定分析法概论第一节滴定分析法的分类及滴定方式一、滴定分析法的分类二、滴定分析法对化学反应的要求三、滴定方式第二节滴定分析的标准溶液一、标准溶液浓度的表示方法二、化学试剂的规格与基准物质三、标准溶液的配制第三节滴定分析的有关计算一、滴定分析计算的理论依据二、滴定分析计算示例本章小结思考题与习题第四章酸碱滴定法第一节酸碱反应及其平衡常数一、酸碱反应及其实质二、酸碱反应的平衡常数以及共轭酸碱对Ka与Kb的关系第二节酸碱溶液中各型体的分布系数与分布曲线一、一元弱酸(碱)溶液中各型体的分布系数与分布曲线二、多元酸(碱)溶液中各型体的分布系数与分布曲线第三节酸碱溶液pH的计算一、质子等衡式(质子条件式)二、酸碱溶液pH的计算第四节酸碱指示剂一、酸碱指示剂的作用原理二、影响酸碱指示剂变色范围的因素三、混合酸碱指示剂第五节酸碱滴定原理及指示剂选择一、强碱与强酸的滴定二、强碱(酸)滴定一元弱酸(碱)三、多元酸(碱)的滴定四、酸碱滴定中CO2的影响第六节酸碱滴定法的应用一、酸(碱)标准溶液的配制及标定二、酸碱滴定法应用实例本章小结思考题与习题第五章配位滴定法第一节概述第二节 EDTA及其配合物一、乙二胺四乙酸(EDTA)的结构与性质二、EDTA在水溶液中各存在型体的分布系数三、EDTA与金属离子形成螯合物的特点第三节 EDTA与金属离子的配位平衡一、配合物的稳定常数二、溶液中各级配合物浓度的计算第四节影响配位平衡的主要因素一、酸效应及酸效应系数二、配位效应及配位效应系数三、配合物的条件稳定常数第五节配位滴定原理一、配位滴定曲线二、影响配位滴定突跃范围的主要因素三、准确滴定金属离子的判据四、配位滴定中适宜pH范围第六节金属指示剂一、金属指示剂的作用原理二、金属指示剂应具备的条件三、金属指示剂的选择四、金属指示剂的封闭、僵化和氧化变质现象五、常用的金属指示剂第七节提高配位滴定选择性的方法一、控制溶液酸度二、利用掩蔽和解蔽作用三、采用其他配位剂四、分离干扰离子第八节配位滴定法的应用一、EDTA标准溶液的配制、标定二、各种配位滴定方式三、配位滴定法应用实例本章小结思考题与习题第六章氧化还原滴定法第一节氧化还原反应的特点一、标准电极电势和条件电极电势二、氧化还原反应进行的方向三、氧化还原反应进行的程度四、氧化还原反应速率第二节氧化还原滴定原理一、氧化还原滴定曲线二、化学计量点时溶液电势的计算三、影响氧化还原滴定突跃范围的因素第三节氧化还原滴定的指示剂一、自身指示剂二、特殊指示剂三、氧化还原指示剂第四节常见氧化还原滴定法及其应用一、高锰酸钾法二、重铬酸钾法三、碘量法本章小结思考题与习题第七章沉淀滴定法第一节沉淀滴定法基本原理第二节银量法一、莫尔法二、佛尔哈德法三、法扬司法第三节沉淀滴定法的应用一、标准溶液的配制与标定二、应用示例本章小结思考题与习题第八章分析化学中的常用分离方法第一节沉淀分离法一、无机沉淀剂分离二、有机沉淀剂分离三、共沉淀分离第二节液?液萃取分离法一、萃取分离法的基本原理二、萃取体系的分类和萃取条件的选择三、萃取分离技术四、溶剂萃取在分析化学中的应用第三节离子交换分离法一、离子交换剂的种类和性质二、离子交换树脂的亲和力三、离子交换分离操作技术四、离子交换分离法的应用第四节常规色谱法一、柱色谱法二、纸色谱法三、薄层色谱法本章小结思考题与习题第九章电势分析法第一节电势分析法基本原理一、直接电势法二、电势滴定法三、电池电动势的测量第二节参比电极和指示电极一、参比电极二、指示电极第三节直接电势法及应用一、溶液pH值的测定二、离子活度(浓度)的测定三、直接电势法的应用第四节电势滴定法一、电势滴定法的原理二、电势滴定终点的确定三、电势滴定法的应用本章小结思考题与习题第十章吸光光度分析法第一节吸光光度法的基础知识一、光的基本性质二、光的互补作用与溶液的颜色三、光的吸收曲线第二节光的吸收定律一、朗伯?比耳定律二、朗伯?比耳定律的推导三、吸光度与透光度四、吸光系数、摩尔吸光系数及桑德尔灵敏度第三节显色反应及影响因素一、吸光光度法对显色反应的要求二、影响显色反应的主要因素三、显色剂第四节吸光光度分析法及仪器一、吸光光度分析的类型二、吸光光度分析的定量分析方法三、分光光度计的构造四、分光光度计的类型第五节吸光光度法测量误差及测量条件的选择一、吸光光度法的测量误差二、测量条件的选择第六节吸光光度法的应用一、示差吸光光度法二、多组分的分析三、配合物组成的测定本章小结思考题与习题第十一章原子吸收分光光度法第一节基本原理一、共振发射线与吸收线二、基态原子与激发态原子的关系三、原子吸收线的宽度四、原子吸收的测量五、灵敏度和检出限第二节原子吸收分光光度计一、光源二、原子化器三、分光系统四、检测系统五、读数装置六、原子吸收分光光度计的类型第三节仪器测量条件的选择一、分析线的选择二、灯电流的选择三、原子化条件的选择四、燃烧器高度的选择五、进样量六、单色器狭缝宽度与光谱通带的选择第四节定量分析方法一、标准工作曲线法二、标准加入法第五节干扰及消除方法一、光谱干扰二、化学干扰、物理干扰及电离干扰第六节原子吸收分光光度法的应用一、测定生物样品中的化学元素二、有机物分析本章小结思考题与习题第十二章气相色谱分析法第一节色谱法概述一、色谱法原理介绍二、色谱法的分类第二节气相色谱法的特点及基本原理一、气相色谱法的特点二、气相色谱法的基本原理第三节气相色谱的实验技术一、色谱系统二、实验技术要点三、程序升温和衍生物制备第四节气相色谱法的应用一、定性分析二、定量分析三、气相色谱分析误差产生的原因第五节气相色谱法的新进展一、顶空气相色谱二、气相色谱?质谱联用技术三、气相色谱?红外光谱联用技术本章小结思考题与习题第十三章高效液相色谱法第一节高效液相色谱法的技术参数一、速率理论二、柱外效应三、分离度四、系统适应性实验第二节高效液相色谱法的色谱系统一、高压泵二、梯度洗脱装置三、进样器四、色谱柱五、检测器六、数据处理系统和结果处理第三节高效液相色谱法的分离方式一、吸附色谱法二、分配色谱法三、离子色谱法四、尺寸排阻色谱法五、亲和色谱法第四节样品预处理与色谱柱的保护一、样品预处理二、色谱柱的保护第五节液相色谱分析技术的新进展一、液相色谱?质谱联用技术概述二、超临界流体色谱法概述三、高效毛细管液相色谱法概述本章小结思考题与习题第十四章现代仪器分析简介第一节光分析法导论一、电磁波的辐射能特性二、光分析法的分类第二节原子发射光谱法一、基本原理二、原子发射光谱仪三、应用第三节原子荧光光谱法一、基本原理二、原子荧光光谱仪三、应用第四节分子荧光和磷光分析法一、荧光和磷光的产生二、荧光和磷光强度的影响因素三、荧光/磷光分析仪器四、荧光/磷光分析法应用第五节红外分光光度法一、分子的红外吸收二、红外光谱解析程序第六节核磁共振波谱法一、基本原理二、1HNMR谱的解析三、13CNMR谱的特点与解析第七节流动注射分析本章小结思考题与习题第十五章样品分析的一般过程第一节试样采集和制备一、试样的采集二、试样的制备第二节试样的分解与处理一、无机试样的分解处理二、有机试样的分解处理三、试样分解处理方法的选择四、干扰组分的处理第三节测定方法的选择一、测定的具体要求二、被测组分的性质三、被测组分的含量四、共存组分的影响五、实验室条件第四节分析结果的计算和数据评价一、分析结果的计算及表示方法二、分析结果的报告与评价本章小结思考题与习题附录附录一相对原子质量表(2001年国际原子量)附录二化合物的相对分子质量表附录三弱酸在水中的离解常数(25℃)附录四弱碱在水中的离解常数(25℃)附录五常用浓酸浓碱的密度和浓度附录六几种常用缓冲溶液的配制附录七常用标准缓冲溶液不同温度下的pH值附录八金属离子与EDTA配合物的lgKf(25℃)附录九标准电极电势表(25℃)附录十部分氧化还原电对的条件电极电势(25℃)附录十一难溶化合物的溶度积常数(25℃)参考文献目录绪论0.1 分析化学的任务和作用0.2 分析方法的分类0.2.1 无机分析和有机分析0.2.2 化学分析和仪器分析0.2.3 常量分析、半微量分析和微量分析。

第5章化学动力学基础第二版

第5章化学动力学基础第二版
• 0级反应:C(A)t = C(A)0- k0t • 1级反应:lnC(B)t=lnC(B)0-k1t • 2级反应:1/C(A)t=1/C(A)0+k2t • 即分别以C(A)t、lnC(B)t、1/C(A)t对时
间作图,得直线为对应的反应级数。
5.3 温度对反应速率的影响
1、Van’t Hoff 经验规律:常温下,温度每升高 10度,反应速率增快2~4倍:kT+10= 2~4 kT
低温反应所 需分子动能 小;
高温反应所 需分子动能 大。
5.4.2 过渡态理论
• 反应物分子要转变成产物,总要经过足 够能量的碰撞,先生成高势能的活化配
合物(过渡态),此活化配合物可能分 解成原始反应物,也可能分解为产物。
• A与B-C沿B-C连线方向碰撞:
A+B-C→[A---B--C]* →A-B+C
5.2 浓度对反应速率的影响: 速率方程
5.2.1 反应速率方程(微分式)
1、反应速率方程 aA + bB + ···= eE + fF + ···
v


1 i
dci dt

k[c( A)]x [c( B)]y

反应级数:x为反应物A的级数;
y为反应物A的级数;
x+y为反应总的级数。
物质在空气中的燃烧比在纯氧中缓慢得多,
5.5 催化剂对反应速率的影响
催化剂能加速化学反应的速率,常应用于: 有机原料的合成、石油催化裂解、合成橡 胶、合成塑料,硫酸、硝酸、合成氨等。
1、催化剂:使反应速率显著增加,而它自 身的化学性质和数量在反应前后基本保持 不变的物质。 A+B=AB A+K=AK AK+B=AB+K 总反应:A+B+K=AB+K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、2()N O g 的热分解反应为2222()2()()N O g N g O g →+,在一定温度下,反应的半衰期与初始压力成反比。

在970 K 时,2()N O g 的初始压力为39.2 kPa ,测得半衰期为1529 s ;在1030 K 时,2()N O g 的初始压力为48.0 kPa ,测得半衰期为212 s 。

(1)判断该反应的级数;(2)计算两个温度下的速率常数;(3)求反应的实验活化能;
(4)在1030 K ,当的初始压力为53.3 kPa 时,计算总压达到64.0 kPa 所需的时间。

反应的半衰期与起始压力成反比,故反应的级数为2。

$将数据代入二级反应半衰期的公式 在970k 时
=1.668×10-5(kPa·s)-1
同理可得 k p (1030K)=9.827×10-5(kPa·s)-1$ 将求出的两个温度下的速率常数代入
,得
$2N2O(g)====2N2(g)+O2(g)
t=0 p 0 0 0 t=t p p 0-p
则当
时p=(3×53.3-2×64.0)kPa=31.9kPa
因该反应是二级反应,所以
2、298 K 有氧存在时,臭氧分解机理为:
32O O O +ƒ 快
2322k O O O +−−→ 慢
(1)分别导出3O 分解和2O 生成的速率表达式;
(2)指出这两个速率公式中k(O 3)和k(O 2)的关系;
(3)指出该分解反应的级数;
(4)若浓度以3mol dm -⋅、时间以s 为单位,k 的单位?
(5)已知总反应的表观活化能1119.2a E kJ mol -=⋅,3O 和O 的标准摩尔生成焓为1142.3kJ mol -⋅和1247.4kJ mol -⋅,求速控步的反应活化能E 2。

3、实验表明26242C H C H H →+为一级反应。

有人认为此反应为链反应,并提出可能的反应机理如下: (把答案中的r 改成v)
链引发:12632k C H CH −−
→⋅ 链传递:2326425k CH C H CH C H ⋅+−−
→+⋅ 32524k C H C H H ⋅−−
→+⋅426225k H C H H C H ⋅+−−→+⋅ 链中止:52526k H C H C H ⋅+⋅−−→
试用稳态近似处理,证明此链反应速率的最后结果与26C H 浓度的一次方成正比,并证明一级反应速率常数k 与上述五个基元反应速率常数之间的关系。

相关文档
最新文档