水泵运行工况点与调节

合集下载

水泵的工况点介绍

水泵的工况点介绍
每台水泵都有一个性能曲线,这个曲线是在 一定的转速下体现出来的,比如说 2900 转或者 1450 转又或者 800 转,每个转速的时候,它的曲
线完全不一样。性能曲线反映了水泵自身所具有 的潜在的工作能力。但是,在运用时要发挥水泵 的这种效果,必须把泵出口配上管道才能把水输
样做的,我才跟你同学几天,不过是仅仅知道你叫
2de0f9c9c
体的点,这个点就称为水泵工况点。水泵工况点 反映了水泵瞬时的工作状况。除了水泵本身的能 力外,水泵工况点的具体位置还取决于其他因
样做的,我才跟你同学几天,不过是仅仅知道你叫
素。决定水泵工况的因素有两个方面: 水泵固有的工作能力;②水泵的工作环境,
比如所有污水泵产品输送污水时工况点是依据 清水来计算的,即水泵的管路系统的布置以及水 池、水塔水位的变化等边界条件。
送到高处而不是不接管道就能喷到泵铭牌所标 的扬程数值。那么,对于一个具体的水泵系统, 水泵究竟在性能曲线上的哪一点工作,这就是确
定水泵工况点的问题。 什么是水泵工况点?
样做的,我才跟你同学几天,不过是仅仅知道你叫
水泵工况是指水泵运行时,实际出水量 Q、 扬程 H、轴功率 N、效率 n 等,把这些值绘在扬 程曲线、功率曲线、效率曲线上,就成为一个具

第4章水泵运行工况及水泵工况调节

第4章水泵运行工况及水泵工况调节

注: 多级泵,实质上就是n级水泵的串联运行。随着水泵制 造工艺的提高,目前生产的各种型号水泵的扬程,基 本上已能满足给水徘水工程的要求,所以,一般水厂 中已很少采用串联工作的形式。
例:水泵流量Q=120 l /s,吸水管管路长度l1=20m; 压水管管路长度l2=300m;吸水管径Ds=350mm,压 水管径Dd=300mm ;吸水水面标高58.0m;泵轴标 高60.0m ;水厂混合池水面标高90.0m 。 求水泵扬程(P21)。
于某场程下各台泵流量之和。
H
0
Q
2、同型号、同水位的两台水泵的并联工作
H
H’ H
N S
M
Q-ΣH (Q-H)1+2 (Q-H)1,2
N1,2
N’
Q1,2
Q’ Q1+2
Q
步骤:
(1)绘制两台水泵并联后的总和(Q-H)l+2曲线 (2)绘制管道系统特性曲线,求并联工况点M。
H H ST hAO hOG
2 切削律的应用
1、切削律应用的两类问题 (1)已知叶轮的切削量,求切削前后水泵特性曲线的变化。 (2)已知要水泵在B点工作,流量为QB,扬程为HB,B点位 于该泵的(Q-H)曲线的下方。现使用切削方法,使水泵 的新持性曲线通过B点,要求:切削后的叶轮直径D’2 是 多少?需要切削百分之几?是否超过切削限量?
1 H H ST ( S AO SOG )Q12 2 4
(3)求每台泵的工况点N
H H’ H N S (Q-H)1,2 M Q-ΣH (Q-H)1+2
N1,2
N’ Q’ Q1+2 Q
Q1,2
结论: (1)N’>N1,2,因此,在选配电动机时,要根据单条单独工 作的功率来配套。 (2)Q’>Q1,2,2Q’>Q1+2,即两台泵并联工作时,其流量不 能比单泵工作时成倍增加。

第四章 水泵运行工况及工况调节 第三讲

第四章 水泵运行工况及工况调节 第三讲

O
Q
3、切削叶轮应注意的问题
应用切削律应该注意以下几点:
1)不同构造的叶轮应取不同切削方式。 (1)低比转数的叶轮,叶轮前后两盖板和叶片切削量都是一样的; (2)高比转数的叶轮,叶轮前后两盖板和叶片切削量是不一样的。 对于高比转数的离心泵,后盖板的切削量应大于前盖板;对于混流 泵的叶轮只切削前盖板的外缘直径,叶片完全不切削,以保持水流 的流线等长。叶轮出口如果有 导流器或减漏环,则切削时, 可只切削叶片。 (3)叶轮切削后对出水 舌面需要进行处理。
H3
- 4° O
Q
(1)如果叶片安装角度为0°。 最高水位时 Q=663L/S,N=38.5Kw,η=81% 常水位时 Q=570L/s,N=48Kw,η>81% 最低水位时 Q=463L/s,N=57Kw,η=73% 由此可以看出,最低水位时水泵出水量较小,效率低, 轴功率较大且有超载的危险,为了避免超载现象的发生, 可以通过改变叶片角度对工况进行人为调节。调节的情况 如下: 1)最高水位时,叶片安装高度调至+4° Q=758L/s,N =46Kw,η>81% 2)常水位时,叶片安装角度调至0° Q=570L/s ,N=48Kw ,η>81% 3)最低水位时,叶片安装角度调至-2° Q=425L/s,N=51.7Kw,η=73%
4.3.2 变径调节 变径调节:是将水泵的原叶轮直径在车床上切削去一 部分再安装好进行运转。切削叶轮是用以改变水泵特 性的一种调节方法。
D2 Q' Q D2
'
D2 – D’2 D’2
H' D'2 2 ( ) H D2
D P' ( 2 )3 P D2
'
D2

水泵运行工况分析

水泵运行工况分析

水泵运行工况分析作者:张智学来源:《魅力中国》2018年第08期摘要:在自来水的输配过程中,给水泵站是重要的组成部分,只要其中的一个水泵运行发生错误,都会波及很大。

因此,水泵工矿点的确定就显得尤其重要,在确定的过程中,要保证电机不过载和水泵不发生汽蚀的基础上争取较小的吨百电耗为原则。

同时,还应该配置两种功率的电机,使得用户能够选择最佳的设备组合以此到达减少能耗的目的。

本文主要分析水泵运行的工况情况。

关键词:水泵;运行工况;分析每台水泵都有一个性能曲线,这个曲线是在一定的转速下体现出来的,比如说2900转或者1450转又或者800转,每个转速的时候,它的曲线完全不一样。

性能曲线反映了水泵自身所具有的潜在的工作能力。

但是,在运用时要发挥水泵的这种效果,必须把泵出口配上管道才能把水输送到高处而不是不接管道就能喷到泵铭牌所标的扬程数值。

那么,对于一个具体的水泵系统,水泵究竟在性能曲线上的哪一点工作,这就是确定水泵工况点的问题。

一、水泵工况点的概念水泵工况是指水泵运行时,实际出水量Q、扬程H、轴功率N、效率n等,把这些值绘在扬程曲线、功率曲线、效率曲线上,就成为一个具体的点,这个点就称为水泵工况点。

水泵工况点反映了水泵瞬时的工作状况。

除了水泵本身的能力外,水泵工况点的具体位置还取决于其他因素。

决定水泵工况点的因素有两个方面:水泵固有的工作能力;水泵的工作环境,比如所有污水泵产品输送污水时工况点是依据清水来计算的,即水泵的管路系统的布置以及水池、水塔水位的变化等边界条件。

二、水泵运行工况的调节方法1.节流调节节流调节就是在管路中装设节流件,如阀门。

孔板等通过改变阀门的开度大小来改变管路阻力从而改变了装置扬程性能曲线,也可以加一个小孔的孔板,它用于固定流量的调节常只用在出口管路上,因为在进口管路上易使泵发生汽蚀节流调节方法简单、易行、可靠并且可以再泵运行中动态下随时改变故广泛应用于中小型泵中的调节。

2.变速调节变速调节是改变泵性能曲线来改变泵的工作点的其优点是没有附加损失,所以很是经济变速调节因受泵的强度限制,一般只用于降速调节不得任意提高轉速,以免损坏泵,在降速调节时一般泵的效率会有所下降,并随降速幅度增大而下降增大所以转速降低一般不得低于50%,否则会使泵的效率降低太多。

工况点的确定与调节

工况点的确定与调节
H(m)
nA
nB A(QA ,HA) B(QB ,HB )
Q ~H
0
3 Q(m/s)
(三)变速运行的特点
1)使水泵高效、经济合理地运行。 2)水泵低速起动,可减小起动力矩,易于起动。 **一般水泵降速不超过30%。 **一般不宜采用增速的方法,特殊需要时, 增速不要超过额定转速的5%。 **注意防止引起共振。
叶轮直径实际车削比( %)
D K D Da
90 2 1 80
查图得叶轮实际车削比: 70 91.5% 70 80 90 叶轮直径计算车削比 (100%) 故实际车削量为: 图 4-18 叶轮车削量校正 367×(100-91.5)%=31.195(mm), 1.径流式叶轮;2.混流式叶轮 车削后的叶轮直径: 367×91.5%=335.805(mm)。
叶片角度增加,比较两三角形中的vu2,后者明显增 大,根据基本方程,可见H增加了,即在流量Q不变的情 况下扬程增加。所以H~Q曲线上移,而这时的效率变化 很小。
v 2 v2 w2 w2 vm2
u2
2
vu2 vu2
2
图 4-20 轴流泵的变角调节
(二)叶片角度调节的方式
1)半调节 2)全调节: 液压系统 机械调节
H(m)
Qa 130 Da D 367 329(m m) Q 145 理论车削量为:
D H=KQ
37 30 20
2
Da A
B
D D Da 367 329 38(mm)
H~Q
0
Hale Waihona Puke 130150170
Q(L/s)
图 4-15
例4 - 5图
4)修正:
100

水泵工况调节资料课件

水泵工况调节资料课件
水泵工况调节资料课 件
目录
CONTENTS
• 水泵工况调节基本概念 • 离心泵工况调节方法 • 轴流泵和混流泵工况调节方法 • 往复式容积泵工况调节方法 • 其他类型水泵工况调节技术探讨 • 总结与展望
01
水泵工况调节基本 概念
工况调节定义与意义
工况调节定义
根据实际需要,调整水泵的运行 状态,以满足不同工况下的要求 。
应用场景
通过切割离心泵的叶轮,改变叶轮的直径 ,从而改变泵的性能曲线,实现工况调节 。
适用于流量和扬程都需要降低的场合。
优点
缺点
能够在一定程度上提高泵的效率,降低成 本。
叶轮切割后,泵的性能会发生变化,可能 需要进行重新匹配和调整。
03
轴流泵和混流泵工 况调节方法
轴流泵工况调节特点及方法
调节特点:轴流泵的工况调节主要通过 改变泵的转速、叶片角度和流量来实现 。具有调节范围广、效率高等特点。
节流调节:通过调节出口阀门开度来改 变泵的流量和扬程,适用于小流量、高 扬程的场合。
变角调节:通过改变叶片角度来调节泵 的工况点,适用于扬程变化较大、流量 变化较小的场合。
调节方法
变速调节:通过改变泵的转速来调节流 量和扬程,适用于大流量、低扬程的场 合。
混流泵工况调节特点及方法
调节方法
变角调节:通过改变叶片角度来 调节泵的工况点,适用于需要保 持一定扬程、流量变化较小的场 合。
调节原理
采用独特的叶轮结构和流道设计 ,实现大流量、高扬程、无堵塞
排污。
优点
适用于输送含有大量固体颗粒、纤 维等复杂成分的介质,具有高效、 节能、环保等特点。
缺点
结构复杂,维护成本较高,对介质 成分和温度有一定要求。

水泵的最优工况

水泵的最优工况

水泵的最优工况水泵的最优工况,也被称为最佳工作点或最佳效率点,是指水泵在其性能曲线上能够达到最高能效的运行状态。

在这个工况下,水泵的能耗最低,同时能够提供满足系统需求的水流量和扬程。

以下是确定水泵最优工况时需要考虑的几个关键因素:1. 流量:水泵的流量应与系统的需求量相匹配。

选择过大的水泵可能导致频繁启停或长时间低负荷运行,而选择过小的水泵则可能导致无法满足系统需求。

2. 扬程:水泵的扬程应略高于系统所需的扬程,以克服管道阻力、高度差等因素。

但过高的扬程会造成能源浪费。

3. 效率:水泵的效率是衡量其将输入能量转化为输出能量(即泵送水的能力)的指标。

在最优工况下,水泵的效率应尽可能高。

4. 功率:水泵的轴功率与其效率和扬程、流量有关。

最优工况下的水泵应在满足扬程和流量需求的同时,具有较低的轴功率。

5. NPSH(净正吸入头):NPSH是衡量水泵进口处最低允许压力的指标,以避免发生汽蚀现象。

最优工况下的水泵应具有足够的NPSH值。

6. 运行范围:水泵的运行范围应与系统的需求相匹配。

如果可能,最好选择一个能够在较宽范围内高效运行的水泵。

7. 调节方式:水泵可以通过阀门调节、变频调节等方式来改变其运行状态,以适应不同的系统需求。

8. 可靠性和维护:在考虑最优工况时,还应考虑水泵的可靠性和维护成本,以确保长期稳定运行。

9. 成本效益分析:在选择水泵时,应对不同型号和配置进行成本效益分析,以找到最经济有效的解决方案。

综上所述,水泵的最优工况是一个综合考虑多个因素的结果,包括流量、扬程、效率、功率、NPSH等。

在选择水泵时,应根据系统的具体要求和运行条件来确定最优工况,以确保水泵能够高效、稳定地运行。

水泵运行工况及工况调节

水泵运行工况及工况调节

特性曲线(Q-H)
‘ Ⅱ

(2)绘制 H=HST+SFG∑hFGQ2(曲线记为Q-∑h FG),并由
Q p找到并联等值泵工况点P (Q p, H p)。
(3)过p点作Q轴平行线交(Q-H)′Ⅱ于H,过H点作垂线
交(Q-H)Ⅰ,Ⅱ于J点,J(QⅡ, HⅡ)即为定速泵工况点。
(4)调速泵工况点:QⅠ=Qp-QⅡ,在Q轴上取:QⅠ与过QⅠ 点作垂线与Hp线交于N,调速泵的扬程应为:
3

O
Q1 Q2
Q3
Q
4.2.1 水泵并联运行工况 一、水泵并联运行,工况点的图解法
1.同型号、同水位对称布置的两台水泵并联运行。 (1)绘制两台水泵并联后扬程 (Q-H)1+2性能曲线
M E
Q,
由于管道对称布置,则 ∑hDF=∑hEF,采用横 加法原理绘制两台水泵并联工作的总和 (Q-H)1+2曲 线,如图所示。
QA
O
QA
Q
总工况点:A点,QA=QB=QC
HA=HB+HC 单泵工况点: Ⅰ B点 (QB ,HⅠ)
Ⅱ C点 (QC ,HⅡ) 注:1)串联泵的流量应接近;
2)串联后边的水泵体强度要满足串联叠加的 水压。
(Q-H) )′Ⅰ+Ⅱ。
(2)绘制需能Q-∑hFG曲线。
(3)求工况点。(Q-H) ′Ⅰ+Ⅱ与Q-∑hFG交点M,即为所求同水位、不 同型号的两泵并联工作的工况点。M点的流量即为并联工作的两台水泵的 总出水量。
I
并联水泵机组的总轴功率P1+2及总效率η1+2分别
为:
P = 1+2 P1 + P2
交点于R点,即为并联运行时水泵的工况点。

水泵运行的调节方式

水泵运行的调节方式


如 图 1 示 , 种 所 这 调 节 方 法 称 为节 流 调 节 法 。 图1 曲线 P 中 为 水 泵特 性 曲线 , 曲线 设 K 为 阀 门全 开 时 的 管 1


路 阻 力 曲线 ,工 作 点 所 对 应 的 扬程 为H1 、 流 量 为Q1 当关 小 阀 , 门 开度 时 , 路 阻 力 曲 管 线 变 为 K ,工 作 点 所 2 对 应 的扬 程 H2 、流 量 b 』 为Q泵效 率 ,达 到经 济 运 行 的标 ; 隹,均 把 降低 水 泵和 风机 的 电耗 作 为 当前 的重 要工 作 。 降低 水 泵 的 电 耗 除 7提 高泵 本身 的效 率 外 ,合理 地 选 用水 泵 的调 节 方 式是 最
重要 的。
制十 分便 利 。对 于离 心 泵, 水 泵特性 曲线的 方法 主要 有如 下 改变
泵 的调 节 , 泵 在 系统 中 运 转 时 ,有 时 由于 两 台 以 上 的 泵 是 协 调 工作 和管 路 系统 等 方 面 因素 的影 响 ,致使 运 转 工况 点和 泵 最 优 工况 不符 合 ,或 者 为 了使 水泵 运行 在 高效 区 ,在 这 种情 况 下 ,可调 节泵 的特 性 曲线 ,使 其经 济运 转 ;有时 ,为 了满足 一 定 的流 量 要求 ,也 需 要对 管 路 阻力 曲线 进 行调 节 。要 改 变运 转 工况 点 可设 法移 动 泵 的特 性 曲线 与 泵的 管 路阻 力 曲线 的 交点 。 由 此可 见 ,泵 的特 性 曲线 与 泵 的管路 阻 力 曲线 是调 节 水 泵的 两 条途 径 。 这两种 途 径 分别 是利 用 节流 调 节 、变 径调 节 、 变速调 节、 变角调节 这 四种 方式 实现 的。
三种 方式 : f】 1变径 调 节: 切削 叶轮 外径 法 ,改变 泵结构 , 泵叶 轮经 即 水 过 切削 后, 行时 性能参 数存 在如 下关系 : 运

离心水泵的定速运行工况(2.7)

离心水泵的定速运行工况(2.7)
叶轮直径D=466mm,其Q—H特性曲线如图2-31所示。 试拟合Q—H特性曲线方程。 [解] 由14SA-10型的Q—H特性曲线上,取包括(Q。, H。)在内的任意4点,其值如表2-3所示。上表中H值单位 为m,Q值单位为L/s。
已 知 各 点 的 坐 标 值 待计算值 H3 60 Q3 380 A1 0.0168 A2 -0.00017

由于Q~H曲线的高效段已知,可在曲线上设两点 H1 H 2 (Q1,H1和Q2,H2 ),求 SX
Q 2 Q1
2 2
HX H1 SXQ1
2


两方程联合求解,得
HX SXQ HST SQ
2
2
Q
HX HST SX S
2
H HST SQ
(三)离心泵工作点的校核
第七节 离心泵装置定速运行工况
通过对离心泵基本性能曲线分析,可以看出,每一台水泵在一定 的转速下,都有它自己固有的特性曲线,此曲线反映了该水泵本身潜 在的工作能力。这种潜在的工作能力,在现实泵站的运行中,就表现 为瞬时的实际出水量(Q)、扬程(H)、轴功率(N)以及效率(η)值等。我 们把这些值在Q~H曲线、Q—N曲线、以及Q一η曲线上的具体位置,称 为该水泵装置的瞬时工况点,它表示了该水泵在此瞬时的实际工作能 力 。 泵站中决定离心泵装置工况点的因素有3个方面: 1.水泵本身的型号; 2.水泵运行的实际转速;

型号
Ho 72
Qo 0
H1 70
Q1 240
H2 65
Q2 340
14SA--10
图2-31 14SA-10型离心泵的特性曲线
求解过程为:已知的各坐标值代入(2-62b)正则方程, 可得: 288+960A1+317600A2=267 {69120+317600A1+108 X 106A2=61700

并联离心水泵运行工况点等效分析

并联离心水泵运行工况点等效分析

并联离心水泵运行工况点等效分析并联离心水泵是离心式水泵的一种,其主要特点是在同一管路上设置两台或多台水泵并联运行。

由于并联可以在一定程度上提高系统的工作效率,并且可以保证系统的可靠性和稳定性,使得并联离心水泵在供水、消防、冷却等领域得到广泛应用。

在实际工作中,为了保证并联离心水泵的正常运行,需要对其工况点进行等效分析。

本文将从以下几个方面进行探讨。

一、并联离心水泵运行原理并联离心水泵是将两个或多个离心水泵组合在一起,并将它们与同一管路相连。

当系统需要的流量和扬程超过单个水泵的扬程和流量时,另一台水泵会参与工作,以满足系统的需求。

在实际应用中,可以通过不同压力或液位的传感器来控制并联水泵的启动和停止,以达到节能的效果。

二、并联离心水泵的工况点并联离心水泵的工况点是指在一定流量和扬程下,各个水泵的工作状态。

在理想情况下,各个水泵贡献的流量和扬程应该相等,但是在实际中,由于各种因素的影响,每台水泵的贡献不会完全相同。

因此,需要通过等效分析来确定实际的工况点。

三、并联离心水泵的等效分析并联离心水泵的等效分析是通过计算每台水泵的实际工作状态来确定整个系统的实际工况点。

这需要考虑到多台水泵同时工作时的相互作用,包括流量、扬程、功率、效率等参数。

在进行等效分析时,需要首先确定每台水泵的性能曲线。

性能曲线是指在不同转速下,水泵的流量和扬程关系图,它是水泵性能的重要指标。

通过实验或者仿真计算,可以得到并联离心水泵的性能曲线。

然后,在确定性能曲线的基础上,可以得到系统的特征曲线。

特征曲线是指在给定流量和扬程下,不同工作点的效率和功率关系图。

通过特征曲线,可以确定系统的最佳工作状态,即实际的工况点。

四、影响并联离心水泵工况点的因素在实际应用中,有很多因素会影响并联离心水泵的工况点。

其中最主要的因素包括管道阻力、变频器控制、压力传感器精度、水泵间的同步性等。

管道阻力是指管道内流体摩擦对流量和扬程的影响,它是影响并联离心水泵性能的主要因素之一。

水泵水轮机基本运行工况

水泵水轮机基本运行工况

水泵水轮机基本运行工况
水泵和水轮机作为水利工程设备的重要组成部分,其基本运行工况可以分为以下几种:
1.启动运行工况:水泵和水轮机在启动时必须先经过空载运行,然后再逐渐增加负载,直至达到正常工作状态。

在启动过程中,要确保运行平稳,避免过载或过速等危险情况。

2.正常运行工况:水泵和水轮机在正常工作状态下,应该保持运行平稳,水流、水头、水质等各项指标均能达到设计要求,并且不产生过载、过速、振动和噪音等问题。

3.断电或停机运行工况:当电力或水源中断时,水泵和水轮机会自动停机或停止供水,此时应进行相应的保护措施,避免设备受损或水质受到污染。

4.故障停机运行工况:在水泵和水轮机出现故障时,应该及时停机进行检修或更换损坏的部件,以保证设备的正常运行和有效使用寿命。

总之,不同的运行工况需要进行相应的控制和管理,以保证水泵和水轮机的安全可靠和高效运行。

水泵运行工况点的图解法_-_副本

水泵运行工况点的图解法_-_副本

1)作图确定对应n1下水泵的工况点Q0,H0;
2)计算 Q XX% Qo
3)由装置特性曲线求H’;
H H ST SQ2
4)确定相似抛物线系数k,作相似抛物线与水泵特性
曲线交于A(Q,H);A’与A为相似工况点;
5)计算转速n2:
n2

n1
Q Q
水泵与水泵站
6
水泵运行工况点确定的图解法
水泵与水泵站
16
水泵运行工况点确定的图解法
水泵与水泵站
17
水泵运行工况点确定的图解法
水泵与水泵站
18
四、水泵并联运行的图解法
1、两台泵向一个高地水池供水的图解法
(1)基本关系方程
对水泵A: H A H A(QA )
H

H ST

S
AO
Q
2 A

SOG Q 2
对水泵B:
H B H B(QB )
H H ST SBOQB2 SOGQ2
H 在工况点,扬程关系(当下池水位相同时): A

水泵复习——运行工况点的确定
水泵运行工况点确定的图解法
水泵与水泵站
1
水泵运行工况点确定的图解法
一、基本公式
水泵特性曲线方程:
H H(Q)
水泵装置曲线方程:
H H ST h H ST SQ2
运行工况点:两曲线的交点(方程之解)A(Q, H),即:
H(Q) H ST SQ2
QA QB Q
2)水泵曲线的横加法(将水泵A、B的折引曲线合成)
HO HO,A HO,B HO(QA QB ) HO(Q)
3)折引作图过程

离心泵运行工况的优化与调节

离心泵运行工况的优化与调节

离心泵运行工况的优化与调节在工农业生产的各行各业和人们的日常生活中,离心泵发挥着不可替代的重要作用,是实现液体输送的主要设备之一。

但是,离心泵的实际运行工况的效率却是偏低,而且能耗过大,造成费用的增多和浪费,不利于企业的发展和盈利。

为此,就需要对离心泵运行的工况进行优化与调节,以减少损失,提高效率。

一、离心泵运行效率低的原因分析1、离心泵的运行工况点偏离了设计工况造成效率低下设计离心泵时,根据给定的一组流量Q扬程H与转速n 值、按水力效率n最高的要求进行计,如果计算符合这一组参数的工作情况就称为水泵的设计工况点。

水泵铭牌中所列出的数值即为设计工况下的参数值,它是该水泵最经济工作的一个点。

但是在实际运行中,水泵的工作流量和扬程往往是在某一个区间内变化着的,流量和扬程均不同于设计值。

水泵装置在某瞬时的实际出水量、扬程、轴功率、效率以及允许吸上真空高度等称为水泵装置的实际工况点。

我们所说的求离心泵的工况点指的就是实际工况点,它表示了水泵装置的工作能力。

在选泵时及运行中,应使泵装置的实际工况点尽量接近水泵的设计工况点,落在高效段内。

2、离心泵内的各种损失造成离心泵运行效率下降液体流过叶轮的损失包括机械损失、流动损失和泄漏损失,与之相应的离心泵的效率分为机械效率、水力效率和容积效率。

机械损失包括叶轮的轮盖和轮盘外侧与液体之间摩擦而消耗的轮阻损失、轴承和填料函内的摩擦损失;泄漏损失包括由叶轮密封环处和级间以及轴向力平衡机构处的泄漏损失;流动损失由液体流过叶轮、蜗壳、扩压器产生的沿程摩擦损失以及流过上述各处的局部阻力损失包括流体流入叶道以及转能装置时产生的冲击损失,其损失的大部分转变为热量为流体所吸收。

3、管路效率低当被输送液体流量或扬程发生变化,经常见到的处理方法是调节阀门,这一方法虽然方便,但是也存在缺点,就是会造成管路阻力损失过大,使离心泵在低效率状态下运行。

4、离心泵自身效率低保证离心泵运行效率高首先应该选择高效离心泵, ,如分段式多级离心泵本身的效率较高,而IS 型单级单吸离心泵的效率则较低。

水泵的工况调节名词解释

水泵的工况调节名词解释

水泵的工况调节名词解释
水泵的工况调节是指根据实际需求,对水泵的工作状态进行调节的过程。

以下是关于水泵工况调节常见的名词解释:
1. 流量调节:指调节水泵的出水流量,通过改变水泵的转速或调节出口阀门的开度等手段来控制水泵的输出流量。

2. 扬程调节:指调节水泵的出水扬程,通过改变水泵的转速或调节进口阀门的开度等手段来改变水泵所能提供的扬程。

3. 功率调节:指调节水泵的输入功率,通过改变水泵的转速或调节进口阀门的开度等手段来改变水泵所消耗的电力或能源。

4. 稳压调节:指在保持一定流量下调节水泵出口压力的稳定性,通常通过调节出口阀门的开度或安装稳压阀来实现。

5. 变频调节:指通过控制水泵的电机转速,利用变频器等设备实现对水泵转速的调节,从而调节水泵的流量和扬程。

6. 自动调节:指利用自动控制系统,根据预设的参数和反馈信号来自动调节水泵的工况,实现稳定的工作状态。

这些名词解释可以帮助我们更好地理解水泵工况调节的相关概念和方式。

离心泵工作点的三种调节方式

离心泵工作点的三种调节方式

离心泵工作点的三种调节方式离心泵是一种常见的水泵,广泛应用于工业、农业、城市供水、消防等领域。

离心泵的性能参数直接影响其运行效率和使用寿命,因此,离心泵的工作点调节非常重要。

下面我们将介绍离心泵的工作点调节方式。

一、调节叶轮直径离心泵的叶轮是影响泵的性能的关键部件。

叶轮直径大小的变化,直接影响泵的扬程和流量。

(1)调整叶轮直径,增加叶轮直径可以增加泵的扬程和阻力,减小叶轮直径可以增加泵的流量和容积。

(2)当泵工作点偏离设计工作点时,可适当调整叶轮直径,以使泵的性能重新回到设计要求。

(3)调整叶轮直径需要先计算出泵的设计要求,测量当前泵的工作点,然后通过叶轮校调来满足泵的性能要求。

二、调节叶轮角度离心泵的叶轮角度是指进出口倾角,也是泵的性能的重要参数之一。

适当调整叶轮角度可以使离心泵的性能更优越,提高泵的工作效率。

(1)调节叶轮角度可以改变泵的流量和扬程,进口倾角变大可以减小泵的扬程和流量,反之亦然。

为了使泵迅速适应变动的工况,需要采用多级泵或变频调速方式。

(2)在调整叶轮角度时,需要依据泵的性能曲线和实际运行情况,选择合适的叶轮角度,使泵的工作点满足工程需求。

三、调节出口门阀离心泵的出口门阀是控制泵的流量和扬程的最佳方式。

通过调整出口门阀的开度,可以实现对泵的流量和扬程的精准调节。

(1)调节出口门阀可以改变泵的扬程和流量,关小门阀可以减小泵的流量和扬程,反之,开大门阀可以增加泵的流量和扬程。

(2)在调整出口门阀时,需要依据实际工况,选择合适的开度,使泵的工作点满足工程需求。

总之,离心泵的工作点调节是实现泵的高效运行及长期稳定运行的重要保证,需要根据具体情况选择合适的调节方式,并定期进行检查和维护。

在进行离心泵的工作点调节时,需要考虑到多个因素,如流量、扬程、功率、效率等,才能确保泵的稳定运行。

下面将详细介绍离心泵的工作点调节的注意事项和应用场景。

一、注意事项1. 进行离心泵工作点调节前,需要先了解泵的性能曲线和各个性能参数的范围。

第十五章-泵与风机运行与调节讲述

第十五章-泵与风机运行与调节讲述
若贮槽与受槽的截面都很大,该处 流速与管路相比可忽略不计.
上式可简化为
H=Hst+ ∑Hf
此式中压头损失为
H f
(
l
d
le
)
u2 2g
(
l
d
le
)(
1 2g
)(
Q d
2
)
(
8 2g
)(l
d5
le
)Q2
4
式中Q为管路系统的流量,m3/s
对于特定的管路系统,l、le、d 均为定值,湍流
时摩擦系数的变化也很小,令
(3)冷却 • 对设有填料箱水封管、水冷轴承、水冷 机械轴封或具有平衡管、平衡盘的离心 泵
注意其相应水管路是否畅通
检查冷却水量和水温。
(4)封闭起、停 • 闭排出阀运转时功率最低 • 但泵封闭运转的时间不能过长(液体发热 )
(5)检查转向 • 泵反转时不能建立正常排压 • 故新泵或检修后初次起动时,应判别转 向
(4)联轴节对中不良或管路安装不妥导致泵轴 失中
(5)原动机本身振动,可脱开联轴节进行运转 检查
液体方面:
• (1)汽蚀现象
流量较大时 查看吸人真空度是否过大 用减小流量、降低液温或增大流注吸高等办法消除
(2)喘振现象
• 具有驼峰形Q一H曲线的离心泵在特定的管路条 件下才会发生
• 这种泵向静压头较大且周期性变化的容器供液 时就有可能发生喘振
M1 M
n1 n n2
Q或Qe
3 车削叶轮的外径
车削叶轮的外径是离心泵调节流量的一种独特 方法。在车床上将泵叶轮的外径车小,这时叶轮直 径、流量、压头和功率之间关系,可按式(2-7) 进行计算。
离心泵的检修注意事项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、节流调节
改变出水管路闸门开度
改变水泵装置需要扬程曲线
适用条件:离心泵和低比转速混流 泵,不适用于比转速较 大的泵
特 点:调节方法可靠、简单易 行,但不经济
作 用:一般用来防止过载和汽 蚀
作业
1、一台离心泵从进水池抽水,流量0.04m3/s,进水池水位低于 水泵轴线5m;出水池水位高于水泵轴线1.6m,进水管长 8m,装有带底阀的莲蓬头,局部损失系数为6,90°弯头一 个,局部损失系数为0.4;出水管长5m,管径150mm,管口 不放大,拍门淹没出流,局部损失系数为1.5,管路上有两个 90°弯头,管路上有一只阀门全开水头损失忽略不计。水泵 效率70%,管道的糙率为0.013,水泵进口直径200mm。试 求:要求水泵进口处真空值不超过6m水柱时,进水管的管径 应选多少?此时水泵的扬程为多少,轴功率为多少?
改变叶轮的直径
改变水泵性能曲线
车削定律
⎧Q ⎪
=
D
⎪Qa Da

⎪H
⎨ ⎪
H
a
=
⎜⎜⎝⎛
D Da
⎟⎟⎠⎞2
⎪ ⎪N ⎪⎩ Na
=
⎜⎜⎝⎛
D Da
⎟⎟⎠⎞3
适用条件:通常只适用于比转速不超过350的水泵(离心 泵或蜗壳式混流泵)
3、变角调节
改变叶片的安放角
改变水泵性能曲线
适用条件:适用于低扬程水泵(轴流泵、导叶式混流泵)
=
n3 n3
1
水泵变速前后,满足比例律的各工况点均在一条抛物线上,具 有相似的工况,并且效率相等(近似相等)
由 Q1 = n1 , H 1 = n12
Q2
n2 H 2
n2 2
H1 H2
=
⎛ ⎜ ⎝
Q1 Q2
⎞2 ⎟ ⎠
H1 = H 2 = k
Q
2 1
Q2 2
H = kQ2
2、变径调节(车削调节)
第4章 水泵运行工况点与调节
4.1 水泵运行工况点
※管路性能曲线 管路水头损失:沿程水头损失+局部水头损失
hl=SQ2
∑ ∑ S = 10.28
Ln 2 d 5.33
+
0.083
ξ
d4
※需要扬程曲线
Hr=Hst+SQ2
※水泵工况点的确定 图解法
数解法
4.2 水泵并联运行
• ※图解法
4.3 水泵串联运行
2、有一台水泵,试验测得其转速为2950r∕min,流量为3.5 L/s,扬程为33.1m,轴功率为2.13kW,若该水泵的额定转速 为2900r∕min,且不考虑转速对水泵效率的影响,试计算: 水泵在额定转速下运行时的流量、扬程、轴功率与效率。
•Hale Waihona Puke ※图解法4.5 水泵工况的调节
原设计运行工况
水位变化 流量变化
效率降低 功率增加 发生气蚀
工况调节
工况调节
改变水泵装置需要扬程 Q ~ H r 改变水泵性能曲线 Q ~ H
1、变速调节
改变水泵的转速
改变水泵性能曲线
水泵的性能参数与转速的关系
Q Q1
=
n,H n1 H 1
=
n2 n2
1
,P P1
(管径系列(mm):10,15,20,25,32,40,50,65,80,100,125,150,175, 200,
225,250,300,350,400,450,500,600,700,800,900,1000,1100,1200,1300,1400, 1500,1600,1750,1800,2000,2200)
相关文档
最新文档