化学键与分子间作用力.ppt

合集下载

人教版高中化学必修二第一章第三节《化学键》课件(共38张PPT)

人教版高中化学必修二第一章第三节《化学键》课件(共38张PPT)
活泼的金属元素和酸根离子形成的盐 把NH4+看作是活泼的金属阳离子
金属氧化物:Na2O,Al2O3等
强碱:NaOH Ba(OH)2等
如何表示氯化钠的形成过程--电子式
•资料卡片
电子式 为方便起见,我们在 元素符号周围用“ · ”或 “×”来表示原子的最外 层电子(价电子)。这种 式子叫做电子式。例如:
归纳:分子间作用力与化学键的比较
作用微粒 作用力大小
意义
化学键 相邻原子间 作用力大 范德华力 分子之间 作用力小
影响化学性质和 物理性质
影响物理性质 (熔沸点等)
一些氢化物的沸点
讨论: 为什么HF、H2O和NH3的沸点会反
常呢?
2.氢键
1)形成条件:原子半径较小,非金属性很强的 原子(N、O、F)与H原子形成强极性共价键 ,与另一个分子中的半径较小,非金属性很强 的原子Y (N、O、F),在分子间H与Y产生
1.原子、离子都要标出最外层电子,离子须标明 电荷;
2.阴离子要用方括号括起来;
3.相同的原子可以合并写,相同的离子要单个写 ;
4.不能把“→”写成“====”;
⑴ 用电子式表示氧化镁的形成过程 ⑵ 用电子式表示硫化钾的形成过程
氢气在氯气中燃烧
写出该过程的化学方程式和实验现象 思考:活泼的金属元素和活泼非金属元素化 合时形成离子键。请思考,非金属元素之间 化合时,能形成离子键吗?为什么?
较强的静电吸引,形成氢键
2)表示方法:X—H…Y—H(X.Y可相同或不 同,一般为N、O、F)。
3)氢键能级:比化学键弱很多,但比分子间作 用力稍强
特征:具有方向性。
氢键作用:使物质有较高的熔沸点(H2O、HF 、 NH3) 使物质易溶于水

高中化学第2章化学键与分子间作用力第3节离子键配位键与金属键课件鲁科版

高中化学第2章化学键与分子间作用力第3节离子键配位键与金属键课件鲁科版


[Cu(NH3)4]SO4 中的配位键可表示为
[特别提醒] (1)配位键实质上是一种特殊的共价键,在配位键中成键原子 一方能提供孤对电子,另一方具有能够接受孤对电子的空轨道。 (2)同共价键一样,配位键可以存在于分子之中[如 Ni(CO)4], 也可以存在于离子之中(如 NH+ 4 )。 (3)两种原子间所形成的配位键和普通共价键的性质(键长、 键 能、键角)完全相同。例如,NH4 中的 N→H 配位键和 3 个 N—H 共价键性质相同,即 NH+ 4 中 4 个价键的性质完全相同。
提示:存在于金属或合金中,金属或合金中的所有金属阳离 子与其中的所有自由电子参与成键。
离子键、共价键、金属键的比较
类型
比较
共价键 离子键 非极性 键
极性键
配位键
金属键
阴、阳离子 相邻原子间通过共用电子对 ( 电 金属阳离子 本质 间通过静电 子 云 重 叠 ) 与 原 子 核 间 的 静 电 与自由电子 作用形成 作用形成 间作用 成 键 条 件 (元素 种类) 成键原子的 得、失电子 能力差别很 大(活泼金 属与活泼非 金属之间) 成键原 子得、 失电子 能力相 同(同种 非金属) 成键原子 得、失电 子能力差 别 较 小 (不同非 金属) 成键原子一 方有孤对电 同种金属或 子(配位体), 不同种金属 另一方有空 (合金) 轨道(中心 离子)
2.以下叙述中,错误的是
(
)
A.钠原子和氯原子作用生成 NaCl 后,其结构的稳定性增强 B.在氯化钠中,除氯离子和钠离子的静电吸引作用外,还存 在电子与电子、原子核与原子核之间的排斥作用 C.任何离子键在形成的过程中必定有电子的得与失 D.离子键、极性键、非极性键可能同时存在于一种物质中 解析:活泼金属原子和活泼非金属原子之间形成离子化合物,阳离

高三化学化学键.ppt

高三化学化学键.ppt

一般:成键元素原子的电负性差>1.7,离子键 成键元素原子的电负性差<1.7,共价键 例:Na:0.9,Cl:3.0 ;3.0-0.9=2.1,NaCl为离子化合物 但,H:2.1,F:4.0;4.0-2.1=1.9, HF为共价化合物
5)对角线规则 在元素周期表中,某些元素与右下方的主族元素, 处于对角线的元素的电负性数值相近,而有些性质是 相似的,被称为“对角线规则”。 锂、镁在空气中燃烧产物都是碱性氧化物,Be和 AL的氢氧化物都是两性氢氧化物,硼和硅的含氧酸均 为弱酸,由此可以看出对角线规则是合理的。这是因为 这些处于对角线的元素的电负性数值相差不大,得失电 子的能力相差不大,故性质相似。 并不是所有处于对角线的元素的性质都相似的。
同一周期从左到右逐渐增强 同一主族从上到下逐渐减弱


3.元素的主要化合价 同周期最高正价从+1价到+7 价 负价从-4到-1价

4.原子半径
•5.电离能 •6.电负性
同一周期从左到右逐渐减小 同一主族从上到下逐渐增大
5、电离能的周期性变化 1)第一电离能: ①概念:气态原子失去一个电子形成+1价气态 阳离子所需最低能量。单位KJ· mol-1 。 ②第一电离能的意义: 衡量元素的原子失去一个电 子的难易程度。 元素的第一电离能大小与原子失去 电子能力有何关系? 第一电离能越小,越易失去电子,金属性越强 第一电离能越大,越难失去电子,金属性越弱 第一电离能的递变规律: 同一周期,从左→右,逐渐增大; 同一主族,从上→下,逐渐减小。
+ 一方有孤对电子, H3O 一方有空轨道 NH4+
金属离子 无方向性 和自由电 无饱和性 子间
金属单质和合金 Na、钢 镁铝合金

高中化学 第2章 化学键与分子间作用力 第3节 离子键、配位键与金属键 鲁科版选修3

高中化学 第2章 化学键与分子间作用力 第3节 离子键、配位键与金属键 鲁科版选修3

轨道,而无法提供孤电子对,所以不能形成配位键。
解析 答案
例5 回答下列问题: (1)配合物[Ag(NH3)2]OH的中心离子是__A_g_+__,配位原子是_N___,配位数 是__2__,它的电离方程式是_[_A_g_(_N_H__3_)2_]_O_H_=__=_=_[_A_g_(_N_H__3)_2_] _+_+___O_H_。
(3)影响静电作用的因素
根据库仑定律,阴、阳离子间的静电引力(F)与阳离子所带电荷(q+)和阴
离子所带电荷(q-)的乘积成正比,与阴、阳离子的 核间距离(r) 的平方成
反比。
q+q- F=k r2 (k 为比例系数)
4.形成条件 一般认为当成键原子所属元素的电负性差值 大于1.7 可能形成离子键。
解析 答案
例2 下列物质中的离子键最强的是
A.KCl
√C.MgO
B.CaCl2 D.Na2O
解析 离子键的强弱与离子本身所带电荷数的多少及半径有关,半径
越小,离子键越强,离子所带电荷数越多,离子键越强。在所给阳离
子中,Mg2+带两个正电荷,且半径最小,在阴离子中,O2-带两个单 位的负电荷,且半径比Cl-小。故MgO中的离子键最强。
2.配合物
(1) 配合物的形成 在盛有2 mL 0.1 mol·L-1的CuSO4溶液中,逐滴加入过量的浓氨水,观 察到的现象是 先生成蓝色沉淀,继续加氨水,沉淀溶解 ,最后变为_蓝__ 色透明溶液。反应的离子方程式是 ① Cu2++2NH3·H2O===Cu(OH)2↓+2NH+ 4 ; ② Cu(OH)2+4NH3·H2O===[Cu(NH3)4]2++2OH-+4H2O 。
时,原子间才有
5.特征 (1)没有方向性:离子键的实质是 静电作用,离子的电荷分布通常被看成 是 球形对称 的,因此一种离子对带异性电荷离子的吸引作用与其所处的 方向 无关 。 (2)没有饱和性:在离子化合物中,每个离子周围最邻近的带异性电荷离 子数目的多少,取决于阴、阳离子的相对 大小 。只要空间条件允许,阳 离子将吸引 尽可能多 的阴离子排列在其周围,阴离子也将吸引_尽__可__能__多_ 的阳离子排列在其周围,以达到 降低 体系能量的目的。

高中化学人教版必修二《1.3.3化学键——分子间作用力、氢键》课件

高中化学人教版必修二《1.3.3化学键——分子间作用力、氢键》课件
相互作用的大小不同
四、分子间作用力和氢键
1、分子间作用力 定义: 把分子集合在一起的作用力叫做分子间作
用力(也叫范德华力)。
(1)分子间作用力比化学键弱很多,是一种柔弱的相互作用,它主 要影响物质的熔、沸点等物理性质,而化学键主要影响物质的化学性质。
(2)分子间作用力主要存在于由分子构成的物质中,如:多数非金 属单质、稀有气体、非金属氧化物、酸、氢化物、有机物等。
(3)分子间作用力的范畴很小(一样是300-500pm),只有分子间 的距离很小时才有。
(4)一样来说,对于组成和结构类似的物质,相对分子 质量越大,分子间作用力越大,物质的熔、沸点越高。如卤 素单质:
又如气态氢化物:
但是:
讨论:
2、氢键
为何HF、H2O和NH3 的沸点会反常呢?
定义:由于氢原子的存在而使分子间产生的一种 比分子间作用力稍强的相互作用——氢键。
(1)氢键不属于化学键,比化学键弱很多,比分子 间作用力稍强,也属于分子间作用力的范畴,
(2)形成条件:氢原子与得电子能力很强、原子半径 很小的原子形成的分子之间。如HF、H2O、NH3等分子间 易形成氢键。
(3)特点:具有方向性。
(4)结果1:氢键的形成会使含有氢键的物质的熔、 沸点大大升高。如:水的沸点高、氨易液化等。这是 由于固体融化或液体汽化时,必须破坏分子间作用力 和氢键
4、下列说法正确的是( B ) A、含有共价键的化合物一定是共价化合物 B、分子中只有共价键的化合物一定是共价化合物 C、由共价键形成的分子一定是共价化合物 D、共价化合物中可以有离子键
5、下列说法正确的是(C )
A、单质分子中一定存在共价键 B、气态物质中一定有共价键 C、在共价化合物中一定有共价键 D、全部由非金属元素构成的化合物中,一定不含离子键

3.3 化学键分子间力

3.3 化学键分子间力

共价单键为σ键 共价双键(及三键)中,有一个σ键, 其余为键。
σ键:重叠程度大,较稳定; π键:重叠程度小,较活泼,易断裂, 易发生化学反应。 思考题 NH3、N2、CO、C2H2中各有几个 σ键及键?(黑板上解)
2 杂化轨道理论
CH4 形成的过程中,C原子的电子曾有过如下的 激发步骤,以得到 4 个单电子。
有机羧酸、醇、酚、胺、氨基酸和蛋白质中也 有氢键的存在。甲酸靠氢键形成二聚体。
OH O
HC
CH
OHO
除了分子间氢键外,还有分子内氢 键。例如,硝酸的分子内氢键使其熔、 沸点较低。
H
O
O
N O
有分子内氢键 m. p. 44 - 45 ℃
O2N
OH 没有分子内氢键 m.p. 113 - 114 ℃
氢键的影响
ψ1=φ1s+φ1s (成键分子轨道)
ψ2=φ1s-φ1s (反键分子轨道)
与原来两个原子轨道比较,成键分 子轨道中两核间电子云密度增大,能 量降低;
反键分子轨道中两核间电子云密度减 小,能量升高。
图氢原子轨道与分子轨道能量示意 氢分子的2电子在成键轨道中,自旋反平行。
原子轨道 1s
(
* 2s
)
2
(
2p
)
2

2p
)
4

* 2p
)
2
有两个三电子π键,具有顺磁性。 :O O:
⑤配位键 由一个原子(给予体)提供电子对, 另一个原子(接受体)提供空轨道,形 成的共价键叫配位键。
如: H3N→H+
NH
4
H
HNH
H
BF4
F

化学键(46张)PPT课件

化学键(46张)PPT课件

化学键的形成与断裂
形成
原子通过得失或共享电子达到稳定的 电子构型,从而形成化学键。化学键 的形成是化学反应的基础。
断裂
化学键的断裂需要吸收能量,使原子 从稳定的电子构型中摆脱出来。化学 键的断裂是化学反应的驱动力。
化学键的强度与稳定性
强度
化学键的强度取决于键能和键长。键能越大,键长越短,化学键越强。一般来说,离子键和共价键的强度较高 ,而氢键的强度较低。
的物质通常具有较高的反应活性。
03
键角
化学键的键角对物质的反应活性也有一定影响。例如,具有较小键角的
物质在化学反应中更容易发生空间位阻效应,从而影响反应的进行。
06
化学键的应用与拓展
化学键在材料科学中的应用
材料性质与化学键
通过改变材料中化学键的类型和强度 ,可以调控材料的硬度、韧性、导电 性等性质。
02
通过改变药物分子中的化学键,可以优化药物的疗效和降低副
作用。
生物医学工程
03
利用化学键原理,可以设计和合成生物相容性良好的医用材料
,如人工关节、心脏瓣膜等。
化学键在环境科学中的应用
大气化学
大气中的化学反应涉及多种化学 键的断裂和形成,对气候变化和
空气质量有重要影响。
水处理化学
利用化学键原理,可以设计和合成 高效的水处理剂,用于去除水中的 污染物。
应。
反应类型
不同类型的化学键在化学反应中 表现出不同的反应类型。例如, 离子键容易发生复分解反应,共 价键则容易发生加成、取代等反
应。
化学键与物质反应活性的关系
01
键能
化学键的键能越大,物质越稳定,反应活性越低。反之,键能越小,物
质越不稳定,反应活性越高。

分子间作用力和氢键.ppt

分子间作用力和氢键.ppt
分子间力具有以下特性:
(1)它是存在于分子间的一种电性作用力。 (2)作用能的大小只有几个千卡/摩尔,比化学键 能(约为30-150千卡/摩尔)小一二个数量级。 (3)作用力的范围很小。三种分子间力都与分子间 距离的七次方成反比,即当分子稍为远离时,分 子间力迅速减弱。 (4)一般没有方向性和饱和性。 (5)在三种作用力中,色散力是主要的,诱导力通 常很小,只有少数极性较大(如水、氨)的分子之 间,取向力才占一定的比例或占优势。
CH4
NH3 H2O
化学键与物质结构
分子间力和氢键
化学键与物质结构
分子的极性
由于共价键分为极性键和非极性键,给共 价型分子带来了性质上的差别。
当分子中正、负电荷重心重合时,这种分 子叫做非极性分子。正、负电荷重心不重合的 分子叫做极性分子或偶极分子。
CO2
H2O
化学键与物质结构
分子极性和键极性的关系
间可以形成分子间氢键,则溶质的溶解度增大。 例如,氨、丙酮和乙酸等溶质分子中有电负
性较大的原子N或O等,可以和水中的O-H形 成氢键,这些物质都易溶于水。
如,一体积的水在20 ℃时能够溶解700体积 的氨。
11:34
化学键与物质结构
氢键的形成对物质的溶解度有一定的影响。 如果溶质分子能够形成分子内氢键,则在极
离子间极化越强,核间距缩短 离子间极化越强,物质熔点、沸 点就越低 离子间极化越强,物质颜色越深
化学键与物质结构
晶体
内部的原子、分子、离子等质点有规则排列的一 类固体物质统称为晶体
离子晶体
原子晶体 晶 体
分子晶体
金属晶体
化学键与物质结构
晶体
一般而言:三种晶体在熔点、沸点、硬度上有: 原子晶体 > 离子晶体 > 分子晶体

化学键与分子间作用力

化学键与分子间作用力
沸点 沸点 物质 (˚C) 物质 (˚C)
HF
HCl HBr
20
-85 -67
H2O
H2S H2Se
100
-60 -42
HI
-36
H2Te
-2
除了HF、H2O、NH3 有分子间氢键外, 在有机羧酸、醇、酚、胺、氨基酸和蛋白质 中也有氢键的存在。例如:甲酸靠氢键形成 二聚体。 O H C H O C H
● 怎样解释形成双键和叁键的原子间共享 2 对、 3 对电子?
● 能否用原子轨道在空间的取向解释分子的几何 形状?
量子力学处理H2分子的结果 两个氢原子电 子自旋方式相反, 靠近、重叠,核间 形成一个电子概率 密度较大的区域。 系统能量降低,形 成氢分子。 核间距 R0为74 pm。 共价键的本质——原子轨道重叠,核间 电子概率密度大吸引原子核而成健。
5.3.1 化学键(Chemical Bond)
不同的物质具有不同的外在性质
不同的外在性质反映了物质不同的内部结构 各自内部的结合力不同
一、 化学键的定义 (definition of chemical bond) 化学键是指分子内部原子之间的强相互作用力。
125~900 kJ/mol
金属键 存在于金属内部的化学键 二、化学键的类型 离子键 共价键
指原子间总是尽 可能的沿着原子 轨道最大重叠的 方向成键。
共价键的键型
①σ键: 原子轨道沿核间 联线方向进行同号重 叠(头碰头)。
②π键: 两原子轨道垂直核间联线并相互平行 进行同号重叠(肩并肩)。
肩 并 肩
“头碰头”
σ键与π键形成示意图
键型的稳定性: σ 键>π 键
为什么?
问题: 相邻两原子间只能形成 1 个σ键,但可形 成 2 个或 2 个以上的π键。 为什么?

化学键的极性与分子间的相互作用力

化学键的极性与分子间的相互作用力
化学键的极性与分子 间的相互作用力
汇报人:XX
目录
化学键的极性
分子间的相互作用力
极性分子与非极性分子
极性分子与分子间相互 作用力的关系
化学键极性与分子间 相互作用力的应用
化学键的极性
定义:共价键的极性是指键的偶极 矩是否为零,若不为零则表示该键 具有极性
影响:极性共价键的存在使得分子 具有极性,影响了分子间的相互作 用力
药物设计中的极性键和分子间 相互作用力的调控,提高药物
的疗效和降低副作用
极性键和分子间相互作用力在 药物设计和优化中的实际应用
案例
合成新型高分子材 料
优化材料性能
增强材料的稳定性
开发新型复合材料
酶活性:酶的活性中心往往存在极性基团,这些基团通过分子间相互作用力影响酶的活性。
细胞膜稳定性:细胞膜中的磷脂分子通过极性基团相互作用,形成稳定的细胞膜结构。
分子间相互作用力可以影响物质的物理性质和化学性质,例如在化学反应中,分子间相互作 用力可以影响反应速率和反应机理。
了解分子间相互作用力对物质性质的影响,有助于更好地理解和应用物质性质,为相关领域 的研究和应用提供理论支持。
分子间相互作用力是 影响化学反应的重要 因素之一
极性分子之间的相互 作用力较强,可以促 进化学反应的进行
添加标题
添加标题
添加标题
添加标题
形成原因:由于成键原子间的电负 性差异,导致电子云的偏移,从而 形成偶极
类型:根据电负性的差异程度,极 性共价键可分为强极性和弱极性
离子键的形成:正离子和负离子之间的吸引 离子键的极性判断:正负离子的电负性差异 离子键的极性强弱:电负性差异的大小决定 离子键的极性对物质性质的影响:溶解度、熔点等

2.1化学键、分子间作用力

2.1化学键、分子间作用力

HCl、H2O、 NH3 等
键的极性与分子的极性的区别与联系
概念
键的极性
分子的极性
含义
极性键和非极性键 极性分子和非极性分子
结构
键的极性 分子极性
极性键 极性分子 H2S
均为角形
类型 实例 X2Y型 CO2
结构
SO2
键的极性 分子极性
极性键 非极性分子 直线型
极性键 角形
极性分子
类型 实例 XY3型 BF3
结构
NH3
键的极性 分子极性 极性键 非极性分子
平面三角形
极性键
极性分子
三角锥形
类型 实例 XY4型 CH4
结构
H H﹕C﹕H
H H ··O ··O··H
--
Cl-Cl (单键)
H-Br N≡N (叁键)
H H-C -H
H H-O-O-H
次氯酸的电子式或结构式错误的是( A D)
﹕﹕ ﹕﹕ ﹕ ﹕﹕ ﹕ ﹕ ﹕﹕ ﹕
(A) H﹕Cl O (C) H-O-Cl
﹕﹕
(B) H﹕ O Cl (D) H+ [﹕Cl O ]-
键长越短键越强结合越牢固 键能越大键越强结合越牢固 决定分子构型,判断分子极性
键能 键长
判断分子的稳定性
确定分子在空间的几何构型 键角
共价键有方向性和饱和性
参考下表中化学键的键能数据,下列分子中,
受热时最稳定的是( B )
化学键 H—H 键能 (KJ/mol) 436
H—F 565
H—Cl H—Br 431 368
活泼金属
失电子
活泼非金属 得电子
阳离子 阴离子
静电作用 离子键
静电作用

化学键和分子间作用力

化学键和分子间作用力
在分子中,每个原子均应具有稳定的稀有气体 原子的 8 电子外层电子构型 (He 为 2 电子), 习惯上称为“八隅体规则”。
美国化学家 Lewis Gilbert Newton
(1875-1946)
路易斯结构式
用短线表示原子间形成的共价键,用小黑点表示孤对电子。
HH
H Cl
HOH
HNH H
NN
计算下列物质的共价键数和孤对电子数。
NN N
不稳定
路易斯结构式的稳定性——形式电荷(QF)
方法:QF=原子的价电子数-键数-孤电子数
形式电荷尽可能小 尽可能避免两相邻原子之间的形式电荷为同号
共振论
有时,一个分子在不改变其中的原子的排列的情况下,可以写出一 个以上合理的路易斯结构式,为解决这一问题,鲍林提出所谓的“ 共振”的概念,认为该分子的结构是所有这些正确的路易斯结构式 的总和,真实的分子结构是这些结构式的“共振混和体”。
2p 2s
2p 2s 激发
Be基态
激发态
杂化 直线形 sp杂化态
基态铍原 子的结构
杂化轨道
180
Cl Be Cl
(四)、杂化轨道理论
● 成键时能级相近的价电子轨道相混杂,形成新的价电子轨道——杂化轨道 ● 杂化前后轨道数目不变 ● 杂化后轨道伸展方向,形状和能量发生改变
未参与杂化的p轨道,用于形成∏键
分子中两原子间共享电子对的数目
■ 键角(bond angle): 分子中键与键之间的夹角。 键角决定分子的空间构型。
键级越大,键能越大,键长越短
试判断HN3分子中哪一个位置的N—N键长较短?
H
H
NNN
NNN
(a) (b) (c) (a) (b) (c)

5.3 化学键与分子间相互作用力

5.3 化学键与分子间相互作用力
极性度量:电偶极矩 μ= q ·d
电偶极矩为零的分子是非极性分子,电偶极矩愈大表示分子的极性愈 强。
四. 杂化轨道理论
• 价键理论说明了共价键的形成,解释了共价键的 方向性和饱和性,但阐明多原子分子的空间构型 却遇到困难。
• Pauling L.等人在价键理论的基础上提出了杂化轨 道理论。
• 杂化轨道理论实质上仍属于现代价键理论,但在 成键能力、分子的空间构型等方面丰富和发展了 价键理论。
物 质 NaCl HF HCl HBr HI
Cl2
电负性 差值
2.1
1.9
0.9
0.7
0.4
0
型键 离子键 极




非极性 共价键
2)分子的极性——取决于键的极性和分子构型
双原子分子
相同原子:无极性 如H2 O2 不同原子:有极性
多原子分子 分子对称: 无极性 如CH4 CCl4 CO2
分子不对称: 有极性 如NH3
3.杂化轨道之间力图在空间取最大夹角分布,使相 互间的排斥能最小,故形成的键较稳定。不同类 型的杂化轨道之间的夹角不同,成键后所形成的 分子就具有不同的空间构型。
(二)杂化轨道类型及实例分析 1. sp型和spd型杂化 1)sp杂化
S
P
2个SP
BeCl2 Be: 2s2
2)sp2杂化
S
P
P
3个SP2
➢ 多电子原子的核外电子排布规律:遵守泡里原理、能量最 低原理和洪德规则。等价轨道全充满或半充满时比较稳定。
➢ 能级分组与元素电子排布的周期性:将能量相近的能级分 为一组,每一组中电子排布有明显的周期性,并且使得元素 性质也呈现相应的周期性。
本章小结(续1)

高中化学第2章化学键与分子间作用力第1节第2课时共价键的键参数课件鲁科版选修3

高中化学第2章化学键与分子间作用力第1节第2课时共价键的键参数课件鲁科版选修3

容易生成HF。
解析答案
123456
5.三氯化磷分子的空间构型是三角锥形而不是平面正三角形,下列关于三 氯化磷分子空间构型理由的叙述,正确的是 ( D ) A.PCl3分子中P—Cl三个共价键的键长、键角都相等 B.PCl3分子中P—Cl三个共价键键能、键角均相等 C.PCl3分子中的P—Cl键属于极性共价键 D.PCl3分子中P—Cl键的三个键角都是100.1°,键长相等 解析 PCl3分子是由P—Cl极性键构成的极性分子,其结构类似于NH3。
明HCl分子比HI分子稳定 解析 形成共价键的两个原子核间的距离为键长,A项不正确; 键能的大小取决于成键原子的电负性,与键的极性无必然联系,B项不正确; 键能越大,分子越稳定,C项不正确;D项正确。
解析答案
123456
4.下列事实不能用键能的大小来解释的是( B )
A.N元素的电负性较大,但N2的化学性质很稳定 B.稀有气体一般难发生反应
答案
2.键长的应用 (1)键长与键的稳定性有关。一般来说,键长愈短,化学键愈强,键愈牢固 。 (2)键长与分子 空间构型有关。 (3)键长的判断方法 ①根据原子半径判断:在其他条件相同时,成键原子的半径 越小 ,键长 越短。 ②根据共用电子对数判断:相同的两原子形成共价键时,单键键长 > 双键 键长 > 叁键键长。 3.键角的应用 键角常用于描述多原子分子的 空间构型 。
B.632 kJ·mol-1
C.316 kJ·mol-1
D.1 624 kJ·mol-1
解析 946 kJ·mol-1+498 kJ·mol-1-2EN—O=180 kJ·mol-1,所以EN—O =632 kJ·mol-1。
解析答案
解题反思
利用键能计算ΔH时,方程式中各物质必需为气态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学键
主讲 汪毅
一、化学键
〈一〉关于化学键的概念:
相邻原子间的强相互作用。 使离子相结合或原子相结合的作用力。 〈二〉化学键的分类: 1、共价键 2、离子键 3、金属键
一、化学键 〈三〉化学键与化学反应
1、化学键与化学反应中的物质变化。 化学反应的实质: “旧键的断裂与新键的形成”。
2、化学键与化学反应中的能量变化。 (1)化学反应的活化能
B、PCl3分子中的P-Cl键都是σ键 C、P原子最外层有三个不成对电子,但是能形成
PCl5 ,说明传统的价键理论存在缺陷 D、PCl3分子中的P-Cl键都是π键
思考:如果发为现什了么H3分不子会,有你H3会Cl有分什子么。看法?
A.甲认为上述发现绝对不可能,因为H3分子违背了 共价键理论
B.乙认为宇宙中还可能存在另一种氢单质,因为氢 元素有三种同位素必然有三种同素异形体
C.丙认为H3分子实质上是H2分子与H+以特殊共价键 结合的产物,应写成H3+
D.丁认为如果上述的发现存在,则证明传统的价键 理论有一定的局限性有待继续发展
要以发展的观念来看待“理论”与客观事实
〈三〉共价键的特征
2、方向性: (1)原子轨道有一定的空间分布 (2)电子云的“最大重叠” 有利于成键
共价键的方向性决定了分子的空间构型
〈四〉极性键和非极性键
1、非极性键 参与成键的两原子电负性相同,共 用电子对“不偏不倚”。
2、极性键 参与成键的两原子电负性不同,共
及时巩固 事半功倍
2、下列各种说法中错误的是( D )
A. 形成配位键的条件是一方有空轨道一方有孤 对电子。
B. 配位键是一种特殊的共价键。 C. 配位化合物中的配体可以是分子也可以是阴
离子。 D. 共价键的形成条件是成键原子必须有未成对
电子。
及时巩固 事半功倍
3、氮可以形成多种离子,如N3-,NH2-,N3-, NH4+,N2H5+,N2H62+等,已知N2H5+与N2H6 2+是 由中性分子结合质子形成的,类似于NH4+,因此 有类似于NH4+的性质。在这些粒子中每个氮原子 最外层都满足“8电子”结构。
H3BO3+OH-=[B(OH)4]- D.硼酸是两性氢氧化物
例2、元素原子间在形成物质时,其结合方式与其 核外电子排布有密切关系,已知P原子的价电子 排布为3s23p3,其与Cl可形成PCl3、PCl5两种化 合物,请判断下列关于该两种化合物的说法正确
的是 ( BC )
A、P原子最外层有三个未成对电子,故只能结合 三个Cl原子形成PCl3
⑴写出N2H62+在碱性溶液中反应的离子方程式。 N2H6 2+ +2OH-=N2H4+2H2O
⑵等电子体的微粒往往具有相似的结构,试预测 N3—的构型 直线型 。
及时巩固 事半功倍
⑶据报道,美国科学家卡尔·克里斯特于1998年11 月合成了一种名为“N5”的物质,由于其具有极 强的爆炸性,又称为“盐粒炸弹”。迄今为止 ,人们对它的结构尚不清楚,只知道“N5”实际 上是带正电荷的分含有2个N≡N键。则“N5”分子碎片所带电 荷是一个单位正电荷 。
“需要加热的放热反应”
(2)“吸热反应”与“放热反应” 究竟是破坏“旧键”需要的能量多 还是形成“新键”放出的能量多。
二、共价键
〈一〉共价键的形成及本质 〈二〉 σ键和π键 〈三〉共价键的特征 〈四〉极性键和非极性键 〈五〉共价键的键参数 〈六〉配位键
〈一〉共价键的形成及本质
1、共价键定义:原子间通过共用电子对形成的化学键 其本质是:原子间形成共用电子(能量降低)
结合价层电子对互斥理论,记住一些常
见分子内共价键的键角(CO2、H2O、 NH3、CH4等等)
〈六〉配位键
1、形成配位键的基本条件: 一方最外层有孤对电子,另一方价电子层有空轨道
2、配位键的本质:单方面提供电子对的“共价键 3、应用举例:(1)配”制银氨溶液;
(2)检验Fe3+离子; (3)血红蛋白的工作原理等。 判断正误:非金属离子与金属离子之间只能形成 离子键。
化学键
(二)
主讲 汪毅
例1、某些电解质分子的中心原子最外层电子未达 饱和结构,其电离采取结合溶液中其他离子的 形式,而使中心原子最外层电子达到饱和结构 例如:硼酸分子的中心原子B最外层电子并未达 到饱和,它在水中的电离过程为:
下列判断正确的是 ( C ) A.凡是酸或碱对水的电离都是抑制的 B.硼酸是三元酸 C.硼酸溶液与NaOH溶液反应的离子方程式为:
成键微粒是:原子(注意与离子键及金属键区别)
2、共价键的存在:大多数分子内;原子晶体内。
3、共价键的表示方法 :电子式 结构式 课堂练习 (1)写出CO2的电子式; (2)写出乙烯的结构式。 (3)用电子式表示H2S的形成过程。
〈二〉 σ键和π键
1、σ键的特征: “头碰头” 以形成化学键的两原子核的连线做为轴旋转 操作,共价键电子云的图形不变,称为轴对称。
s—s px—s px—px
X
轴对称
X 形成σ键的电 子称为σ电子。
X
〈二〉 σ键和π键
2、π键的特征 “肩并肩”
键特点:两个原子轨道以平行或“肩并肩” 方式 重叠;原子重叠的部分分别位于两原子核构成平 面的两侧,如果以它们之间包含原子核的平面为 镜面,它们互为镜像,称为镜像对称。 由于键重叠程度要比键小,所以键的强度要比 键大。烯烃和炔烃要比烷烃活泼。
用电子对“偏向一边”。 思考:请按要求任举一例。 (1)只含非极性键的非极性分子; (2)只含极性键的非极性分子。
〈五〉共价键的键参数 1、键能 一般取正值,单位:kJ·mol-1
表示共价键的牢固程度
2、键长 3、键角
“亲密无间” ①描述分子空间构型,与分子的很
多性质有关。 ②用于研究原子晶体的某些性质。
乙烷、乙烯和乙炔分子结构比较
在由两个原子形成的多个共价键中,
只能有一个 σ 键,而 π 键可以是一个或多个。
两种大π键 石墨的“覆盖整个层”的大π键
及时巩固 事半功倍 1、某有机物的结构简式为 :
CH2=CHC≡CH
7 3 则分子中 有
个σ键,
个π键
〈三〉共价键的特征
1、饱和性:每个原子所提供的价电子数目是一定的。
相关文档
最新文档