第1讲中值定理和有关方程的根问题

合集下载

第一轮复习之微分中值定理及应用

第一轮复习之微分中值定理及应用

B.
情形Ⅱ:设 f(x)在区间 I 可导,如果 x0 I ,且满足 f ( x ) 0 ,
x x0 ; f ( x ) 0 , x x0 ,则 f(x)在 x x0 取得最小值。
C.
情形Ⅲ:设 f(x)在(a b)可导,又 lim f ( x ) lim f ( x ) ,则
四、
微分中值定理:
函数的切线 y f ( x0 ) f ( x0 )( x x0 ) 始终在曲线的上方
微分中值定理建立了函数增量,自变量增量,与导数的关系。
i.
费马定理: 若 y f ( x) 在 x x0 可导,且取极值,则 f ( x0 ) 0 几何意义:切线平行 x 轴。
ii.
有界闭区间上连续函数的性质:
A.
连续函数中间值定理:设 f ( x) 在区间 a, b 上连续, f (a) f (b) ,则 对于 f (a ) 和 f (b) 之间的任何数 ,必然有 c
a , b ,使得
f (c ) 。
B.
连 续 函 数 的 零 点 存 在 定 理 : 设 f ( x) 在 a, b 上 连 续 , 又 它们异号) , 则 c f ( a ) f ( b ) 0(即: 使得 f (c) 0 。 a , b ,
三、
凹凸性的判别:
A.
定义:设函数 y f ( x) 在区间 I 上连续,若对于区间上的任意不同两 点 x1 、 x2 ,恒有: f (
x1 x2 f ( x1 ) f ( x2 ) ) 2 2
称 y f ( x) 在区间 I 上是凸的。
B.
凹凸性的判别定理: 设函数 y f ( x) 在区间 [ a , b ] 上连续, 在 a, b 上可导,则: ① 函数在区间上凸的充要条件是 f ( x) 0 ② 函数在区间上凸的充要条件是 f ( x) 单调递减(斜率单调递减) 。 ③ 函数在区间上凸的充要条件是 f ( x0 ) f ( x0 )( x x0 ) f ( x)

高等数学电子教案第三章(西北大学)

高等数学电子教案第三章(西北大学)

第三章 微分中值定理与导数的应用第一讲 微分中值定理(The Mean Value Theorem)微分中值定理是微分学的核心,她具有非常广泛的应用,是研究函数性态的有力工具。

本节介绍三大中值定理。

一 罗尔中值定理:1. 极值的定义:设)(x f 在区间I 上有定义,I x ∈0且存在I x U ⊂)(0,对任意)(0x U x ∈,())()()()(00x f x f x f x f ≥≤,则称0x 是)(x f 的极大值点(极小值点)。

)(0x f 是极大值(极小值),通称为极值。

注:极值和最值的本质区别:极值是局部概念(相对于某个邻域内)最值是整体概念(相对于整个定义域)● 极值只可能在定义域的内部取到,而最值可能在内部,也可能在端点处取到。

● 极值不是唯一的,最值(如果存在)则一定是唯一的。

● 极值不一定是最值,最值也不一定是极值,当最值在定义域内部取到时,最值就一定是极值。

2. 费马引理(Fermat ):函数)(x f 在区间I 上有定义,如果)1()(x f 在0x 点可导; )2(0x 是)(x f 的极值点.则0)(0'=x f .说明: (1)几何意义:)(x f 在0x 点存在切线,若0x 是极值点,则切线是平行于x 轴的。

(2)理论证明:只要证明0)()(lim00=--→x x x f x f x x ,即0)()(0'0'==-+x f x f .3.驻点:通常把0)(0'=x f 的点0x 称为)(x f 的驻点(临界点、稳定点)● 驻点不一定是极值点。

如:3x y =,0=x 不是极值点,在该点的两侧单调增加。

● 极值点不一定是驻点,如:x y =,0=x 是极小值点,但在该点不可导。

4.罗尔定理(Rolle):如果函数)(x f 满足)1(],[b a 上连续; )2(),(b a 内可导; )3()()(b f a f =. 则在),(b a 内至少存在一点ξ,使得0)('=ξf .● 几何意义:连续光滑曲线(无缝隙的光滑曲线)若两端点的函数值相等,则在曲线上至少存在一点,使得函数在该点的切线平行于x 轴。

拉格朗日中值定理1

拉格朗日中值定理1

一拉格朗日中值定理1.定理内容拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。

拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。

在现实应用当中,拉格朗日中值定有着很重要的作用。

拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。

拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻陈旧,出现创新的一个进程。

发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。

用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即这就是非常著名的费马定律,当一个函数在x=a处可以取得极值,并且函数是可导函数,则′。

著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。

在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。

最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]内任取两点和,并且函数在此闭区间内是连续的,′的最大值为A,′最小值为B,则的值必须是A和B之间的一个值。

下述就是拉格朗日中值定理:如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)内可导;那么这个函数在此开区间内至少存在着一点,使得′ξ.2.定理意义拉格朗日中值定理在数学的微积分属于重要的定理,是微分中值定理中应用最为广泛的定理,在发展过程中推算出了其他的微分中值定理,在实际应用中,具有重要的使用价值。

其中,拉格朗日中值定理在几何运算中所具有的意义是:若一个连续函数在两点、之间不存在垂直于x轴的切线,那么在这两点之间至少存在这一点,这一点的切线平行于直线AB。

中值定理证明方法总结

中值定理证明方法总结
原函数法 F(x)f(x)f(b)f(a)x
ba 辅助函数
同样, 柯西中值定理要证
g f((b b)) g f((a a))g f(()), (a,b)
即证 f()f(b)f(a)g()0
g(b)g(a) 设 F(x)f(x)f(b)f(a)g(x)
g(b)g(a) 原函数法
F(x)f(x)f(b)f(a)g(x) g(b)g(a)
内可导, 证明至少存在一点 (a,b), 使
f (a) f (b) f() g(a) g(b) g() 0 h(a) h(b) h()
说明 若取 h ( x ) 1 ,g ( x ) x ,f( a ) f( b ) ,即为罗尔定理;
若取 h(x)1,g(x)x, 即为拉格朗日中值定理;
若取 h (x) 1 ,g(x)0,即为柯西中值定理;
gf ((aa())a,bgf)((,bb使))
h(a) h(b)
Fghf((((f))))(a)0,ghf即(((aab)))
ghf((bb()))f ()
F()hfgh((a((aaa)))) hfgh((b(b(bb))))g(gh)(())gf((aa0))
f(b) g(b)
h()
设 f(x),g(x),h(x)都在 (a ,b) 上连续 , 且在[a , b]
机动 目录 上页 下页 返回 结束
例2.
设 f ( x) 在 [0,1] 连续,(0 ,1) 可导,且 f(1)0,
求证存在 (0,1),使 nf() f()0 .
证:设辅助函数 (x)xnf(x)
辅助函数 如何想出来的?
显然 (x) 在 [ 0 ,1] 上满足罗尔定理条件,
因此至少存在 (0,1), 使得

高数第三章第一节中值定理

高数第三章第一节中值定理

三、柯西(Cauchy)中值定理
及 满足 : (1) 在闭区间 [ a , b ] 上连续
(2) 在开区间 ( a , b ) 内可导
(3)在开区间 ( a , b ) 内
f (b) f (a ) f ( ) . 至少存在一点 使 F (b) F (a ) F ( ) a b 分析: F (b) F (a) F ( )(b a) 0 f (b) f (a) F ( ) f ( ) 0 要证 ( ) F (b) F (a) f (b) f (a) ( x) F ( x) f ( x) F (b) F (a)
上页
下页
返回
结束
内容小结
1. 微分中值定理的条件、结论及关系
费马引理
f (b) f (a)
拉格朗日中值定理
F ( x) x
罗尔定理
f (b) f (a) F ( x) x
柯西中值定理
2. 微分中值定理的应用
(1) 证明恒等式
(2) 证明不等式
关键: 利用逆向思维 设辅助函数
机动 目录 上页 下页 返回 结束
柯西 目录 上页 下页 返回 结束
f (b) f (a) F ( x) f ( x) 证: 作辅助函数 ( x) F (b) F (a) 则 ( x) 在[a, b] 上连续, 在 (a, b)内可导, 且 f (b) F (a) f (a) F (b) (a) (b) F (b) F (a) 使 由罗尔定理知, 至少存在一点 即 f (b) f (a ) f ( ) . F (b) F (a ) F ( ) 思考: 柯西定理的下述证法对吗 ? f (b) f (a) f ( )(b a) , (a , b) 两个 不 F (b) F (a) F ( )(b a) , (a , b) 一定相同 上面两式相除即得结论. 错!

高等数学 第3章 第一节 中值定理

高等数学 第3章 第一节 中值定理
6 6
(函数

6
,
y
5
6
ln sin x
是 y
是初等函数, 且当
x
6
ln sin x 定义域内的一部分;
,
5
6
时,cossixn
y'
sin x
x
0,
cot x.)
且ln s in
lnsin 5
ln 1 .
6
62
令 y' cos x cot x 0, sin x
得 x , 5 .
F(b) F(a)
( x) 满足罗尔定理的全部条件,且:
'(x) f '(x) f (b) f (a) F '(x)
F(b) F(a)
Y F , f Fb, f b
C•
•B
由罗尔定理,至少存在一点 ∈(a,b) ,
即:
使
f
'( )
'( ) 0,
f (b) f (a) F '( ) 0
即 1、 2、 3都是方程 f 'x 0 的根。 注意到 f ' x 0 为三次方程, 它最多有三个根。
我们已经找到它的三个实根
1、 2、 3 ,
所以这三个根就是方程
f 'x 0 的全部根。
14
例3 证明当x 0时, x ln1 x x
1 x
证 设f x ln1 x, 显然,函数 f x 在 0, x 上满足
f (b) f (a)
O a
bx
结论等价于: f f b f a
ba
或: f f b f a 0
ba
AB的方程为:

中值定理

中值定理

中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。

(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。

此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0, 那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

第一讲微分中值定理

第一讲微分中值定理

第一讲微分中值定理教学目的使学生掌握罗尔定理、拉格朗日中值定理,了解柯西中值定理,并能应用罗尔定理,拉格朗日中值定理及柯西中值定理证明和解决一些简单问题.教学重点使学生深刻理解微分中值定理的实质.教学难点拉格朗日中值定理的证明.教学学时 2学时教学过程上一章我们学习了导数的概念,并讨论了导数的计算方法.学习的目的在于应用,这一章我们来学习导数的应用,首先学习微分中值定理,他们是导数应用的理论基础.微分中值定理包括: 罗尔定理, 拉格朗日中值定理和柯西中值定理,简称微分中值三定理.一、罗尔定理我们首先来观察一个图形,见图1.设图1中曲线弧AB是函数)(x fax∈的图形.这(b[,y=])是一条连续的曲线弧,除端点外处处具有不垂直于X 轴的切线,即)(x f 在),(b a 内处处可导.且两端点处的纵坐标相等,即)()(b f a f =.可以发现在曲线弧AB 的最高点或最低点处,曲线都有水平的切线.如果记曲线弧AB的最高点C 的横坐标为ξ,则()0'=ξf .若我们用分析的语言把这一几何现象描述出来,就得到了下面的罗尔(Rolle)定理.罗尔定理 若函数满足(1) 在闭区间[]b a ,上连续;(2) 在开区间()b a ,内可导;(3) 在区间端点处的函数值相等,即()()b f a f =,则在()b a ,内至少存在一点ξ,使得()0'=ξf .为了给出罗尔定理的严格证明,我们首先需要学习下面的引理,它称为费马()Fermat 定理.费马定理 设函数()x f 在点0x 的某邻域0()U x 内有定义,并且在0x 处可导,如果对任意的0()x U x ∈,有()()0x f x f ≤()()()0f x f x ≥或,则()00'=x f .分析 为了利用函数值的大小关系得出导数的结论,显然应该考虑使用导数的定义.不妨设0()x U x ∈时,()()0x f x f ≤.于是,对于00()x x U x +∆∈,有()()00f x x f x +∆≤,从而当0>∆x 时,()()000≤∆-∆+x x f x x f ; 当0<∆x 时,()()000≥∆-∆+x x f x x f .由于函数()x f 在0x 处可导,上述两式的左端当0→∆x 时极限皆存在,因此由极限的保号性知()()()()0lim 0000'0'≤∆-∆+==+→∆+x x f x x f x f x f x ,()()()()0lim 0000'0'≥∆-∆+==-→∆x x f x x f x f x f x . 所以,()00'=x f .类似地可证明0()x U x ∈时,()()0x f x f ≥的情形.通常称导数等于零的点为函数的驻点(或稳定点、临界点).费马定理告诉我们,若函数在0x 点可导,且函数在0x 点处取得了局部的最大值或最小值,则函数在点0x 处的导数一定为零,即()00'=x f .由图1知,函数()x f 在ξ处取得了局部的最大值.因此,根据费马定理不难证明罗尔定理.罗尔定理的证明 由于()x f 在[]b a ,上连续,所以()x f 在[]b a ,上必定取得它的最大值M 和最小值m .这样,只有两种可能的情形:(1) m M =.此时对于任意的[]b a x ,∈,必有()M x f =.故对任意的()b a x ,∈,有()0'=x f .因此,()b a ,内任一点皆可作为我们找的ξ.(2) m M >.因为()()b f a f =,所以M 和m 中至少有一个不等于()a f .不妨设()a f M ≠,则在()b a ,内必有一点ξ,使得()M f =ξ.又因为对于任意的[]b a x ,∈,有()()ξf x f ≤,且()f ξ'存在.故由费马定理知,()0'=ξf .类似可证()a f m ≠的情形.罗尔定理成立.例1 不求出函数()()()()321---=x x x x f 的导数,说明方程()'0f x =有几个实根,并指出它们所在的区间.分析 讨论方程()0'=x f 的根的问题,通常考虑用罗尔定理,因为由罗尔定量的结论知,ξ实际上是方程()0f x '=的根.而讨论这类问题的基本思路是,在函数()x f 可导的范围内,找出所有端点处函数值相等的区间.而由罗尔定理知,在每个这样的区间内至少存在一点ξ,使得()0'=ξf .ξ即为方程()0'=x f 的一个实根,同时也得到了这个实根所在的范围.对于本问题来说,根据代数学基本定理,方程()0'=x f 至多有两个实根.而由函数()x f 的表达式知,()()()321f f f ==.因此,[]1,2和[]2,3就是我们所要找的区间,在这两个区间内各有方程()0'=x f 的一个实根. 解 因为()x f 在[]2,1和[]3,2上连续,在()2,1和()3,2内可导,且()()()1230f f f ===,所以由罗尔定理知,在()2,1内至少存在一点1ξ,使得()01'=ξf ,在()3,2内至少存在一点2ξ,使得()02'=ξf .1ξ和2ξ都是方程()0f x =的实根.又由代数学基本定理知,方程()0'=x f 至多有两个实根,所以方程()0'=x f 必有且只有两个实根,它们分别位于()2,1和()3,2内.小结 利用函数的性质讨论()0'=x f 的根(也称为()x f '的零点),应用罗尔定理是一个常用方法.二、拉格朗日中值定理罗尔定理中()()b f a f =这个条件是相当特殊的,也是非常苛刻的.由于一般的函数很难具备这个条件,因此它使罗尔定理的应用受到了很大限制.我们可以设想一下,若把条件适当放宽,比如把()()b f a f =这个条件去掉,仅保留罗尔定理中的第一个和第二个条件,那么相应的结论会发生什么变化呢?为了更好地讨论这个问题,我们先从几何直观入手,见图2.设图2中曲线弧AB 是函数)(x f y =]),[(b a x ∈的图形,它是一条连续的曲线弧,除端点外处处具有不垂直于x 轴的切线,并且两端点处的纵坐标不相等,即()()f a f b ≠.不难发现在曲线弧AB 上至少有一点c ,使曲线在点c处的切线平行于弦AB .若记c 点的横坐标为ξ,则曲线在c 点处切线的斜率为()ξ'f .而弦AB 的斜率为()()a b a f b f --.因此()()()ξ'f ab a f b f =--()()()()()a b f a f b f -=-ξ'或. 若我们用分析的语言把这一观察结果描述出来,就得到了下面的拉格朗日()Lagrange中值定理.拉格朗日中值定理若函数()x f满足(1)在闭区间[]b a,上连续;(2)在开区间()b a,内可导,则在()b a,内至少存在一点ξ,使得()()()()abfafbf-=-ξ'()()()⎪⎭⎫⎝⎛=--ξ'fabafbf或.(1)从图1可以看到,在罗尔定理中,由于()()b faf=,弦AB是平行于x轴的,因此点c处的切线不仅平行于x 轴,实质上也是平行于弦AB的.由此可见,罗尔定理是拉格朗日中值定理的特殊情形.下面我们来讨论拉格朗日中值定理的证明问题.由罗尔定理与拉格朗日中值定理的关系,使我们自然想到利用罗尔定理来证明拉格朗日中值定理.但在拉格朗日中值定理中,函数()x f不一定具备()()b faf=这个条件,为此我们设想构造一个与()x f有密切联系的函数()xϕ(称为辅助函数),使()xϕ满足条件()()baϕϕ=及罗尔定理的另外两个条件,并对()xϕ应用罗尔定理,然后再把对()xϕ所得的结论转化到()x f上,从而使拉格朗日中值定理得到证明.这就是我们所设想的证明拉格朗日中值定理的思路,那么怎样去构造辅助函数()x ϕ呢?若记图2中弦AB 的方程为()x L y =,那么根据所构造的辅助函数()x ϕ需要满足的条件,通过对图2的观察,我们不难发现()()x L x f -这个函数很可能就是我们所需要的那个辅助函数.为什么呢?首先,若我们记()()()x L x f x -=ϕ,则函数()x ϕ与()x f 有着密切的联系;第二,由于曲线弧AB 与弦AB 在B A ,两点相交,因此,()()()0=-=a L a f a ϕ,()()()0=-=b L b f b ϕ,即()()b a ϕϕ=;第三,由于函数()x f y =和()x L y =在[]b a ,上都连续,在()b a ,内都可导,因此()x ϕ在[]b a ,上满足罗尔定理的条件.至于对()x ϕ在[]b a ,上应用罗尔定理后,能否得到我们所需要的结论,请看下面的证明.拉格朗日中值的证明 弦AB 的直线方程为()()()()()a x a b a f b f a f x L ---+=.因此,函数()()()()()()a b ab a f b f a f x f x -----=ϕ, (2)且()()()()a b a f b f x f x ---=''ϕ.对函数()x ϕ在[]b a ,上应用罗尔定理知,在()b a ,内至少存在一点ξ,使得()0'=ξϕ,即 ()()()0'=---a b a f b f f ξ,()()()ξ'f a b a f b f =--.定理得证.由上述证明可知,函数()x ϕ正是我们所需要的那个辅助函数.现在回过头来看一看辅助函数()()()x L x f x -=ϕ的几何意义是什么?在图2的闭区间[]b a ,上任取一点x ,并过x 作与纵轴平行的直线,交弧AB 于M ,交弦AB 于N ,则有向线段NM 的值恰好是我们所构造的辅助函数()()()x L x f x -=ϕ.其中()x f 为M 点的纵坐标,()x L 为N 点的纵坐标.几点说明:(1) 显然,公式()1对于a b <也成立,(1)式称做拉格朗日中值公式.(2) 设x 为区间[]b a ,上一点,x x ∆+为该区间内的另一点()00<∆>∆x x 或,则公式(1)可写成()()()x x x f x f x x f ∆⋅∆+=-∆+θ'()10<<θ. ()3(3) 若记()x f 为y ,则()()x f x x f y -∆+=∆,于是()3式又可写成()x x x f y ∆⋅∆+=∆θ'()10<<θ. ()4我们知道,若函数()x f y =在x 处可微,则()y dy o x ∆=+∆.这时可以用函数()x f y =的微分()x x f dy ∆='来近似地代替函数增量y ∆,并且所产生的误差()x dy y ∆=-∆ 是比x ∆高阶的无穷小.但我们却没有实现用微分精确表示函数的增量,而()4式给出了自变量取得有限增量x ∆()不一定很小x 时,函数增量的微分精确表达式.因此,拉格朗日中值定理也叫做有限增量定理,()4式也称为有限增量公式.拉格朗日中值定理在微分学中占有重要地位,有时也称其为微分中值定理.利用它可实现用导数来研究函数的变化.作为拉格朗日中值定理的一个应用,我们看下面的问题.我们知道,如果函数()x f 在某一区间上是一个常数,则()x f 在该区间上的导数恒为零.那么它的逆命题是否成立呢?这就是下面的定理所要回答的问题.定理 若函数()x f 在区间I 上的导数恒为零,则()x f 在区间I 上是一个常数.证 在区间I 上任取两点21,x x ()21x x <,应用()1式即得()()()()12'12x x f x f x f -=-ξ()21x x <<ξ.由题设知()0'=ξf ,所以()()012=-x f x f ,即 ()()12x f x f =. 因为21,x x 是I 上任意两点,所以()x f 在区间I 上是一个常数.这个定理在以后我们要学习的积分学中将起到至关重要的作用.下面我们应用拉格朗日中值定理来证明不等式. 例2 证明当0>x 时, ()x x x x <+<+1ln 1.分析 拉格朗日中值公式的形式并不是不等式的形式,那么怎么能用拉格朗日中值定理去证明不等式呢?我们知道,在拉格朗日中值公式中()b a ,∈ξ,而不知道ξ具体等于多少?但根据ξ在b a ,之间的取值却可以估计出()ξ'f 的取值范围,或者说可以估计出()ξ'f 取值的上下界.分别用()ξ'f 取值的上下界去代换拉格朗日中值公式中的()ξ'f ,就可以得到不等式了,这就是用拉格朗日中值定理去证明不等式的思路.用拉格朗日中值定理去证明不等式,最重要的是去找函数()f x 和相应的区间[]b a ,.那么怎样去找函数()x f 和相应的区间[]b a ,呢?注意,拉格朗日中值公式()()()ξ'f a b a f b f =--的左端是很有特点的,它恰好是函数()x f 在区间[,]a b 上的增量与区间[]b a ,的长度之比.因此,只要我们通过不等式的变形,把其核心部分变形为()()a b a f b f --的形式,就不难确定函数()x f 和相应的区间[]b a ,了.对于本例来讲,首先我们可以做如下的变形:()11ln 11<+<+x x x ,()()1001ln 1ln 11<-+-+<+x x x .由此变形结果,我们不难确定出所需要的函数()x f 为()x +1ln ,相应的区间为[]x ,0.如果我们对原不等式再做另外一种变形,即()11ln 11<+<+x x x ,()()1111ln 1ln 11<-+-+<+x x x .则由此变形结果,我们不难确定出所需要的函数()x f 为x ln ,相应的区间为[]x +1,1.确定了所需要的函数()x f 及相应的区间[]b a ,后,接下来就是对函数()x f 在[]b a ,上应用拉格朗日中值定理,并估计拉格朗日中值公式中()ξ'f 取值的上下界了.证 方法一设()()x x f +=1ln ,显然()x f 在区间[]x ,0上满足拉格朗日中值定理的条件.拉格朗日中值定理得()()ξξ+==+111ln 'f x x x <<ξ0由于x <<ξ0,所以11111<+<+ξx ,即()11ln 11<+<+x x x ,()x x x x <+<+1ln 1.方法二设()x x f ln =,显然()x f 在区间[]x +1,1上满足拉格朗日中值定理的条件.对函数()x f 在区间[]x +1,1上应用拉格朗日中值定理,并对拉格朗日中值公式中()ξ'f 取值的上下界进行估计,即可证得本例中的不等式.具体证明过程请同学们课后完成.总结(1) 例2中的分析是用拉格朗日中值定理证明不等式的一般思路,同学们务必要掌握其要领.(2) 由例2的证明过程可见,用拉格朗日中值定理证明不等式时所选择的函数()x f 并不是唯一的,重要的是函数应与相应区间相匹配.三、柯西中值定理拉格朗日中值定理的几何意义是:如果在连续曲线()x f y =的弧AB 上,处端点外处处具有不垂直于x 轴的切线,则在该弧上至少存在一点c ,使曲线在c 点处的切线平行于弦AB .若我们不用()x f y =来表示连续的曲线弧AB ,而用参数方程来表示连续的曲线弧AB ,那么上述结论的表达形式会发生什么变化呢?设连续的曲线弧AB 由参数方程()()⎩⎨⎧==x f Y x F X ()b x a ≤≤表示,见图3 ,其中x 为参数.那么利用参数方程求导公式,曲线上点()Y X ,处切线的斜率为 ()()x F x f dx dy ''=, 弦AB的斜率为()()()()a F b F a f b f --.假定点c 对应于参数ξ=x ,那么曲线上点c 处的切线平行于弦AB 可表示为()()()()()()ξξ''F f a F b F a f b f =--.与这一结论的表达式相对应的就是下面的柯西()Cauchy 中值定理.柯西中值定理 若函数()f x 及()F x 满足(1) 在闭区间[]b a ,上连续;(2) 在开区间()b a ,内可导;(3) 对任一()b a x ,∈,()0'≠x F ,则在()b a ,内至少存在一点ξ,使得()()()()()()ξξ''F f a F b F a f b f =--. ()5证 首先我们来证明在已给条件下()()0≠-a F b F .显然函数()x F 在[]b a ,上满足拉格朗日中值定理的条件,根据定理应有()()()()a b F a F b F -=-η'()b a <<η.由于b a <<η,由假定知()0'≠ηF ,又0≠-a b ,所以 ()()0≠-a F b F .类似于拉格朗日中值定理的证明,我们仍然用表示有向线段NM 的值的函数()x ϕ作为辅助函数,见图3 .这里点M 的纵坐标为 ()x f Y =,点N 的纵坐标为()()()()()()()[]a F x F a F b F a f b f a f Y ---+=,于是 ()()()()()()()()()[]a F x F a F b F a f b f a f x f x -----=ϕ. 由假定知,函数()x ϕ在[]b a ,上连续,在()b a ,内可导,且()()0==b a ϕϕ,()()()()()()()x F a F b F a f b f x f x '''---=ϕ.因此,()x ϕ在[]b a ,上满足罗尔定理的条件,故在()b a ,内至少存在一点ξ,使得()0'=ξϕ,即 ()()()()()()0''=---ξξF a F b F a f b f f .由此得 ()()()()()()ξξ''F f a F b F a f b f =--,定理证毕.很明显,如果取()x x F =,那么()()()1,'=-=-x F a b a F b F ,因而公式()5就可以写成()()()ξ'f a b a f b f =--,这样就变成了拉格朗日中值定理.由此可见拉格朗日中值定理是柯西中值定理的特殊情形,柯西中值定理是拉格朗日中值定理的推广.显然公式()5对于a b <也成立,()5式称做柯西中值公式.最后我们需要指出,不论是罗尔定理、拉格朗日中值定理,还是柯西中值定理,它们的本质都是:若在一条连续的曲线弧AB 上,除其端点外处处具有不垂直于横轴的切线,则在这段曲线弧上至少有一点c ,使曲线在c 处的切线平行于弦AB .当弧AB 用()x f y =表示,且端点处的纵坐标相等时,我们就得到了罗尔定理;当弧AB 用()x f y =表示,且端点处的纵坐标不相等时,我们就得到了拉格朗日中值定理;当弧AB 用参数方程()()⎩⎨⎧==x f Y x F X , ()b x a ≤≤表示,我们就得到了柯西中值定理.罗尔定理.拉格朗日中值定理和柯西中值定理的关系如下: f ξ'=−−−−→ 推广 ()()f a f b =←−−−−特殊情形()()()f b f a f b a ξ-'=- 推广F x x =←−−−−−特殊情形()()()()()()f b f a f F b F a F ξξ'-='-。

拉格朗日中值定理讲课稿

拉格朗日中值定理讲课稿

尊敬的评委老师:大家下午好!我们知道,导数是研究函数以及曲线的某些形态的重要工具,而微分中值定理则是导数应用的理论基础,因此对微分中值定理的理解和掌握是非常必要的。

下面请同学们回忆一下我们上一节课所学的罗尔定理的基本内容和数学意义,罗尔定理有三个条件分别是在闭区间上连续、在开区间内可导和区间端点的函数值相等,结论是至少存在一点属于开区间,使得函数在这个点的导数值等于零,它的代数意义是方程函数的导数等于零在开区间内至少有一个实根;几何意义是,在曲线段AB上有平行于弦AB的切线存在,那么请大家思考这样一个问题:如果罗尔定理中第三个条件(也就是函数在区间端点的函数值不相等)不成立的话,在曲线段AB上还会有平行于弦AB的切线存在吗?带着这个问题,让我们走进今天的新课:拉格朗日中值定理及其应用。

首先我们来认识一下数学家拉格朗日,拉格朗日是一位法国数学家,他在方程论、解析函数论以及数论等方面做出了重要贡献,是对分析数学产生全面影响的数学家之一。

拉格朗日中值定理就是他的诸多成果中的一个。

下面我们来看一下拉格朗日中值定理的条件和结论,定理的条件是函数满足在闭区间上连续、在开区间内可导,结论是在开区间内至少存在一点,使得函数在该点的导数值等于……,该式也称为拉格朗日中值公式或微分中值公式。

我们来分析一下拉格朗日中值定理的数学意义,首先来看几何意义,通过图示可以看到弦AB的斜率为……,设曲线上两个点……处的切线分别为……,对应的横坐标为……,那么对应切线的斜率分别为……,如果满足……,可以直观的看到两条切线是和弦AB平行的,也就是说拉格朗日中值定理的几何意义是在曲线弧AB上有平行于弦AB的切线存在,这就回答了我们最初提出的问题,很容易知道,罗尔定理就是拉格朗日中值定理在区间的两个端点的函数值相等时的特殊情形。

这个定理的代数意义是方程在开区间内至少有一个实根。

下面我们来证明一下这个定理,首先来看一下该定理的证明思路,我们可以从它的代数意义出发,假设存在一个函数……,那么要证明的结论就化为证明方程……在开区间内至少有一个实根,而这恰恰与罗尔定理的结论不谋而合,因此可以考虑对函数在闭区间上应用罗尔定理加以证明,如何找到满足罗尔定理条件的函数就成为了证明中的一个难点,所以大家必须注意这个函数的构造方法,下面就是函数构造的思路,注意到待构造的函数满足……,而……,由导数的四则运算法则,……,因此可以选取……,其中…为任意常数。

第1讲中值定理和有关方程的根问题解读

第1讲中值定理和有关方程的根问题解读

2M
.
1 2
M
由介值定理,
至少存在一点 [0,1],使得
1
f ( ) 20 f (x)dx
例10、设 f (x)在[a,a] 上有连续的二阶导函数,f (0) 0 ,证
存在一点
[a,
a],
有f
(
)
3 a3
a
f (x)dx
a
分析(1)闭区间,优先用介值定理
(2) f , f 可考虑用泰勒公式 f (x) f (0) f (0).x f () x2
1 (n1)!
f
(n1)
(
)(x
x0 )n1
补充:导数零点定理,导数介值定理 定理10、设 f (x)在[a,b] 上可导,当
f(a). f(b) 0时, (a,b),使f ( ) 0
定理11、设 f (x)在[a,b] 上可导,当
f(a) f(b),介于f(a)与f(b)之间,
则 (a,b),使f ( )
(3)若结论比较简单,如 F(n) ( ) 0 ,则优先考虑 罗尔定理,或利用费尔马定理(都是对n-1阶导数用)
(4)若结论中有两个中值,则优先考虑应该大区间分 为若干小区间,在各个小区间多次使用拉氏定理,
或者直接考虑柯西中值定理 (5)若结论中含有高阶导数,则优先考虑泰勒公式 (6)若结论中含有函数及其各阶导数,则优先考虑
定理,若不满足,则 (3)改令 F(x) F*(x) 两次积分 F(x) ,将大区间分为小区间
令c 0, d 0
各个小区间多次使用中值定理,
二、例题解析
例8、设函数 f (x) 在[0, 3] 上连续, 在(0, 3) 内可导, 且
f (0) f (1) f (2) 3, f (3) 1, 证明存在 (0,3), 使

微分中值定理的证明以及应用

微分中值定理的证明以及应用

微分中值定理的证明以及应用1 微分中值定理的基本内容微分中值定理是反映导数值与函数值之间的联系的三个定理 ,它们分别是罗尔(R olle )中值定理 、拉格朗日(Lagrange )中值定理和柯西(Cauchy )中值定理 .具体内容如下 :1.1 罗尔中值定理[2]如果函数f 满足:(1)在闭区间[,]a b 上连续 ; (2)在开区间(,)a b 内可导 ;(3)在区间端点的函数值相等,即()f a f b ()=,那么在区间(,)a b 内至少有一点a b ξξ(<<),使函数()y f x =在该点的导数等于零,即'()0f ξ=. 1.2 拉格朗日中值定理[2]如果函数f 满足: (1)在闭区间[,]a b 上连续;(2)在开区间,a b ()内可导.那么,在,a b ()内至少有一点a b ξξ(<<),使等式()()()=f a f b f b aξ-'-成立.1.3 柯西中值定理[2]如果函数f 及g 满足: (1)在闭区间[,]a b 上都连续; (2)在开区间,a b ()内可导; (3)'()f x 和'()g x 不同时为零; (4)()()g a g b ≠则存在,a b ξ∈(),使得 ()()()()g ()()f f b f ag b g a ξξ'-='-2 三定理的证明2.1 罗尔中值定理的证明[2]根据条件在闭区间[,]a b 上连续和闭区间上连续函数的最大值和最小值定理,若函数()f x 在闭区间上连续,则函数()f x 在闭区间[,]a b 上能取到最小值m 和最大值M ,即在闭区间[,]a b 上存在两点1x 和2x ,使12(),()f x m f x M==且对任意[,x a b ∈],有()m f x M ≤≤.下面分两种情况讨论:①如果m M =,则()f x 在[,]a b 上是常数,所以对(,)x a b ∀∈,有()=0f x '.即,a b ()内任意一点都可以作为c ,使()=0f c '. ②如果m M <,由条件()=()f a f b ,()f x 在[,]a b 上两个端点a 与b 的函数值()f a 与()f b ,不可能同时一个取最大值一个取最小值,即在开区间,a b ()内必定至少存在一点c ,函数()f x 在点c 取最大值或最小值,所以()f x 在点c必取局部极值,由费尔马定理,有'()=0f c .2.2 拉格朗日中值定理的证明[2]作辅助函数()()()()f b f a F x fx a b x f a a--=-()-(-) 显然,()()(0)F a F b ==,且F 在[,]a b 满足罗尔定理的另两个条件.故存在,a b ξ∈(),使 ()()''()f b f a F f b aξξ--()=-=0移项即得()()'()=f b f a f b aξ--2.3 柯西中值定理的证明[2]作辅助函数()()()g()-g()()g(f b f a F x f x f a x a g b a --()=-()-())易见F 在[,]a b 上满足罗尔定理条件,故存在(,)a b ξ∈,使得()()''()g'()=0()g(f b f a F f g b a ξξξ--()=-)因为g'()0ξ≠(否则由上式'()f ξ也为零),所以把上式改写成()'()()()g ()()f f b f ag b g a ξξ-='-证毕3 三定理的几何解释和关系3.1 几何解释[1]罗尔中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦(或x轴).拉格朗日中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦.柯西中值定理在曲线()()f xyxg x=⎧⎨=⎩(其中x为参数,a x b<<)存在一点,使曲线过该点的切线平行于过曲线两端点((),()),((),())A f a g aB f b g b的弦.综上所述,这三个中值定理归纳起来,用几何解释为:在区间[,]a b上连续且除端点外每一点都存在不垂直于x轴的切线的曲线,它们有个共同的特征()y f x=在曲线上至少存在一点,过该点的切线平行于曲线端点的连线.3.2 三定理之间的关系[3]从这三个定理的内容不难看出它们之间具有一定的关系.利用推广和收缩的观点来看这三个定理.在拉格朗日中值定理中,如果()()f a f b=,则变成罗尔中值定理,在柯西中值定理中,如果()F x x=,则变成拉格朗日中值定理.因此,拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是拉格朗日中值定理的推广.反之,拉格朗日中值定理是柯西中值定理的特例,罗尔中值定理是拉格朗日中值定理的特例.总的来说,这三个定理既单独存在,相互之间又存在着联系.从上面的讨论中可以总结得到,罗尔中值定理是这一块内容的基石,而拉格朗日中值定理则是这一块内容的核心,柯西中值定理则是这一块内容的推广应用.4 三定理的深层阐述4.1 罗尔中值定理4.1.1 罗尔中值定理结论[8](1) 符合罗尔中值定理条件的函数在开区间,a b ()内必存在最大值或最小值. (2) 在开区间,a b ()内使'()=0f x 的点不一定是极值点. 例如 函数3()(53)4xf x x =-在闭区间[1,2]-上满足罗尔定理的三个条件, 由25'()3()4f x x x =- ,显然0x =,有'(0)=0f 成立,但0x =不是()f x 的极值点.如果加强条件, 可得如下定理:定理 1 若函数在闭区间,a b []上满足罗尔中值定理的三个条件,且在开区间,a b ()内只有唯一的一个点,使()=0f x '成立,则点x 必是()f x 的极值点.完全按照罗尔中值定理的证法,即可证得使()'=0f x 成立的唯一点x 就是()f x 在,a b ()内的最值点,当然是极值点. 4.1.2 逆命题不成立[3]罗尔中值定理的逆命题 设函数()y=f x 在闭区间,a b []上连续,在开区间,a b ()内可导,若在点x 在,a b ()处,有()=0f x ',则存在,[,]p q a b ∈,使得()()=fp f q .例 函数3y x =,[,](0)x a a a ∈->,显然3y x =在,a a [-]上连续,在a a (-,)内可导,()=0f x ',但是不存在,[,]p q a a ∈- ,p q <,使得()()=f p f q .但如果加强条件,下述定理成立:定理2 设函数y ()f x =在闭区间,a b []上连续,在开区间,a b ()内可导,且导函数()f x '是严格单调函数,则在点(,)x a b ∈处,有()=0f x '的充分必要条件是存在,[,]p q a b ∈,p q<,使得()()=f p f q .4.2 拉格朗日中值定理4.2.1 点x 不是任意的[7]拉格朗日中值定理结论中的点x 不是任意的. 请看下例:问题 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim ()x f x c →+∞=(c 为常数),则lim ()0x f x →+∞=这一命题正确吗?证明 设x 为任意正数,由题设知()f x 在闭区间[,2]x x 上连续,在开区间(,2)x x 内可导,由拉格朗日中值定理知,至少存在一点(,2)x x ξ∈,使得()(2)()=f x f x f xξ-',又因为li m ()x f x c →+∞=,故(2)()limx f x f x x→+∞-=.由于ξ夹在x与2x 之间,当x +→∞时,ξ也趋于+∞,于是lim '()lim '()0x x f x f ξ→+∞→+∞==.上述证明是错误的,原因在于ξ是随着x 的变化而变化,即()g x ξ=,但当+x →∞时,()g x 未必连续地趋于+∞,可能以某种跳跃方式趋于+∞,而这时就不能由()f ξ'趋于0推出lim ()0x f x →+∞=了.例如 函数()2s i n =x f x x满足l i m ()0x f x→+∞=,且2221'()2cos sin f x x xx=-在+∞(0,)内存在,但2221lim '()lim [2cos sin ]x x f x x x x→+∞→+∞=-并不存在,当然li m '()0x f x →+∞=不会成立.4.2.2 条件补充[5]定理 3 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim '()x f x →+∞存在,若lim '()x f x c→+∞=(c 为常数),则lim '()0x f x →+∞=.4.3 柯西中值定理柯西中值定理的弱逆定理[8]设()()f x g x ,在[,]a b 上连续,在(,)a b 内可微,且'()'()f g ξξ严格单调,'()0g x ≠,则对于12,a b x x ξξ∀∈∃<<(), ,使得2121'()'()=[()()][()()]f g f x f x g x g x ξξ--成立.证明:对,a b ξ∀∈(),作辅助函数 '()'()F x f x f g x ξξ()=()-()g().显然,()f x 在[,]a b 上连续,在(,)a b 内可微,并且由()()f x g x ,严格单调易知'()F x 也严格单调.由拉格朗日定理知,对于12,a b x x ξξ∀∈∃<<(),,使得 2121()()'()()F x F x F x x ξ-=-成立.而'()='()('()'())'()0F f f g g ξξξξξ-=所以有21()()0F x F x -=即2211['()('()'())'()]['()('()'())'()]0f x f g g x f x f g g x ξξξξ---=整理得2121'()'()[()()][()()]f g f x f x g x g x ξξ=--证毕.5 定理的应用三个定理的应用主要有讨论方程根的存在性、求极限、证明等式不等式、求近似值等.以下主要以例题的形式分别展示三个定理的应用.5.1 罗尔中值定理的应用例1 设(1,2,3,,)i a R i n ∈= 且满足1200231n a a a a n ++++=+ ,证明:方程2012++++0n n a a x a a x x = 在(0,1)内至少有一个实根. 证明: 作辅助函数23+1120231n n a a a F x a x x x xn +++++ ()=则=0(0F (),=(1)F 0,Fx ()在[0,1]上连续,在(0,1)内可导,故满足罗尔中值定理条件,因此存在(0,1)ξ∈,使'()0F ξ=,又2012'()++++0nn F x a a x a x a x==由此即知原方程在(0,1)内有一个实根.例2 设函数()f x 在[,]a b 上连续,在,a b ()内可导,且()()0f a f b ==.试证: 在[,]0a b a >()内至少存在一点ξ,使得'()f f ξξ=(). 证明:选取辅助函数()()x F x f x e -=,则F x ()在[,]a b 上连续,在,a b ()内可导,(a)()0F F b ==,由R olle 定理,至少存在一点,a b ξ∈(),使'()'()e['()()]0F f f f f ξξξξξξξξ---=-=-=()e e因 0e ξ-> 即'()()=0f f ξξ-或'()=()f f ξξ.例 3 设函数()f x 于有穷或无穷区间,a b ()中的任意一点有有限的导函数()f x ',且0lim ()lim ()x a x b f x f x →+→-=,证明:'()0f c =,其中c 为区间,a b ()中的某点.证明: 当,a b ()为有穷区间时,设()(,)(),f x x a b F x A x a b ∈⎧=⎨=⎩,当时,当与时,其中0lim ()lim ()x a x b A f x f x →+→-==.显然()F x 在[,]a b 上连续,在,a b ()内可导,且有()()F a F b =,故由R o l l e 定理可知,在,a b ()内至少存在一点c ,使'()=0F c .而在,a b ()内,'()'()F x f x =,所以'()=0F c .下设,a b ()为无穷区间,若,a b =-∞=+∞,可设tan ()22x t t ππ=-<<,则对由函数()f x 与tan x t=组成的复合函数g()(tan )t f t =在有穷区间()22ππ-,内仿前讨论可知:至少存在一点0t (,)22ππ∈-,使20g '()'()sec 0t f c t =⋅=,其中t a n c t =,由于20s e c 0t ≠,故'()=0f c .若a 为有限数,b =+∞,则可取0m a x {,0}b a >,而令00()b a t x b t-=-.所以,对复合函数00()g()()b a t t f b t-=-在有穷区间0,a b ()上仿前讨论,可知存在00t ,a b ∈()使000200()g '()'()=0)b b a t fc b t -=⋅-(,其中0000()b a t c b t -=-,显然a c <<+∞由于00200())b b a b t ->-(,故'()=0fc .对于a =-∞,b 为有限数的情形,可类似地进行讨论.5.2 拉格朗日中值定理的应用例 4 证明0x >时,ln(1)1x x x x<+<+证明: 设()ln(1)f x x =+ , 则()f x 在[0,]x 上满足Lagrange 中值定理1ln(1)ln(10)ln(1)'(),(0,)10x x f x x xξξξ+-++===∈+-又因为111x ξ<+<+所以1111+1xξ<<+所以1ln(1)11+x xx+<<即ln(1)1x x xx<+<+例 5 已知()()()11112na n n n n n n n =++++++ ,试求lim n x na →.解: 令()2f x x=,则对于函数()f x 在()(),1n n k n n k +++⎡⎤⎣⎦上满足L a g r a n g e定理可得: ()()()()21211n n k n n k n n k n n k ξ++-+=++-+ ,()()()(),1n n k n n k ξ∈+++所以()()111221n k n k nnn n k n n k +++<-<+++当0,1,,1k n =- 时,把得到的上述n 个不等式相加得:()()()()211111222121n n n n n n n n n n+++<-<+++++ ()()11221n n n n ++++-即112222n n a a n n<-<+-故11022212n a n ⎛⎫<--<- ⎪⎝⎭所以lim 222n n a →∞=-例 6 求0.97的近似值. 解: 0.97是()f x x=在0.97x =处的值, 令001,0.97x x x x ==+∆=,则0.03x ∆=-, 由Lagrange 中值定理,存在一点0.97,1ξ∈()(1)(0.97)'()0.03f f f ξ-=可取1ξ≈近似计算,得110.971+)'(0.03)1(0.03)0.9852x x =≈⋅-=+-=(5.3 柯西中值定理的应用例 7 设0x >,对01α<<的情况,求证1xx ααα-≤-.证明:当1x =时结论显然成立,当1x≠时,取[],1x 或[]1,x ,在该区间设()f x xα=,()F x x α=由Canchy 定理得:()()()()()()11f x f f F x F F ξξ'-='- (),1x ξ∈或()1,x ξ∈ 即111x x ααααξξααα---==-当1x >时,(),1x ξ∈,11αξ->即11x x ααα->-又()10x x ααα-=-<故1x x ααα->-即11x αα-<-当1x >时,()1,x ξ∈,11αξ-<则()10x x ααα-=->故1x x ααα->-即11x αα-<-证毕例 8 设()f x 在[,]a b 上连续,(,)a b 内可导,a b ≤≤(0),()()f a f b ≠ ,试证 ,a b ξη∃∈,(),使得'()'()2a b f f ξηξ+= .证明: 在等式'()'()2a b f f ξηξ+=两边同乘b a -,则等价于22'()'()()2f f b a b a ηξξ-=-(),要证明此题, 只需要证明上式即可.在[,]a b 上,取()()F x f x =,G x x ()=,当,a b ξ∈()时,应用Cauchy 中值定理()()'()()()'()f b f a f G b G a G ξξ-=-即()()'()1f b f a f b aξ-=-在[,]a b 上,再取()()F x f x =,2G x x ()= ,当,a b η∈()时,应用C a u c h y 中值定理()()'()()()'()f b f a f G b G a G ηη-=-即22()()'()2f b f a f b aηη-=-即22'()'()()()2f f b a b a ηξξ-=-即'()'()2a b f f ξηξ+=例 9 设函数f 在[,]0a b a >()上连续,在(,)a b 上可导.试证:存在(,)a b ξ∈使得()()'()lnb f b f a f aξξ-=证明: 设()ln g x x =,显然它在[,]a b 上与()f x 一起满足柯西中值定理条件,所以存在,a b ξ∈(),使得 ()()'()1ln ln f b f a f b aξξ-=-整理后即得()()'()lnb f b f a f aξξ-=6 定理的应用总结 6.1 三定理的应用关系一般来说, 能用R o l l e 定理证得的也可用Lagrange 定理或C a u c h y 定理证得,因此,在解题的过程中根据问题本身的特点能选取合适的中值定理,以取得事半功倍的效果.如上面例9 利用R olle 中值定理.令()[()()]ln ()(ln ln )F x f b f a x f x b a =---,则()()F a F b -,所以存在,a b ξ∈()使得'()0F x =, 即()()'()lnf b f a b f aξξ--=整理后即得所欲证明.上面的这个例子还不难看出在利用R olle 中值定理和Cauchy 中值定理证明的同一个不等式中,用R olle 中值定理时辅助函数的构造显然需要更多的观察和技术.相比之下,用Cauchy 中值定理则要简单得多.6.2 定理的应用方法技巧从定理应用的例题中不难发现,微分中值定理大多都是通过构造辅助函数来完成证明的.有的可以从函数本身出发构造辅助函数,有的需要利用指数、对数、三角函数等初等函数来构造辅助函数,还有的要根据需要证明的目标出发适当构造辅助函数.可见,在微分中值定理的应用中,广泛地使用辅助函数是做证明题的关键,在学习时应该掌握一些常用的构造辅助函数方法.在做证明题时一般先从要证的结论出发,观察目标式的特征,分析目标式可能要用的辅助函数,然后对目标式作相应的变形,这是构造辅助函数的关键.有了辅助函数就可以直接对辅助函数应用微分中值定理得到结论.7 结束语本课题的研究成果是通过大学阶段的有关数学分析知识的学习,和一些相关学科内容知识的学习,并结合一些相关的参考图书资料,以及通过网络收集期刊、报刊和杂志上的相关内容,其中还包括自己对这些内容的理解,还通过多方面的了解和研究,且在和老师及同学们的一起探讨下,了解到微分中值定理的内在联系,也对微分中值定理深层进行了探讨,还对微分中值定理的应用做了归纳总结.本课题主要是以罗尔中值定理、拉格朗日中值定理和柯西中值定理三个微分中值定理,感受到了定理来解决数学问题的方便快捷,学以致用得到充分体现.微分中值定理是微分学的基本定理,而且它是微分学的理论核心,有着广泛的应用.本课题主要是对微分中值定理证明等式不等式,方程根的存在性,求极限以及求近似值等的应用.应用微分中值定理证明命题的关键是构造辅助函数,构造满足某个微分中值定理的条件而得到要证明的结论.而构造辅助函数技巧性强,构造合适的辅助函数往往是困难的.因此,在构造辅助函数上本文没有深入系统论述,有待于研究.9 参考文献[1] 党艳霞. 浅谈微分中值定理及其应用[J]. 廊坊师范学院学报(自然科学版).2010,(1): 28-31.[2] 陈传璋. 数学分析[M]. 北京: 高等教育出版社. 2007.[3] 刘玉琏, 傅沛仁. 数学分析讲义[M]. 北京:高等教育出版社. 1982.[4] 林源渠, 方企勤等. 数学分析习题集[M]. 北京:高等教育出版社. 1986.[5] 赵香兰. 巧用微分中值定理[J]. 大同职业技术学院学报. 2004,(2):64-66.[6] 刘章辉. 微分中值定理及其应用[J]. 山西大同大学学报(自然科学版).2007.23(2): 12-15.[7] 何志敏. 微分中值定理的普遍推广[J]. 零陵学院学报. 1985. (1): 11-13.[8] 李阳, 郝佳. 微分中值定理的延伸及应用[J]. 辽宁师专学报. 2011.(3): 13-18.。

拉格朗日中值定理

拉格朗日中值定理

一拉格朗日中值定理拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。

拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。

在现实应用当中,拉格朗日中值定有着很重要的作用。

拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。

拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻陈旧,出现创新的一个进程。

发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。

用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即这就是非常著名的费马定律,当一个函数在x=a处可以取得极值,并且函数是可导函数,则′。

著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。

在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。

最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]内任取两点和,并且函数在此闭区间内是连续的,′的最大值为A,′最小值为B,则的值必须是A和B之间的一个值。

这是拉格朗日定理最初的证明。

下述就是拉格朗日中值定理所要求满足的条件。

如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)内可导;那么这个函数在此开区间内至少存在着一点,使得′ξ.拉格朗日中值定理是导数的一个延伸概念,在导数运算中是的很基本概念。

例1:函数,即′。

当在开区间∞时,有′,在开区间∞单调递增;当在开区间∞时,有′,f(x)在开区间∞单调递减。

在,有′,。

由上述例子说明,想要确定一个函数的单调性可以通过求得这个函数的一阶导数来求得判断单调区间。

中值定理

中值定理

f (c) 0.
在 [a,c]和 [c,b] 上 f ( x) 连续,
证设
f (a) 0, f (b) 0.
f (c) 0. 在 [a,c]和 [c,b] 上 f ( x) 连续, 由于 f (a) 和 f (c)
异号, f (c) 和 f (b) 异号, 所以, 至少存在一点
x1 (a,c), 使 f ( x1) 0; 至少存在一点x2 (c,b), 使 f ( x2 ) 0. 在区间 [ x1, x2 ] 上, f ( x) 显然满足 罗尔定理的三个条件, 即 f ( x) 在 [ x1, x2 ]上连续,
导致矛盾, 故 x0 为唯一实根.
例 5 设 f ( x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 f (a) f (b) 0.
证明: 存在 (a,b), 使 f ( ) f ( ) 成立.
证 从结论倒推分析知, 可引进辅助函数
( x) f ( x)e x , 由于 (a) (b) 0, 易知 ( x) 在 [a,b] 上满足

拉格朗日(Lagrange)中值定理
推论1 如果函数 f ( x) 在区间 I 上的导数恒为零, 那么 f ( x)在区间 I 上是一个常数.
推论1表明: 导数为零的函数就是常数函数. 这一 结论以后在积分学中将会用到. 由推论1立即可得:
推论2 如果函数 f ( x) 与 g( x) 在区间 I 上恒有 f ( x) g( x),
拉格朗日(Lagrange)中值定理 若函数 f ( x) 在闭区
间 [a,b] 上连续, 在开区间 (a,b) 内可导,则在(a,b)
内至少有一点 (a b), 使得 f (a) f ( )(b a)
于是, 若作辅助函数

微分中值定理

微分中值定理

微分中值定理班级:姓名:学号:摘要微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。

它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明.罗尔定理定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =,则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.几何意义:在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。

(注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.)例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程()()[]()()x f a b a f b f x '222-=-至少存在一个根.证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且()()()()b F a f b a b f a F =-=22根据罗尔定理,至少存在一个ξ,使()()[]()()x f a b a f b f '222-=-ξ至少存在一个根. 例2 求极限:1220(12)lim (1)xx e x ln x →-++ 解:用22ln )(0)x x x →(1+有2021201201(12)2lim(1)1(12)2lim(12)lim 2(12)lim2212x x x x xx xx e x In x e x x e x xe x →→-→-→-++-+=-+=++===拉格朗日中值定理定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导,则在开区间(,)a b 内至少存在一点ξ,使得()()()f b f a f b a ξ-'=-显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形.拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:()()()()f b f a f b a ξ'-=-a b ξ<<;()()(())()f b f a f a b a b a θ'-=+--,01θ<<; ()()()f a h f a f a h h θ'+-=+,01θ<<.值得注意的是:拉格朗日公式无论对于a b <,还是a b >都成立,而ξ则是介于a 与b 之间的某一定数.而后两式的特点,在于把中值点ξ表示成了()a b a θ+-,使得不论,a b 为何值,θ总可为小于1的某一正数. 例3 求证()()ln 1,1x x x +≤>-.证明:当0=x 时,显然()01ln ==+x x设0≠x 对()t t f ln =在以1与x +1为端点的闭区间上用拉格朗日中值定理,存在介于1与x +1之间的ξ,使()()()()1111'-+=-+x f f x f ξ,即()ξxx =+1ln 当0<x 时,10<<ξ,11>ξ,但此时注意()1ln +x 与x 均为负值,所以仍有()x x ≤+1ln , 即对1->x 不等式恒成立. 当0>x 时,0>ξ,110<<ξ,所以有()x x ≤+1ln .例4 证明当e a b >>时,a b b a >。

高等数学 第一节 微分中值定理

高等数学 第一节  微分中值定理

f ( x )
1 1 x
2

1 1 x
2
0
在 ( 1, 1 ) 内成立 .
所以 f ( x ) 在 ( 1, 1 ) 内取常数 c .
又 f (0) arcsin 0 arccos0 0 , 所以 c . 2 2 2 又 f ( 1) , 2 2 f ( 1) 0 . 2 2
2 2 为求 , 需解方程 cos x 2 . 1 sin x 2
9
设 y x, 2 y y 2 sin cos cos x sin y 2 2 cot y 2 . 则 2 2 1 sin x 1 cos y 2 sin 2 y 2 y tan 1 , y 2 arc tan 1 , 2 2 2 x y 2 arc tan 1 . 2 2 2 0 2 1 1 , 0 arctan 1 , 2 4 x 2 arc tan 1 0 , . 2 2 2 因此 , 取 2 arc tan 1 0 , . 2 2 2 ( ) ( 0) ( ) 2 确能使 ) (0) 成立 . 10 ( ) ( 2
使

y f (b) f (a ) f ( ) , ba f (b) f (a ) f ( ) (b a ) .
f (b) f (a ) 注 . 1. 弦的斜率 k . ba
2 . 若令 f (a ) f (b) ,
o
a

b
xБайду номын сангаас

考研数学高数中值定理的详解

考研数学高数中值定理的详解

考研数学高数中值定理的详解考研数学高数中值定理的详解七大定理的归属。

零点定理与介值定理属于闭区间上连续函数的性质。

三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。

积分中值定理属于积分范畴,但其实也是微分中值定理的推广。

对使用每个定理的体会学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。

关键在于是对哪个函数在哪个区间上使用哪个中值定理。

1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。

从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。

应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。

2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。

3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。

应用微分中值定理主要难点在于构造适当的函数。

在微分中值定理证明问题时,需要注意下面几点:(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。

对此我的体会是应当从需要证明的结论入手,对结论进行分析。

高等数学常见中值定理证明及应用

高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。

(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。

此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

《高等数学B》 第四章 中值定理及导数的应用 第1节 中值定理

《高等数学B》 第四章 中值定理及导数的应用 第1节 中值定理

拉格朗日 (1736 – 1813) 法国数学家. 他在方程论, 解析函数论, 法国数学家. 他在方程论 解析函数论 及数论方面都作出了重要的贡献, 及数论方面都作出了重要的贡献 近百 余年来, 数学中的许多成就都直接或间 余年来 接地溯源于他的工作, 接地溯源于他的工作 他是对分析数学 产生全面影响的数学家之一 .
y
C M•
y = f ( x)

D

A•
•N
ξ1 x
o a
ξ2 b
x
分析: 证 分析: 条件中与罗尔定理相差 f (a ) = f (b) .
f (b) − f (a ) ( x − a) . 弦 AB方程为 y = f (a ) + 方程为 b−a 曲线 f ( x )减去弦 AB ,
所得曲线 a , b 两端点的函数值相等 .
(1)
f ′(ξ ) = 0 .
例如, 例如 f ( x ) = x 2 − 2 x − 3 = ( x − 3)( x + 1) .
在[−1 , 3]上连续 , 在( −1 , 3) 上可导 , 且 f ( −1) = f ( 3) = 0 , Q f ′( x ) = 2( x − 1) , 取 ξ = 1 (1 ∈ ( −1 , 3)) , f ′(ξ ) = 0 .
f (b) − f (a ) F ( x ) = f ( x ) − [ f (a ) + ( x − a )] . b−a F ( x ) 满足罗尔定理的条件 , 则在( a , b )内至少存在一点 ξ ,
作辅助函数
使得 F ′(ξ ) = 0 . 即
f (b) − f (a ) f ′(ξ ) − =0, b−a 拉格朗日中值公式 或 f (b) − f (a) = f ′(ξ )(b − a) .

中值定理证明方法总结

中值定理证明方法总结
证: 按三阶行列式展开法有
f (a) g (a) h( a )
f (b) g (b) h(b)
f ′(ξ ) g ( a ) g (b ) ′ f (ξ ) g ′(ξ ) = h(a ) h(b) h′(ξ )
f (a) − h( a ) f (b) ′ f (a) g (ξ ) + h(b) g (a) f (b) ′ h (ξ ) g (b)
y
y = f ( x)
o

b x
在( a , b ) 内至少存在一点 ξ , 使 f ′(ξ ) = 0. 故在[ a , b ]上取得最大值 证: 因 f ( x) 在[ a , b] 上连续,
M 和最小值 m .
若 M = m , 则 f ( x ) ≡ M , x ∈ [ a , b] , 因此 ∀ξ ∈ (a , b) , f ′(ξ ) = 0 .
拉氏 目录 上页 下页 返回 结束
三、柯西(Cauchy)中值定理
f ( x) 及 F ( x) 满足 : (1) 在闭区间 [ a , b ] 上连续 (2) 在开区间 ( a , b ) 内可导 (3)在开区间 ( a , b ) 内 F ′( x) ≠ 0 f (b) − f (a ) f ′(ξ ) = . 至少存在一点 ξ ∈ ( a, b) , 使 F (b) − F (a ) F ′(ξ ) a <η < b 分析: F (b) − F (a ) = F ′(η )(b − a ) ≠ 0 f (b) − f (a ) F ′(ξ ) − f ′(ξ ) = 0 要证 ′(ξ ) ϕ F (b) − F (a ) f (b ) − f ( a ) ϕ ( x) = F ( x) − f ( x) F (b ) − F ( a )

中值定理的应用

中值定理的应用
有时也可考虑对导数用中值定理. (5) 若结论为不等式,要注意适当放大或缩小的技巧.
5. 证明有关中值问题的结论:
题型一:证明存在 使 f ( ) 0或A(常数).
例1. 设f (x) 在[0,1]上可导,0 f (x) 1,且 f (x) 1,
(0 x 1),证明在(0,1)内必有唯一的 , 使 f ( ) .
[这里关键,需找a,b使f (a) f (b)( 0) ]
2. 使f ( ) 0 :
(1)对f (x)用费马定理或罗尔定理; (2)需找三个点a,b,c,使f (a) f (b) f (c),(a b c) 则1 (a,b)使f (1) 0; 2 (b, c)使f (2 ) 0;



f (x)g(x) f (x)g(x)
g 2 ( x)
x
0.
构造辅助函数 F(x) f (x) g(x)
(3) 要证 f () f ()g() 0.
即证 F(x) eg(x) [ f (x) f (x)g(x)] 0.
x
(3) g(a) g(b) 0. 由Rolle定理 (a, b), 使g( ) 0.
即 ek f ( ) ek kf ( ) 0
由于ek 0, f ( ) kf ( ) 0
即 f ( ) k. f ( )
总结:通过恒等变形
7). 有关中值问题的解题方法 利用逆向思维,设辅助函数. 一般解题方法: (1)证明含一个中值的等式或根的存在,多用罗尔定理,
可用原函数法找辅助函数. (2) 若结论中涉及含中值的两个不同函数,可考虑用柯
西中值定理 . (3) 若结论中含两个或两个以上的中值,必须多次应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 两个不同的 , , 使f ( ) f ( ) 1
证明(1)
F ( x) f ( x) 1 x, F (0) f (0) 1 0 1 0 F (1) f (1) 1 1 1 0
所以有 F (0).F (1) 0 ,由零点定理即证
1 f ( n ) ( x )( x x ) n n 0 0 !

b
( n 1) n 1 1 (n f ( )( x x ) 0 1) !
补充:导数零点定理,导数介值定理 定理10、设 f ( x)在[a, b] 上可导,当
f (a). f(b) 0时, (a, b), 使f ( ) 0
f ( n1) ( ) (n 1) !
( x x0 ) n1 ( 在 x0 与 x 之间) ②
公式 ① 称为
的 n 阶泰勒公式 .
公式 ② 称为n 阶泰勒公式的拉格朗日余项 . 注意到
Rn ( x) o[( x x0 ) n ]

在不需要余项的精确表达式时 , 泰勒公式可写为
1.1基本理论综述
一、涉及函数 f ( x) 的中值定理
设 f ( x)在[a,b] 上连续,则 定理1、有界性 f ( x) k , (k 0)
定理2、最值性 m f ( x) M 定理3、介值定理:当 m u M时, [a, b], 使得f ( ) u 定理4、零点定理:当 f (a). f (b) 0时, (a, b), 使得f ( ) 0 二、涉及导数(微分)f ( x) 的中值定理
证明:用 将 [0,1] 划分为 [0, ],[ ,1] ,在这两个区间 上分别对 f ( x) 使用拉格朗日中值定理,得
1 f ( ) f (0) f (1 )( 0) f (1 ) f ( ) f (1) f ( ) f ( 2 )(1 ) 1 1 f ( 2 ) 1 f ( )
罗尔定理,或利用费尔马定理(都是对n-1阶导数用)
(4)若结论中有两个中值,则优先考虑应该大区间分 为若干小区间,在各个小区间多次使用拉氏定理, 或者直接考虑柯西中值定理 (5)若结论中含有高阶导数,则优先考虑泰勒公式 (6)若结论中含有函数及其各阶导数,则优先考虑 拉格中值定理或者泰勒公式将其联系起来
第一讲:中值定理和有关方程根的问题
中值定理在竞赛中具有特殊的地位,它是高数中不多的
一种逻辑证明类的问题,分析味道足,综合性强,对数学
逻辑推理能力要求较高,很多同学对此比较畏惧,主要
是因为我们平时学习中没有引起足够重视,训练不够。 方程根的问题,属于微积分应用的范畴。
主要内容:1、闭区间上连续函数的性质(有界性,最 值性、零点定理、介值定理) 2、微分中值定理(罗尔定理,拉格朗日,柯西中值定理 ,泰勒中值定理(公式))
定理11、设 f ( x)在[a, b] 上可导,当
f (a) f (b),介于f (a)与f(b)之间, 则 (a, b), 使f ( ) b 三、涉及积分 f ( x)dx 的中值定理
a
定理12
f ( x)在[a, b] 上连续 则至少存在一点
a f ( x) dx f ( )(b a)
a f ( ) a M m 2 3 a 2 2 a 2!x dx a 2! x dx a 2! x dx m a3 a f ( x)dx M a
由介值定理,存在
3 [a, a], 有f ( ) 3 a

a
a
f ( x)dx
(0,1) 内可导,且 例11、已知 f ( x)在[0,1]上连续, f (0) 0, f (1) 1 证明:(1) (0,1), 使f ( ) 1
0 0 0 0
1
1
1
1
1 1 1 m 2m. 2 f ( x)dx 2M . M 即, 0 2 2
由介值定理,
至少存在一点 [0,1],使得 f ( ) 20 f ( x)dx f (0) 0 ,证 例10、 设 f ( x)在[a, a] 上有连续的二阶导函数,
3 [ a , a ], 有 f ( ) 存在一点 a3
1

a
a
f ( x)dx
分析(1)闭区间,优先用介值定理
f ( ) 2 f , f 可考虑用泰勒公式 f ( x ) f (0) f (0). x x (2) 2!
对展开式两端积分得

a
2、若结论中的中值属于开区间,且需要做辅助函数, (1)将结论中的中值 改写为 x ,通过整理使等式 一端为0,另一端记为 F * ( x) ,令 F ( x) F * ( x) 验证 F ( x) 是否满足零点定理,满足则命题成立, 若不满足,则 (2)改令
F ( x) F ( x)
由此得近似公式
二、几个初等函数的麦克劳林公式
(k )
f
( x) e ,
b
1.2思路与例题解析 一、有关思路总结 1、根据欲证结论的形式大致确定需要用哪一个或哪几 个定理,一般来说 (1)如果结论中的中值属于闭区间,则优先考虑介值 定理 (2)若结论中的中值属于开区间,则优先考虑微分
中值定理(比如拉氏定理)等
(n) F ( ) 0 ,则优先考虑 (3)若结论比较简单,如
a
f ( x)dx f (0)dx f (0) xdx
a a a a
a
a
a
a
f ( ) 2 x dx 2!

f ( ) 2 x dx 2!
由于 f ( x)在[a, a] 上连续,故 m f ( x) M , 则m f( ) M
拉格朗日中值定理
f (b) f (a) f ( ) ba
F ( x) x
a b x 柯西中值定理
o
y
n0
y f ( x)
泰勒中值定理
f (b) f (a) f ( ) F (b) F (a) F ( )
o f ( x0 )( x x0 ) f ( x) f ( x0 ) a x
f ( x0 ) 2 f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2! f ( n ) ( x0 ) n ( x x0 ) o[( x x0 ) n ] ④ n!
公式 ③ 称为n 阶泰勒公式的佩亚诺(Peano) 余项 .
在泰勒公式中若取 x0 0 , x (0 1) , 则有 f (0) 2 f ( n ) (0) n x x f (0) f (0) x 2! n!
f (0) f (1) f ( 2) 3
M
f (c ) 1 f (0) f( 1) f ( 2) 3 1 , f ( 3 ) 1 分析: 所给条件可写为 3 f (c) f (3) 1, 且 f ( x) 在[c, 3] 上连续 c, ))内可导 , f (0) ,f在 (1)( f3 (2 想到找一点 c , 使 f (c) 3 f ( ) 0. 由罗尔定理知, 必存在 (c, 3) (0, 3) , 使
f ( ) 0.
证: 因 f (x) 在[0, 3]上连续, 所以在[0, 2]上连续, 且在
[0, 2]上有最大值 M 与最小值 m, 故
m f (0), f (1), f (2) M
f (0) f (1) f ( 2)
m
由介值定理, 至少存在一点 c [0, 2] , 使
*
一次积分
令c 0
F ( x),验证 F ( x)
Hale Waihona Puke 是否满足罗尔定理,若不满足,则 两次积分 (3)改令 F ( x) F ( x)
*
令c 0, d 0
F ( x)
,将大区间分为小区间
各个小区间多次使用中值定理,
二、例题解析
例8、设函数 f (x) 在[0, 3] 上连续, 在(0, 3) 内可导, 且 f (0) f (1) f (2) 3, f (3) 1, 证明存在 (0, 3) , 使
f ( x) f (0) f ( )( x 0)(0 x) f ( x) xf ( )
于是,
m f ( ) M mx xf ( ) Mx
mxdx
0
1
1
0
f ( x) dx Mxdx 2 mxdx 2 f ( x) dx 2 Mxdx
例9、设
f ( x)在[0,1]上具有一阶连续导数,且 f (0) 0
证明,至少存在一点 [0,1] ,使得
f ( ) 2 f ( x)dx
0
1
分析,本题结论中的中值属于闭区间,优先考虑介值th (1)由于 上必取最大值 f ( x)在[0,1]上连续,故f ( x)在[0,1] M,和最小值m,则对 x [0,1], m f ( x) M (2)建立 f ( x)与f ( x) 的关系,用拉氏定理
[0, ],[ ,1] (2)用 把 [0,1] 分成两个小区间, f ( ) f (0) f ( )( 0), (0, ) 并分别用拉氏定理有, f (1) f ( ) f ( )(1 ), ( ,1)
f ( ) f ( ) f (0)
1 2 即可 和要证的等式比较,得 f ( ) 1 f ( )
1 于是取 f ( ) 2
,命题得证
注意:本题采用了反推思想,
1.3泰勒中值定理(公式) 理论分析 用多项式近似表示函数 — 应用 近似计算 泰勒中值定理 : 时, 有 f ( x0 ) 2 f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2! (n) f ( x0 ) ( x x0 ) n Rn ( x) ① n! 其中 Rn ( x) 阶的导数 , 则当
相关文档
最新文档