采用线性插值算法
基于SIFT特征点的图像拼接技术研究
基于SIFT特征点的图像拼接技术研究一、本文概述图像拼接技术作为计算机视觉领域的重要研究方向,旨在将多幅具有重叠区域的图像进行无缝连接,生成一幅宽视角或全景图像。
这一技术在许多领域都有着广泛的应用,如遥感图像处理、虚拟现实、全景摄影等。
近年来,随着数字图像处理技术的快速发展,基于特征点的图像拼接方法因其高效性和稳定性受到了广泛关注。
其中,尺度不变特征变换(SIFT)作为一种经典的特征提取算法,在图像拼接中发挥着重要作用。
本文旨在深入研究基于SIFT特征点的图像拼接技术,分析其基本原理、算法流程以及关键步骤,并通过实验验证其在实际应用中的效果。
文章将介绍SIFT算法的基本原理和特征提取过程,包括尺度空间的构建、关键点检测和描述子的生成等。
将详细阐述基于SIFT特征点的图像拼接流程,包括特征匹配、几何变换模型的估计、图像配准和融合等步骤。
同时,还将讨论在拼接过程中可能出现的问题和相应的解决方法。
本文将通过实验验证基于SIFT特征点的图像拼接方法的有效性。
实验中,将使用不同场景和不同类型的图像进行拼接,分析算法在不同情况下的性能表现。
还将与其他图像拼接算法进行对比,以评估SIFT算法在图像拼接中的优势和局限性。
文章将总结基于SIFT特征点的图像拼接技术的研究成果和实际应用价值,并展望未来的研究方向和发展趋势。
通过本文的研究,旨在为图像拼接技术的发展和应用提供有益的参考和借鉴。
二、SIFT算法原理尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)是一种广泛应用于图像处理和计算机视觉领域的特征检测和描述算法。
SIFT算法的核心思想是在不同的尺度空间上查找关键点,并计算出关键点的方向,生成一种描述子,这个描述子不仅包含了关键点,也包含了其尺度、方向信息,使得特征具有尺度、旋转和亮度的不变性,对于视角变化、仿射变换和噪声也保持一定的稳定性。
SIFT算法主要包括四个步骤:尺度空间极值检测、关键点定位、关键点方向赋值和关键点描述子生成。
计算方法练习题与答案
练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.–作为x的近似值一定具有6位有效数字,且其误差限。
()2.对两个不同数的近似数,误差越小,有效数位越多。
()3.一个近似数的有效数位愈多,其相对误差限愈小。
()4.用近似表示cos x产生舍入误差。
( )5.和作为的近似值有效数字位数相同。
( )二、填空题1.为了使计算的乘除法次数尽量少,应将该表达式改写为;2.–是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3.误差的来源是;4.截断误差为;5.设计算法应遵循的原则是。
三、选择题1.–作为x的近似值,它的有效数字位数为( ) 。
(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。
(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x近似表示e x所产生的误差是( )误差。
(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。
(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.作为的近似值,有( )位有效数字。
(A) 3; (B) 4; (C) 5; (D) 6。
四、计算题1.,,分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:(1), (2)(3) , (4)4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。
现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。
5*. 采用迭代法计算,取k=0,1,…,若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。
最新LS信道估计算法
LS信道估计算法LS信道估计假设OFDM系统模型用下式表示:Y P = X P H+W P(1)式中H为信道响应;Xp为已知的导频发送信号;乙为接收到的导频信号;嗎,为在导频子信道上叠加的AWGN矢量。
LS为最小二乘(Least—quare)信道估计,LS算法就是对⑴式中的参数H进行估计, 使函数(2)最小。
J=(Y^Y P)\Y I-Y P) = (Y严X P H)H (Y P・ X P H)⑵其中乙是接收端导频子载波处的接受信号组成的向量;。
二X P H是经过信道估计后得到的导频输出信号;力是信道响应H的估计值匚一d{(Yp・XpH)N(Yp・XpH)}----- < ------------ * ------------------- UdH由此可以得到LS算法的信道估计值为:A P.LS =(X ; Xp)1 XpYp = XpYp可见,LS估计只需要知道发送信号Xp,对于待定的参数观测噪声1竹,以及接收信号沧的其它统计特征,都不需要其它的信息,因此LS信道估计算法的最大优点是结构简单,计算量小,仅通过在各载波上进行一次除法运算即可得到导频位置子载波的信道特征。
但是,LS估计算法由于在孤寂时忽略了噪声的影响,所以信道估计值对噪声干扰以及ICI 的影响比较敏感。
在信道噪声较大时,估计的准确性大大降低,从而影响数据子信道的参数估计。
LMMSE算法的实现流程:首先我们得到LMMSE算法的相关公式:沐MSE=% *(心艸+b『(伽g(X)dbg(X) 〃)T)T"其中HP为导频子载波的CFR (振幅因素衰减),心@表示所有子载波与导频子载波的互协方差,心川”表示导频子载波的自协方差。
MSE代表信道的阶跃响应。
从公式中可以看出LMMSE使用子载波间的协方差以及SNR等信息进行信道估计。
因为(diag(X)diag(X)H)」可以作为一个常量。
则(diag(X)diag(X)HF可以替换为其期望®:E{bJ(diag(x)diag(x)H)J}=I 曲'其中I代表单位矩阵。
线性插值模糊控制及其在PLC上的实现
・1632・计算机测量与控制.2008.16(11) Computer Measurement &Control 控制技术收稿日期:2008203223; 修回日期:2008204225。
作者简介:张红军(19752),男,河南省洛阳市人,助工,硕士,主要从事自动控制、测控技术等方向的研究。
文章编号:167124598(2008)1121632203 中图分类号:TP273.4文献标识码:A线性插值模糊控制及其在PLC 上的实现张红军,张 翔,佟明明(中国空空导弹研究院,河南洛阳 471009)摘要:文章针对常规模糊控制器控制精度低的问题,提出了一种提高模糊控制器控制精度的方法;首先分析了常规模糊控制器存在的稳态控制精度差的原因,在此基础上给出一种通过在线查表插值算法提高模糊控制精度的方法及该算法在PLC 上的实现,最后在液位控制系统上进行实验应用并和常规模糊控制器的控制效果进行了比较;结果表明,这种改进后的插值模糊控制器能有效消除系统稳态误差,提高模糊控制器的控制精度,而且易于在PLC 上实现,有一定的实用价值。
关键词:模糊控制;控制精度;线性插值;PL CLinear Interpolation Fuzzy Control and Its Application in PLCZhang Hongjun ,Zhang Xiang ,To ng Mingming(China Airborne Missile Academy ,L uoyang 471009,China )Abstract :To counter t he problem of lower controlling precision of fuzzy controller ,t his paper put s forward a met hod to improve con 2t rolling precision of fuzzy controller.First ,t he paper analyses t he reason of lower controlling precision of conventional fuzzy controller ,t hen put s forward interpolation algorit hm to improve controlling precision of fuzzy controller and gives it s application in PLC.The algorit hm is applied in liquid level control system and is compared wit h conventional fuzzy controller.The improved fuzzy controller can really elimi 2nate stable state error and improve t he controlling precision.It s design is simple and it s realization is easy in PL C ,it has certain practical ap 2plication value.K ey w ords :fuzzy control ;controlling precision ;linear interpolation ;PLC0 引言模糊控制器(Fuzzy Controller ,以下简称FC )由于不需要建立对象的数学模型、具有良好的鲁棒性以及非线性控制特性而得到较为广泛的应用。
pcl插值算法
pcl插值算法
PCL(Point Cloud Library)插值算法是一种在点云处理中常用的技术,主要用于对点云数据进行空间内插或重建。
该算法可以根据已有的离散点云数据,通过插值方法估算出未知点的坐标,从而生成连续、光滑的表面。
PCL插值算法有多种实现方式,其中常用的包括最近邻插值(Nearest Neighbor Interpolation)、线性插值(Linear Interpolation)、多项式插值(Polynomial Interpolation)等。
这些算法可以根据实际需求选择使用,以达到最佳的插值效果。
在PCL插值算法的应用中,需要注意以下几点:
1. 数据预处理:在进行插值之前,需要对点云数据进行预处理,包括去除噪声、过滤无效点等操作,以提高插值的准确性。
2. 算法选择:根据实际需求选择合适的插值算法,以达到最佳的插值效果。
不同的算法具有不同的特点和适用场景。
3. 参数设置:不同的插值算法需要设置不同的参数,如最近邻插值需要设置搜索半径,线性插值需要设置方向等。
参数的设置对插值结果有很大影响,需要根据实际情况进行调整。
4. 结果评估:插值完成后,需要对结果进行评估,如计算误差、检查表面的光滑度等。
根据评估结果对算法和参数进行调整,以提高插值的精度和质量。
总之,PCL插值算法是一种在点云处理中常用的技术,可用于空间内插和表面重建等方面。
在实际应用中,需要根据具体情况选择合适的算法和参数,以达到最佳的插值效果。
气象数据时空插值算法新策略
气象数据时空插值算法新策略在气象学中,气象数据的时空插值是一项非常重要的任务。
它可以有效地填补数据空缺,提高气象预测精度,并帮助决策者更好地了解和应对气象变化。
在传统的插值算法中,一些经典方法如最邻近插值、反距离加权插值、克里金插值等被广泛应用。
然而,随着科技的快速发展和数据量的大幅增加,这些传统方法逐渐暴露出了一些局限性。
为了克服这些局限性,气象数据时空插值算法正不断迭代改进,并涌现出一些新的策略。
首先,考虑到气象数据的非平稳性和空间相关性,新策略采用了基于聚类的插值方法。
这种方法将空间相似的气象观测点分为若干类,然后在每个聚类中进行插值。
这样可以更好地捕捉气象场的空间变化规律,提高插值结果的准确性。
例如,可以使用K-means聚类算法将观测点分为多个聚类簇,然后采用线性插值或克里金插值方法对每个簇进行插值。
其次,针对气象数据的时间序列特点,新策略引入了时间加权插值算法。
传统插值方法没有考虑气象数据的时间权重,容易导致在插值过程中低质量数据对结果的影响较大。
而时间加权插值算法通过对不同时间段的数据赋予不同的权重,更好地捕捉了气象场的时序变化规律。
例如,可以使用指数加权法对历史观测数据进行加权平均,然后根据权重调整插值结果。
此外,新策略还引入了机器学习方法来改进气象数据的插值。
根据已有的观测数据和环境因素,可以建立数据模型,从而更准确地预测和插值未来的气象数据。
例如,可以利用支持向量机(SVM)或人工神经网络(ANN)等机器学习算法,通过对大量历史数据的分析学习,提高气象数据插值的精度和准确性。
此外,新策略结合了空间统计方法和物理模型,以进一步改善插值结果。
空间统计方法可以通过对不同观测点的统计分析,推导出气象场的空间分布规律。
物理模型则基于气象学理论,建立数学模型来描述气象现象,并用于插值过程。
通过结合这两种方法,可以充分利用气象学的知识和观测数据,提高插值结果的准确性和可信度。
综上所述,气象数据时空插值算法的新策略通过引入基于聚类的插值、时间加权插值、机器学习和空间统计方法,以及物理模型等技术手段,有望在填补数据空缺、提高气象预测精度和帮助决策者应对气象变化等方面取得显著的效果。
分段线性插值法
《数值分析》实验报告实验序号:实验五 实验名称: 分段线性插值法1、 实验目的:随着插值节点的增加,插值多项式的插值多项式的次数也增加,而对于高次的插值容易带来剧烈的震荡,带来数值的不稳定(Runge 现象)。
为了既要增加插值的节点,减小插值的区间,以便更好的逼近插值函数,又要不增加插值多项式的次数以减少误差,可采用分段线性插值。
2、 实验内容:求一个函数ϕ(x )用来近似函数f (x ),用分段线性插值的方法来求解近似函数ϕ(x )并画出近似函数图像及原函数图像。
设在区间[a,b]上,给定n+1个插值节点b x x x x a n =<<<<=...210和相应的函数值n y y y ,...,,10,求一个插值函数)(x ϕ,满足以下条件:(1)),...,2,1,0()(n j y x j j ==ϕ; (2) )(x ϕ在每一个小区间[1,+j j x x ]上是线性函数。
对于给定函数11-,2511)(2≤≤+=x x x f 。
在区间[]11-,上画出f (x )和分段线性插值函数)(x ϕ的函数图像。
1. 分段线性插值的算法思想:分段线性插值需要在每个插值节点上构造分段线性插值基函数)(x l j ,然后再作它们的线性组合。
分段线性插值基函数的特点是在对应的插值节点上函数值取 1,其它节点上函数值取0。
插值基函数如下:⎪⎩⎪⎨⎧≤≤--=其它 ,0,)(101010x x x x x x x x l ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<--≤≤--=+++---其它 ,0,,)(111111j j j j j j j j j j j x x x x x x x x x x x x x x x l⎪⎩⎪⎨⎧≤≤--=---其它 ,0,)(111n n n n n n x x x x x x x x l 设在节点a ≤x0<x1<…≤b=f(xi),(i=0,1,2,…,n)求折线函数L (x )满足:(1) L(x)∈C[a,b](2) L(x[i]=y[i])(3) L(x)在每个小区间(x[i],x[i+1])上是线性插值函数¢(x )叫做区间[a,b]上对数据(x[j],y[j])(j=0,1,2,…,n)的分段区间函数。
几种插值算法在气动数据计算中的比较
Ke wo d I t r o ai n; a r n e; b cS l e y r s: e p lt n o L g a g Cu i ai n
6 『 一
厅
.
一 1, 一一 — ]
一 j 一 +
,
保证 。 为了克服线性插值的缺点 , 有时用简单的曲线
近似地替代复杂曲线 。 最简单 的曲线就是二次曲线 , 因而 可用 二次 曲线逼 近 复杂 曲线 。
付刘 : 一 L +
- 十 + t
i ug c u a y i n ah e a c r c mpa t Th p rp e e t h e mii n a d s l to oc d r ft e s v r li t r o ai n a— c . epa e r s n st e d f to n o u i n pr e u e o e e a n e h p lto l
几
种 插
法
值 算
拉格朗 日插值公式见下式【 1 ]
:
令
忽 . … +
.
+ 吃l
在
动
— 、 .
当
∽猢
㈩
则 入 mk2 + k : k (= ,,, n ) +mkum d k 1 3…,一1 2
于 迈齐 余仟 S l y ,’ = ’ 八 S( 巴 =1( ’ J ’S y 代 n ’ : x Nhomakorabea0 引 言
插值法 , 利用 MAT A L B软 件 并 编 写 了通 用 程 序 , 进 行 算例 验证 , 以求 通 过实例 对 比分 析 , 到最 好 的插 得 值方法。
数值分析实验报告线性插值和二次插值计算ln0.54的近似值
数值分析实验报告线性插值和二次插值计算ln0.54的近似值数值分析实验报告线性插值和二次插值计算ln0.54的近似值篇一:数值分析-用线性插值及二次插值计算数值分析上机报告习题:给出f(x)?lnx的数值表,用线性插值及二次插值计算ln0.54的近似值。
解:(1)用线性插值计算 Matla b程序 x=0.54; a=[0.5,0.6];b=[-0.693147,-0.510826]; l1=b (1)*((x-a(2))/(a(1)-a (2))); l2=b(2)*((x-a(1))/(a(2)-a(1))); y=l1+l2 y = -0.6202(2)用抛物插值计算 Ma tlab程序 x=0.54; a=[0.4,0.5,0.6]; b=[-0.916291,-0.693147,-0.510826]; A=b(1)*(x-a(2))*(x-a(3))/((a (1)-a(2))*(a(1)-a(3))); B=b(2)*(x-a (1))*(x-a(3))/((a(2)-a(1))*(a(2)-a(3))); C=b(3)*(x-a(1))*(x-a(2))/((a(3)-a(1))*(a(3)-a(2)));y=A+B+C y= -0.6153篇二:数值分析上机实验报告二实验报告二题目:如何求解插值函数摘要:在工程测量和科学实验中,所得到的数据通常都是离散的,如果要得到这些离散点意外的其他点的数值,就需要根据这些已知数据进行插值。
这里我们将采用多种插值方法。
前言:(目的和意义)掌握Lagrange,Netn,Hermi te,线性,三次样条插值法的原理及应用,并能求解相应问题。
数学原理:主要的插值法有:多项式插值法、拉格朗日插值法、线性插值法、牛顿插值法,H ermite插值法三次样条插值法等。
计算方法练习题与答案
练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.–作为x的近似值一定具有6位有效数字,且其误差限。
()2.对两个不同数的近似数,误差越小,有效数位越多。
()3.一个近似数的有效数位愈多,其相对误差限愈小。
()4.用近似表示cos x产生舍入误差。
( )5.和作为的近似值有效数字位数相同。
( )二、填空题1.为了使计算的乘除法次数尽量少,应将该表达式改写为;2.–是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3.误差的来源是;4.截断误差为;5.设计算法应遵循的原则是。
三、选择题1.–作为x的近似值,它的有效数字位数为( ) 。
(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。
(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x近似表示e x所产生的误差是( )误差。
(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。
(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.作为的近似值,有( )位有效数字。
(A) 3; (B) 4; (C) 5; (D) 6。
四、计算题1.,,分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:(1), (2)(3) , (4)4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。
现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。
5*. 采用迭代法计算,取k=0,1,…,若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。
常见的插值法及其应用
见的有分段线性插值和分段三次埃尔米特插值. 但是分段
插值光滑性较差.
2. 6 三次样条插值
工程上常用三次样条插值 ,其基本思想是将插值区间
n 等分 ,在每一个子区间上采用三次 Hermite 插值方法导
出插值函数 S3 ( x) (1) 在每个小区间 [ xi- 1 , xi ] 上是不高于三次的多项
= Ii
该公式我们也称为埃特金 ( Ait ken) 逐次线性插值公式. 这
个算法的优点是适合在计算机上计算 ,且具有自动选节点
并逐步比较精度的特点 ,程序也较简单.
2. 3 Newton 插值法
由表 (1) 构造的 Newton 插值多项式为
N ( x) = f ( x0 ) + f ( x0 , x1 ) ( x - x0 ) + …+ f ( x0 , x1 ,
7 YYSZXB
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
姜 琴 ,周天宏 : 常见的插值法及其应用
例 2 已知函数 f ( x) ,如表 6 所示 :
2 常见的代数插值公式及其构造
2. 1 Lagrange 插值法
表 (1) 的 n 次 Lagrange 插值多项式 L n ( x) 的数学公
n
∑ 式 :L n ( x) =
f ( xi) li ( x)
i =0
其中 li ( x) ( i = 0 , 1 ,2 , …n) 是插值基函数 ,且 li ( x) =
3 例题
例 1 已知数据 ,如表 3 所示 :
表 3 插值表
ethercat 直线插补 原理
ethercat 直线插补原理EtherCAT 直线插补原理介绍EtherCAT(以太CAT)是一种高速实时以太网通信协议,用于现场总线系统。
直线插补是在机床控制系统中常用的一种运动控制技术,它可以将多个点之间的平滑曲线插值为一系列线性插值点,从而实现精确的加工路径。
本文将以浅薄的角度解释 EtherCAT 直线插补的原理。
什么是直线插补直线插补是一种插补运动的方式,通过定义起点和终点,并指定一系列中间点,计算出使工具在这些点之间移动的线性路径。
这种方式在工业自动化领域中非常常见,尤其在数控机床系统中广泛应用。
EtherCAT 协议简介EtherCAT 是一种高性能实时以太网通信协议,其关键特点是通过一个主站实现多个从站的同步通信。
在 EtherCAT 网络中,主站负责发送指令和接收数据,而从站则负责接收指令并执行相应的动作。
EtherCAT 直线插补的原理EtherCAT 直线插补的原理是通过主站发送插补指令给从站,从站根据指令进行相应的插补计算,并将计算结果返回给主站。
主站和从站之间的通信是通过 EtherCAT 协议进行的。
插补算法在 EtherCAT 直线插补中,有多种插补算法可以选择,常见的有线性插值、梯形插值和圆弧插值。
在这些算法中,线性插值是最简单的一种方法。
它通过计算起点和终点之间的线性路径,并根据运动速度和加速度控制工具的运动。
控制器的角色在 EtherCAT 直线插补系统中,主站充当控制器的角色,从站则是执行器。
主站负责生成插补指令,并将其发送给从站进行执行。
从站接收并解析指令,根据指令计算插补路径,并控制执行器按照路径移动。
实时性要求EtherCAT 直线插补系统的一个重要特点是实时性要求高。
在实际应用中,对于加工路径的精细度和速度要求都很高,因此控制指令的传输和执行都需要在严格的时间约束下完成。
总结EtherCAT 直线插补是一种在工业自动化中广泛应用的运动控制技术。
通过使用高性能实时以太网通信协议,主站可以发送插补指令给从站,并实现精确的加工路径控制。
图像信号的抽取与插值
设计性实验1 图像信号的抽取与插值一、实验目的1、熟悉图像处理常用函数和方法;2、培养通过查阅文献解决问题的能力。
二、实验要求给出一个二维灰度图像,3、编程实现对该图像的任意比例的放大及缩小;4、编程实现对该图像的任意角度旋转;5、解决缩放及旋转时产生的锯齿等图像不平滑问题。
实验提示6、利用上采样、下采样等方法对信号进行缩放变换;7、观察对图像进行缩放或旋转时,图像是否会出现锯齿等不平滑现象?8、分析产生锯齿现象的原因;9、查阅文献了解解决锯齿现象的方法。
(例如平滑滤波、双线性插值、双立方插值等处理)三、实验细节1、实现图像的放大算法:为了实现图像的放大,首先将原图按照x1=a*x,y1=b*x将原图的像素点(x,y)映射为新的画布上的(x1,y1)点,如上图左一到左二。
然后,以行或列为一个处理单位,采用一种图像插值算法,在两红点之间的空白点插入一些值,使图像充满整个画布。
具体顺序如上图所示,先按行插值,再按列插值。
本实验采用的插值算法要达到的目标是,使插入点的斜率与原图保持一致 具体插值方法如下(以宽度放大三倍为例):取出一行像素点,使时域坐标变为原来的三倍。
假设两相邻像素点坐标分别为a[n]和a[m],则在a[n+1]、a[n+2]、a[n+i]…a[m -1]处填入的灰度值为:][n-m ia[n])-(a[m]i]a[n n a +⨯=+过程如下:图①原图像的一行像素点图②使时域坐标变为原来的三倍插入的点图③在两点间插值,使新插入的点与原先的两点以同一斜率变化。
2.实现图像的缩小:若要实现缩小,则同样按照x1=ax,y1=by的坐标转换关系将原画布上的点映射到新画布上,那么新画布上的一点将成为原画布上多点的映射,此时,新画布的点只需取其中一个映射点即可。
过程如下:运行结果:(以行列均放大三倍为例)①放大前的图像:②将图像的行列上的时域变为原来的三倍。
③行插值:④列插值后(完成):颗粒(锯齿)不明显使用线性插值法假如使用临近插值法,将得到如下图片,可见,在图中眼部的位置,临近插值法的锯齿更为明显,而使用本实验插值算法得到的图像边缘更为平滑。
常用三种图像插值算法
常见图像插值算法只有3种么?电脑摄像头最高只有130万像素的,800万是通过软件修改的。
何为数码插值(软件插值)插值(Interpolation),有时也称为“重置样本”,是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。
简单地说,插值是根据中心像素点的颜色参数模拟出周边像素值的方法,是数码相机特有的放大数码照片的软件手段。
一、认识插值的算法“插值”最初是电脑术语,后来引用到数码图像上来。
图像放大时,像素也相应地增加,但这些增加的像素从何而来?这时插值就派上用场了。
插值就是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩(也有些相机使用插值,人为地增加图像的分辨率)。
所以在放大图像时,图像看上去会比较平滑、干净。
但必须注意的是插值并不能增加图像信息。
以图1为原图(见图1),以下是经过不同插值算法处理的图片。
1.最近像素插值算法最近像素插值算法(Nearest Neighbour Interpolation)是最简单的一种插值算法,当图片放大时,缺少的像素通过直接使用与之最接近的原有像素的颜色生成,也就是说照搬旁边的像素,这样做的结果是产生了明显可见的锯齿(见图2)。
2.双线性插值算法双线性插值算法(Bilinear Interpolation)输出的图像的每个像素都是原图中四个像素(2×2)运算的结果,这种算法极大程度上消除了锯齿现象(见图3)。
3.双三次插值算法双三次插值算法(Bicubic Interpolation)是上一种算法的改进算法,它输出图像的每个像素都是原图16个像素(4×4)运算的结果(见图4)。
这种算法是一种很常见的算法,普遍用在图像编辑软件、打印机驱动和数码相机上。
4.分形算法分形算法(Fractal Interpolation)是Altamira Group提出的一种算法,这种算法得到的图像跟其他算法相比更清晰、更锐利(见图5)。
常见插值算法--拉格朗日插值、三次卷积插值、三次样条插值、兰克索斯插值
常见插值算法--拉格朗⽇插值、三次卷积插值、三次样条插值、兰克索斯插值写在前⾯本⽂简单介绍了⼏种常见的插值算法并附带了相应的python代码,本⽂公式使⽤latex编写,如有错误欢迎评论指出,如果谁知道如何修改latex字号也欢迎留⾔关于⼀维、⼆维和多维插值三次卷积插值、拉格朗⽇两点插值(线性插值)、兰克索斯插值在⼆维插值时改变x和y⽅向的计算顺序不影响最终结果,这三个也是图像缩放插值时常⽤的插值算法,⽽其他插值在改变计算顺序时会产⽣明显差异,多维的情况笔者没有尝试,读者可以⾃⾏尝试或推导最近邻插值法(Nearest Neighbour Interpolation)在待求像素的四邻像素中,将距离待求像素最近的像素值赋给待求像素p_{11}p_{12}pp_{21}p_{22}python代码1def NN_interpolation(srcImg, dstH, dstW):2 scrH, scrW, _ = srcImg.shape3 dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)4for i in range(dstH - 1):5for j in range(dstW - 1):6 scrX = round(i * (scrH / dstH))7 scrY = round(j * (scrW / dstW))8 dstImg[i, j] = srcImg[scrX, scrY]9return dstImg拉格朗⽇插值(Lagrange Interpolation)拉格朗⽇插值法需要找到k个p_i(x)函数,使得每个函数分别在在x_i处取值为1,其余点取值为0,则y_ip_i(x)可以保证在x_i处取值为y_i,在其余点取值为0,因此L_k(x)能恰好经过所有点,这样的多项式被称为拉格朗⽇插值多项式,记为L_k(x)=\sum_{i=1}^ky_ip_i(x)p_i(x)=\prod_{j \neq i}^{1 \leq j \leq k}\frac{x-x_j}{x_i-x_j}以四点即三次图像插值为例,因为横坐标间隔为1,则设四个点横坐标为-1、0、1和2,可得p_1(x)、p_2(x)、p_3(x)和p_4(x)假设y_1、y_2、y_3和y_4分别为1、2、-1、4,则可得拉格朗⽇函数如下图所⽰,待插值点横坐标范围为[0,1]在K=2时在k=2时,也被称为线性插值通⽤公式p_1=\frac{x-x_2}{x_1-x_2}p_2=\frac{x-x_1}{x_2-x_1}\begin{align} L_2x &= p_1y_1+p_2y_2 \nonumber \\ &= \frac{x-x_2}{x_1-x_2}y_1 + \frac{x-x_1}{x_2-x_1}y_2 \nonumber \end{align}图像插值像素分布如图所⽰p_{11}p_{12}pp_{21}p_{22}即当x_{i+1}=x_i+1时,设p与p_{11}的横纵坐标差分别为dx和dy\begin{align} L_2x &= \frac{x-x_2}{x_1-x_2}y_1 + \frac{x-x_1}{x_2-x_1}y_2 \nonumber \\ &= (x_2-x)y_1+(x-x_1)y_2 \nonumber \\ &= (1-dx)y_1+dxy_2 \nonumber \\ &= (y_2-y_1)dx+y_1 \nonumber \end{align}L_2'x=y_2-y_1在K=3时通⽤公式p_1=\frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}p_2=\frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}p_3=\frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}\begin{align} L_3x &= p_1y_1+p_2y_2+p_3y_3 \nonumber \\ &= \frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}y_1+\frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}y_2+\frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}y_3 \nonumber \end{align}图像插值像素分布如图所⽰p_{11}p_{12}p_{13}p_{21}p_{22}p_{23}pp_{31}p_{32}p_{33}即当x_{i+1}=x_i+1时,设p与p_{11}的横纵坐标差分别为dx和dy\begin{align} L_3x &= \frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}y_1 + \frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}y_2 + \frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}y_3 \nonumber \\ &= \frac{-dx(1-dx)}{(-1)\cdot(-2)}y_1 + \frac{-(1+dx)(1-dx)}{1\cdot(-1)}y_2 + \frac{(1+dx)dx}{2\cdot 1}y_3 \nonumber \\ &= (\frac{1}{2}d^2x-\frac{1}{2}dx)y_1 - (d^2x-1)y_2 + (\frac{1}{2}d^2x+\frac{1}{2}dx)y_3 \nonumber \\ &= d^2x(\frac{1}{2}y_1-y_2+\frac{1}{2}y_3)+dx(-\frac{1}{2}y_1+\frac{1}{2}y_3)+y_2 \nonumber \end{align}L_3'x=dx(y_1-2y_2+y_3)+(\frac{1}{2}y_3-\frac{1}{2}y_1)在K=4时通⽤公式p_1=\frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}\frac{x-x_4}{x_1-x_4}p_2=\frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}\frac{x-x_4}{x_2-x_4}p_3=\frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}\frac{x-x_4}{x_3-x_4}p_4=\frac{x-x_1}{x_4-x_1}\frac{x-x_2}{x_4-x_2}\frac{x-x_3}{x_4-x_3}\begin{align} L_4x &= p_1y_1+p_2y_2+p_3y_3+p_4y_4 \nonumber \\ &= \frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}\frac{x-x_4}{x_1-x_4}y_1 + \frac{x-x_1}{x_2-x_1}\frac{x-x_3} {x_2-x_3}\frac{x-x_4}{x_2-x_4}y_2 + \frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}\frac{x-x_4}{x_3-x_4}y_3 + \frac{x-x_1}{x_4-x_1}\frac{x-x_2}{x_4-x_2}\frac{x-x_3}{x_4-x_3}y_4\nonumber \end{align}图像插值p_{11}p_{12}p_{13}p_{14}p_{21}p_{22}p_{23}p_{24}pp_{31}p_{32}p_{33}p_{34}p_{41}p_{42}p_{43}p_{44}即当x_{i+1}=x_i+1时,设p与p_{11}的横纵坐标差分别为dx和dy\begin{align} L_4x &= \frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}\frac{x-x_4}{x_1-x_4}y_1 + \frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}\frac{x-x_4}{x_2-x_4}y_2 + \frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}\frac{x-x_4}{x_3-x_4}y_3 + \frac{x-x_1}{x_4-x_1}\frac{x-x_2}{x_4-x_2}\frac{x-x_3}{x_4-x_3}y_4 \nonumber \\ &= \frac{dx[-(1-dx)][-(2-dx)]}{(-1)\cdot(-2)\cdot(-3)}y_1 + \frac{(1+dx)[-(1-dx)][-(2-dx)]}{1\cdot(-1)\cdot(-2)}y_2 + \frac{(1+dx)dx[-(2-dx)]}{2\cdot 1\cdot(-1)}y_3 + \frac{(1+dx)dx[-(1-dx)]}{3\cdot 2\cdot 1}y_4 \nonumber \\ &= \frac{d^3x-3d^2x+2dx}{-6}y1 + \frac{d^3x-2d^2x-dx+2}{2}y_2 + \frac{d^3x-d^2x-2dx}{-2}y_3 + \frac{d^3x-dx}{6}y_4 \nonumber \\ &= d^3x(-\frac{1}{6}y_1+\frac{1}{2}y_2-\frac{1} {2}y_3+\frac{1}{6}y_4)+d^2x(\frac{1}{2}y_1-y_2+\frac{1}{2}y_3)+dx(-\frac{1}{3}y_1-\frac{1}{2}y_2+y_3-\frac{1}{6}y_4)+y_2 \nonumber \end{align}\begin{align} L_4'x &= d^2x(-\frac{1}{2}y_1+\frac{3}{2}y_2-\frac{3}{2}y_3+\frac{1}{2}y_4)+dx(y_1-2y_2+y_3)+(-\frac{1}{3}y_1-\frac{1}{2}y_2+y_3-\frac{1}{6}y_4) \nonumber \\ &= -[\frac{1}{2}d^2x(y_1-3y_2+3y_3-y_4)-dx(y_1-2y_2+y_3)+\frac{1}{6}(2y_1+3y_2-6y_3+y_4)] \nonumber \end{align}python代码插值核计算的时候乘法和加减法计算的顺序不同可能会导致结果存在细微的差异,读者可以⾃⾏研究⼀下1class BiLagrangeInterpolation:2 @staticmethod3def LagrangeInterpolation2(x, y1, y2):4 f1 = 1 - x5 f2 = x6 result = y1 * f1 + y2 * f27return result89 @staticmethod10def LagrangeInterpolation3(x, y1, y2, y3):11 f1 = (x ** 2 - x) / 2.012 f2 = 1 - x ** 213 f3 = (x ** 2 + x) / 2.014 result = y1 * f1 + y2 * f2 + y3 * f315return result1617 @staticmethod18def LagrangeInterpolation4(x, y1, y2, y3, y4):19 f1 = - (x ** 3 - 3 * x ** 2 + 2 * x) / 6.020 f2 = (x ** 3 - 2 * x ** 2 - x + 2) / 2.021 f3 = - (x ** 3 - x ** 2 - 2 * x) / 2.022 f4 = (x ** 3 - x) / 6.023 result = y1 * f1 + y2 * f2 + y3 * f3 + y4 * f424return result2526def biLag2_2(self, srcImg, dstH, dstW):27 dstH, dstW = int(dstH), int(dstW)28 srcH, srcW, _ = srcImg.shape29 srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')30 dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)31for dstY in range(dstH):32for dstX in range(dstW):33for channel in [0, 1, 2]:34# p11 p1235# p36# p21 p2237# 储存为 p(y, x)38 p = [dstY * srcH / dstH, dstX * srcW / dstW]39 p11 = [math.floor(p[0]), math.floor(p[1])]40 p12 = [p11[0], p11[1] + 1]4142 p21 = [p11[0] + 1, p11[1]]43 p22 = [p21[0], p12[1]]4445 diff_y, diff_x = p[0] - p11[0], p[1] - p11[1]46 r1 = grangeInterpolation2(diff_x, srcImg[p11[0], p11[1], channel], srcImg[p12[0], p12[1], channel])47 r2 = grangeInterpolation2(diff_x, srcImg[p21[0], p21[1], channel], srcImg[p22[0], p22[1], channel])4849 c = grangeInterpolation2(diff_y, r1, r2)5051 dstImg[dstY, dstX, channel] = np.clip(c, 0, 255)52return dstImg5354def biLag3_3(self, srcImg, dstH, dstW):55 dstH, dstW = int(dstH), int(dstW)56 srcH, srcW, _ = srcImg.shape57 srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')58 dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)59for dstY in range(dstH):60for dstX in range(dstW):61for channel in [0, 1, 2]:62# p11 p12 p1363#64# p21 p22 p2365# p66# p31 p32 p3367# 储存为 p(y, x)68 p = [dstY * srcH / dstH, dstX * srcW / dstW]69 p22 = [math.floor(p[0]), math.floor(p[1])]70 p21 = [p22[0], p22[1] - 1]71 p23 = [p22[0], p22[1] + 1]7273 p11 = [p21[0] - 1, p21[1]]74 p12 = [p11[0], p22[1]]75 p13 = [p11[0], p23[1]]7677 p31 = [p21[0] + 1, p21[1]]78 p32 = [p31[0], p22[1]]79 p33 = [p31[0], p23[1]]8081 diff_y, diff_x = p[0] - p22[0], p[1] - p22[1]82 r1 = grangeInterpolation3(diff_x, srcImg[p11[0], p11[1], channel], srcImg[p12[0], p12[1], channel], srcImg[p13[0], p13[1], channel])83 r2 = grangeInterpolation3(diff_x, srcImg[p21[0], p21[1], channel], srcImg[p22[0], p22[1], channel], srcImg[p23[0], p23[1], channel])84 r3 = grangeInterpolation3(diff_x, srcImg[p31[0], p31[1], channel], srcImg[p32[0], p32[1], channel], srcImg[p33[0], p33[1], channel]) 8586 c = grangeInterpolation3(diff_y, r1, r2, r3)8788 dstImg[dstY, dstX, channel] = np.clip(c, 0, 255)89return dstImg9091def biLag4_4(self, srcImg, dstH, dstW):92 dstH, dstW = int(dstH), int(dstW)93 srcH, srcW, _ = srcImg.shape94 srcImg = np.pad(srcImg, ((1, 2), (1, 2), (0, 0)), 'edge')95 dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)96for dstY in range(dstH):97for dstX in range(dstW):98for channel in [0, 1, 2]:99# p11 p12 p13 p14100#101# p21 p22 p23 p24102# p103# p31 p32 p33 p34104#105# p41 p42 p43 p44106# 储存为 p(y, x)107 p = [dstY * srcH / dstH, dstX * srcW / dstW]108 p22 = [math.floor(p[0]), math.floor(p[1])]109 p21 = [p22[0], p22[1] - 1]110 p23 = [p22[0], p22[1] + 1]111 p24 = [p22[0], p22[1] + 2]112113 p11 = [p21[0] - 1, p21[1]]114 p12 = [p11[0], p22[1]]115 p13 = [p11[0], p23[1]]116 p14 = [p11[0], p24[1]]117118 p31 = [p21[0] + 1, p21[1]]119 p32 = [p31[0], p22[1]]120 p33 = [p31[0], p23[1]]121 p34 = [p31[0], p24[1]]122123 p41 = [p21[0] + 2, p21[1]]124 p42 = [p41[0], p22[1]]125 p43 = [p41[0], p23[1]]126 p44 = [p41[0], p24[1]]127128 diff_y, diff_x = p[0] - p22[0], p[1] - p22[1]129 r1 = grangeInterpolation4(diff_x, srcImg[p11[0], p11[1], channel], srcImg[p12[0], p12[1], channel], srcImg[p13[0], p13[1], channel], srcImg[p14[0], p14[1], channel]) 130 r2 = grangeInterpolation4(diff_x, srcImg[p21[0], p21[1], channel], srcImg[p22[0], p22[1], channel], srcImg[p23[0], p23[1], channel], srcImg[p24[0], p24[1], channel]) 131 r3 = grangeInterpolation4(diff_x, srcImg[p31[0], p31[1], channel], srcImg[p32[0], p32[1], channel], srcImg[p33[0], p33[1], channel], srcImg[p34[0], p34[1], channel]) 132 r4 = grangeInterpolation4(diff_x, srcImg[p41[0], p41[1], channel], srcImg[p42[0], p42[1], channel], srcImg[p43[0], p43[1], channel], srcImg[p44[0], p44[1], channel]) 133134 c = grangeInterpolation4(diff_y, r1, r2, r3, r4)135136 dstImg[dstY, dstX, channel] = np.clip(c, 0, 255)137return dstImg三次卷积插值法(Cubic Convolution Interpolation)使⽤上图中的卷积核进⾏加权平均计算,卷积核为u(s),四个等距(距离为1)的采样点记为x_0、x_1、x_2和x_3,采样数值记为y_0、y_1、y_2和y_3,且保证四个点均在[-2,2]区间上,计算得到g(x),假设y_1、y_2、y_3和y_4分别为1、2、-1、4,则可得三次卷积插值函数如下图所⽰,待插值点横坐标范围为[0,1]公式推导设u(s)=\begin{cases} A_1|s|^3+B_1|s|^2+C_1|s|+D_1, &0<|s|<1 \\ A_2|s|^3+B_2|s|^2+C_2|s|+D_2, &1<|s|<2 \\ 1, &s=0 \\ 0, &otherwise \end{cases}\because函数在s=0,1,2处连续\therefore\begin{cases} 1=u(0^+)=D_1 \\ 0=u(1^-)=A_1+B_1+C_1+D_1 \\ 0=u(1^+)=A_2+B_2+C_2+D_2 \\ 0=u(2^-)=8A_2+4B_2+2C_2+D_2 \end{cases} (1)\because函数在s=0,1,2处导函数连续\therefore\begin{cases} u'(0^-)=u'(0+) \\ u'(1^-)=u'(1+) \\ u'(2^-)=u'(2+)\end{cases} \Rightarrow \begin{cases} -C_1=C_1 \\ 3A_1+2B_1+C_1=3A_2+2B_2+C_2\\ 12A_2+4B_2+C+2=0 \end{cases} ~~~~ (2)联⽴⽅程组(1)(2),设A_2=a,解得\begin{cases} A_1=a+2 \\ B_1=-(a+3) \\ C_1=0 \\ D_1=1 \\ A_2=a \\ B_2=-5a \\ C_2=8a \\ D_2=-4a \end{cases}\Rightarrow u(s)=\begin{cases} (a+2)|s|^3-(a+3)|s|^2+1, &0<|s|<1 \\ A_2|s|^3+B_2|s|^2+C_2|s|+D_2, &1<|s|<2\\ 1, &s=0 \\ 0, &otherwise \end{cases}\because g(x)=\sum_kC_ku(s+j-k), ~~~~k=j-1,j, j+1,j+2且0<s<1⼜\because \begin{cases}\begin{align} u(s+1)&=as^3-2as^2+as \nonumber \\ u(s)&=(a+2)s^3-(a+3)s^2+1 \nonumber \\ u(s-1)&=-(a+2)s^3+(2a+3)s^2-as \nonumber \\ u(s-2)&=-as^3+as^2 \nonumber \end{align}\end{cases}\begin{align} \therefore g(x) &= C_{j-1}u(s+1)+C_{j}u(s)+C_{j+1}u(s-1)+C_{j+2}u(s-2) \nonumber \\ &= C_{j-1}(as^3-2as^2+as)+C_j[(a+2)s^3-(a+3)s^2+1]+C_{j+1}[-(a+2)s^3+ (2a+3)s^2-as]+C_{j+2}[-a^3+as^2] \nonumber \\ &= s^3[aC_{j-1}+(a+2)C_j-(a+2)C_{j+1}-aC_{j+2}]+s^2[-2aC_{j-1}-(a+3)C_j+(2a+3)C_{j+1}+aC_{j+2}]+s[aC_{j-1}-aC_{j+1}]+C_j \nonumber \end{align} ~~(3)f在x_j处泰勒展开得到f(x)=f(x_j)+f'(x_j)(x-x_j)+\frac{1}{2}f''(x_j)(x-x_j)^2+\cdots\therefore \begin{cases} f(x_{j+1})=f(x_j)+f'(x_j)(x_{j+1}-x_j)+\frac{1}{2}f''(x_j)(x_{j+1}-x_j)^2+\cdots \\ f(x_{j+2})=f(x_j)+f'(x_j)(x_{j+2}-x_j)+\frac{1}{2}f''(x_j)(x_{j+2}-x_j)^2+\cdots \\ f(x_{j-1})=f(x_j)+f'(x_j)(x_{j-1}-x_j)+\frac{1}{2}f''(x_j)(x_{j-1}-x_j)^2+\cdots \end{cases}令x_{j+1}-x_j=h\because x_{i+1}=x_i+1\therefore x_{j+2}-x_j=2h,x_{j-1}-x_j=-h\therefore \begin{cases} f(x_{j+2})=f(x_j)+2f'(x_j)h+2f''(x_j)h^2+\cdots \\ f(x_{j+1})=f(x_j)+f'(x_j)h+\frac{1}{2}f''(x_j)h^2+\cdots \\ f(x_{j-1})=f(x_j)-f'(x_j)h+\frac{1}{2}f''(x_j)h^2+\cdots \end{cases}\therefore \begin{cases} c_{j-1}=f(x_j)-f'(x_j)h+\frac{1}{2}f''(x_j)h^2+o(h^3) \\ c_j=f(x_j) \\ c_{j+1}=f(x_j)+f'(x_j)h+\frac{1}{2}f''(x_j)h^2+o(h^3)\\ c_{j+2}=f(x_j)+2f'(x_j)h+2f''(x_j)h^2+o(h^3) \end{cases} ~~ (4)将(4)代⼊(3),得g(x)=-(2a+1)[2hf'(x_j)+h^2f''(x_j)]s^3+[(6a+3)hf'(x_j)+\frac{4a+3}{2}h^2f''(x_j)]s^2-2ahf'(x_j)s+f(x_j)+o(h^3)\because h=1,s=x-x_J\therefore sh=x-x_j\begin{align}\therefore f(x)&= f(x_j)+f'(x_j)(x-x_j)+\frac{1}{2}f''(x_j)(x-x_j)^2+o(h^3) \nonumber \\ &= f(x_j)+f'(x_j)sh+\frac{1}{2}f''(x_j)s^2h^2+o(h^3) \nonumber \end{align}\therefore f(x)-g(x)=(2a+1)[2hf'(x_j)+h^2f''(x_j)]s^3-(2a+1)[3hf'(x_j)+h^2f''(x_j)]s^2+[(2a+1)hf'(x_j)]s+o(h^3)\because 期望f(x)-g(x)趋于0\therefore 2a+1=0 \Rightarrow a=-\frac{1}{2}\therefore u(s)=\begin{cases} \frac{3}{2}|s|^3-\frac{5}{2}|s|^2+1, &0<|s|<1 \\ -\frac{1}{2}|s|^3+\frac{5}{2}|s|^2-4|s|+2, &1<|s|<2 \\ 1, &s=0 \\ 0, &otherwise \end{cases}\therefore g(s)=s^3[-\frac{1}{2}c_{j-1}+\frac{3}{2}c_j-\frac{3}{2}c_{j+1}+\frac{1}{2}c_{j+2}]+s^2[c_{j-1}-\frac{5}{2}c_j+2c_{j+1}-\frac{1}{2}c_{j+2}]+s[-\frac{1}{2}c_{j-1}+\frac{1} {2}c_{j+1}]+c_j图像插值p_{11}p_{12}p_{13}p_{14}p_{21}p_{22}p_{23}p_{24}pp_{31}p_{32}p_{33}p_{34}p_{41}p_{42}p_{43}p_{44}python代码1class BiCubicConvInterpolation:2 @staticmethod3def CubicConvInterpolation1(p0, p1, p2, p3, s):4# ⽤g(s)公式计算,已经将四个u(s)计算完毕并整理5# as^3 + bs^2 + cs + d6 a = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3)7 b = 0.5 * (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3)8 c = 0.5 * (-p0 + p2)9 d = p110return d + s * (c + s * (b + s * a))1112 @staticmethod13def CubicConvInterpolation2(s):14# ⽤u(s)公式计算15 s = abs(s)16if s <= 1:17return 1.5 * s ** 3 - 2.5 * s ** 2 + 118elif s <= 2:19return -0.5 * s ** 3 + 2.5 * s ** 2 - 4 * s + 220else:21return 02223def biCubic1(self, srcImg, dstH, dstW):24# p11 p12 p13 p1425#26# p21 p22 p23 p2427# p28# p31 p32 p33 p3429#30# p41 p42 p43 p4431 dstH, dstW = int(dstH), int(dstW)32 scrH, scrW, _ = srcImg.shape33 srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')34 dstImg = np.zeros((dstH, dstW, 1), dtype=np.uint8)35for dstY in range(dstH):36for dstX in range(dstW):37for channel in [0]:38 y = dstY * scrH / dstH39 x = dstX * scrW / dstW40 y1 = math.floor(y)41 x1 = math.floor(x)4243 array = []44for i in [-1, 0, 1, 2]:45 temp = self.CubicConvInterpolation1(srcImg[y1 + i, x1 - 1, channel],46 srcImg[y1 + i, x1, channel],47 srcImg[y1 + i, x1 + 1, channel],48 srcImg[y1 + i, x1 + 2, channel],49 x - x1)50 array.append(temp)5152 temp = self.CubicConvInterpolation1(array[0], array[1], array[2], array[3], y - y1)53 dstImg[dstY, dstX, channel] = np.clip(temp, 0, 255)5455return dstImg5657def biCubic2(self, srcImg, dstH, dstW):58# p11 p12 p13 p1459#60# p21 p22 p23 p2461# p62# p31 p32 p33 p3463#64# p41 p42 p43 p4465 dstH, dstW = int(dstH), int(dstW)66 scrH, scrW, _ = srcImg.shape67 srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')68 dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)69for dstY in range(dstH):70for dstX in range(dstW):71for channel in [0, 1, 2]:72 y = dstY * scrH / dstH73 x = dstX * scrW / dstW74 y1 = math.floor(y)75 x1 = math.floor(x)7677 array = []78for i in [-1, 0, 1, 2]:79 temp = 080for j in [-1, 0, 1, 2]:81 temp += srcImg[y1 + i, x1 + j, channel] * self.CubicConvInterpolation2(x - (x1 + j))82 array.append(temp)8384 temp = 085for i in [-1, 0, 1, 2]:86 temp += array[i + 1] * self.CubicConvInterpolation2(y - (y1 + i))87 dstImg[dstY, dstX, channel] = np.clip(temp, 0, 255)8889return dstImg三次样条插值在n-1个区间上寻找n-1个三次曲线,使其满⾜相邻曲线在端点处值相等、⼀阶导数相等,⼆阶导数相等,在加以边界条件后可得每个曲线的⽅程,然后沿x轴依次偏移对应的距离即可得到插值结果,如仅需要特定范围内的结果,则可以⼤幅减少计算量公式推导设S_i(x)=a_i+b_i(x-x_i)+c_i(x-x_i)^2+d_i(x-x_i)^3, ~~~~i=0,1,...,n-1则 \begin{cases} S_i'(x)=b_i+2c_i(x-x_i)+3d_i(x-x_i)^2\\ S_i''(x)=2c_i+6d_i(x-x_i)\\ S_i'''(x)=6d_i\\ \end{cases} ~~~~i=0,1,...,n-1设h_i(x)=x_{i+1}-x_i,可得\begin{cases} S_i(x)=a_i+b_ih_i+c_ih_i^2+d_ih_i^3\\ S_i'(x)=b_i+2c_ih_i+3d_ih_i^2\\ S_i''(x)=2c_i+6d_ih_i\\ S_i'''(x)=6d_i\\ \end{cases} ~~~~i=0,1,...,n-1\because S_i(x)过点(x_i,y_i)\therefore S_i(x)=a_i=y+i, ~~~~i=0,1,...,n-1 ~~~~~~(1)\because S_i(x)与S_{i+1}(x)在X_{i+1}处相等\therefore S_i(x_{i+1})=S_{i+1}(x_{i+1})\Rightarrow a_i+b_ih_i+c_ih_i^2+d_ih_i^3=y_{i+1}, ~~~~i=0,1,...,n-2~~~~~~(2)\because S_i'(x)与S_{i+1}'(x)在X_{i+1}处相等\therefore S_i'(x)-S_{i+1}'(x)=0\Rightarrow b_i+2c_ih_i+3d_ih_i^2-b_{i+1}=0~~~~~~(3)\because S_i''(x)与S_{i+1}''(x)在X_{i+1}处相等\therefore S_i''(x)-S_{i+1}''(x)=0\Rightarrow 2c_i+6d_ih_i-2c_{i+1}=0, ~~~~i=0,1,...,n-2~~~~~~(4)设m_i=S_i(x_i)=2c_i,即c_i=\frac{1}{2}m_i, ~~~~i=0,1,...,n-1~~~~~~(5)将(5)代⼊(4),得2c_i+6d_ih_i-2c_{i+1}=0\Rightarrow m_i+6h_id_i-m_{i+1}=0\Rightarrow d_i=\frac{m_{i+1}-m_i}{6h_i}, ~~~~i=0,1,...,n-2~~~~~~(6)将(1)(5)(6)代⼊(2),得\begin{align} &a_i+b_ih_i+c_ih_i^2+d_ih_i^3=y_{i+1} \nonumber \\ \Rightarrow&y_i+b_ih_i+\frac{1}{2}m_ih_i^2+\frac{m_{i+1}-m_i}{6h_i}h_i^3=y_{i+1} \nonumber \\\Rightarrow&b_i=\frac{y_{i+1}-y_i}{h_i}-\frac{1}{2}m_ih_i-\frac{1}{6}(m_{i+1}-m_i)h_i \nonumber \\ \Rightarrow&b_i=\frac{y_{i+1}-y_i}{h_i}-\frac{1}{3}m_ih_i-\frac{1}{6}m_{i+1}h_i, ~~~~i=0,1,...,n-2~~~~~~(7) \nonumber \end{align}将(5)(6)(7)代⼊(3),得\begin{align} &\frac{y_{i+1}-y{i}}{h_i}-\frac{1}{3}m_ih_i-\frac{1}{6}m_{i+1}h_i+2\cdot\frac{1}{2}m_ih_i+3\frac{m_{i+1}-m_i}{6h_i}h_i^2-(\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{1}{3}m_{i+1}h_{i+1}-\frac{1}{6}m_{i+2}h_{i+1})=0 \nonumber \\ \Rightarrow&\frac{y_{i+1}-y{i}}{h_i}-\frac{1}{3}m_ih_i-\frac{1}{6}m_{i+1}h_i+m_ih_i+\frac{1}{2}(m_{i+1}-m_i)h_i-\frac{y_{i+2}-y_{i+1}}{h_{i+1}}+\frac{1}{3}m_{i+1}h_{i+1}+\frac{1}{6}m_{i+2}h_{i+1}=0 \nonumber \\ \Rightarrow&m_ih_i(-\frac{1}{3}+1-\frac{1}{2})+m_{i+1}h_i(-\frac{1}{6}+\frac{1} {2})+\frac{1}{3}m_{i+1}h_{i+1}+\frac{1}{6}m_{i+2}h_{i+1}=\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{y_{i+1}-y_{i}}{h_{i}} \nonumber \\ \Rightarrow&\frac{1}{6}(m_ih_i+2m_{i+1}h_i+2m_{i+1}h_{i+1}+m_{i+2}h_{i+1})=\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{y_{i+1}-y_{i}}{h_{i}} \nonumber \\ \Rightarrow&m_ih_i+2m_{i+1}(h_i+h_{i+1})+m_{i+2}h_{i+1}=6(\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{y_{i+1}-y_{i}}{h_{i}}), ~~~~i=0,1,...,n-2~~~~~~(8) \nonumber \end{align}由(8)可知i=0,1,...,n-2,则有m_0,m_1,...,m_n,需要两个额外条件⽅程组才有解⾃然边界(Natural)m_0=0,m_n=0\begin{bmatrix} \tiny 1 & 0 & 0 & 0 & 0 & \cdots & 0\\ h_0 & 2(h_0+h_1) & h_1 & 0 & 0 & \cdots & 0\\ 0 & h_1 & 2(h_1+h_2) & h_2 & 0 & \cdots & 0\\ 0 & 0 & h_2 & 2(h_2+h_3) & h_3 & \cdots & 0\\ \vdots& & & \ddots & \ddots & \ddots & \vdots\\ 0 & \cdots & & & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1}\\ 0 & \cdots & & & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3\\\vdots\\m_{n-1}\\m_n \end{bmatrix}=6\begin{bmatrix} 0\\ \frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\ \frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\ \frac{y_4-y_3}{h_3}-\frac{y_3-y_2}{h_2}\\ \vdots\\ \frac{y_n-y_{n-1}}{h_{n-1}}-\frac{y_{n-1}-y_{n-2}}{h_{n-2}}\\ 0 \end{bmatrix}固定边界(Clamped)\begin{align} &\begin{cases} S_0'(x_0)=A\\ S_{n-1}'(x_n)=B \end{cases} \nonumber \\ \Rightarrow&\begin{cases} b_0=A\\ b_{n-1}+2c_{n-1}h_{n-1}+3d_{n-1}h_{n-1}^2=B\end{cases} \nonumber \\ \Rightarrow&\begin{cases} A=\frac{y_1-y_0}{h_0}-\frac{h_0}{2}m_0-\frac{h_0}{6}(m_1-m_0)\\ B=\frac{y_n-y_{n-1}}{h_{n-1}}-\frac{1}{3}m_{n-1}h_{n-1}+m_{n-1}h_{n-1}+\frac{1}{2}m_nh_{n-1}-\frac{1}{2}m_{n-1}h_{n-1} \end{cases} \nonumber \\ \Rightarrow&\begin{cases} 2h_0m_0+h_0m_1=6(\frac{y_1-y_0}{h_0}-A)\\ h_{n-1}m_{n-1}+2h_{n-1}m_{n}=6(B-\frac{y_n-y_{n-1}}{h_{n-1}}) \end{cases} \nonumber \\ \end{align}\begin{bmatrix} 2 & 1 & 0 & 0 & 0 & \cdots & 0\\ h_0 & 2(h_0+h_1) & h_1 & 0 & 0 & \cdots & 0\\ 0 & h_1 & 2(h_1+h_2) & h_2 & 0 & \cdots & 0\\ 0 & 0 & h_2 & 2(h_2+h_3) & h_3 & \cdots & 0\\ \vdots& & & \ddots & \ddots & \ddots & \vdots\\ 0 & \cdots & & & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1}\\ 0 & \cdots & & & 0 & 1 & 2 \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3\\\vdots\\m_{n-1}\\m_n \end{bmatrix}=6\begin{bmatrix} \frac{y_1-y_0}{h_0}-A\\ \frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\ \frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\ \frac{y_4-y_3}{h_3}-\frac{y_3-y_2}{h_2}\\ \vdots\\\frac{y_n-y_{n-1}}{h_{n-1}}-\frac{y_{n-1}-y_{n-2}}{h_{n-2}}\\ B-\frac{y_n-y_{n-1}}{h_{n-1}} \end{bmatrix}⾮节点边界(Not-A-Knot)\begin{align} &\begin{cases} S_0'''(x_1)=S_1'''(x_1)\\ S_{n-2}'''(x_{n-1})=S_{n-1}'''(x_{n-1}) \end{cases} \nonumber \\ \Rightarrow&\begin{cases} 6\cdot\frac{m_1-m_0}{6h_0}=6\cdot\frac{m_2-m_1}{6h_1}\\ 6\cdot\frac{m_{n-1}-m_{n-2}}{6h_{n-2}}=6\cdot\frac{m_n-m_{n-1}}{6h_{n-1}} \end{cases} \nonumber \\ \Rightarrow&\begin{cases} h_1(m_1-m_0)=h_0(m_2-m_1)\\ h_{n-1}(m_{n-1}-m_{n-2})=h_{n-2}(m_n-m_{n-1}) \end{cases} \nonumber \\ \Rightarrow&\begin{cases} -h_1m_0+(h_1+h_0)m_1-h_0m_2=0\\ -h_{n-1}m_{n-2}+(h_{n-1}+h_{n-2})m_{n-1}-h_{n-2}m_n=0 \end{cases} \nonumber \\ \end{align}\begin{bmatrix} -h_1 & h_0+h_1 & -h_0 & 0 & 0 & \cdots & 0\\ h_0 & 2(h_0+h_1) & h_1 & 0 & 0 & \cdots & 0\\ 0 & h_1 & 2(h_1+h_2) & h_2 & 0 & \cdots & 0\\ 0 & 0 & h_2 &2(h_2+h_3) & h_3 & \cdots & 0\\ \vdots& & & \ddots & \ddots & \ddots & \vdots\\ 0 & \cdots & & & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1}\\ 0 & \cdots & & & -h_{n-1} & h_{n-1}+h_{n-2} & -h_{n-2} \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3\\\vdots\\m_{n-1}\\m_n \end{bmatrix}=6\begin{bmatrix} 0\\ \frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\ \frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\ \frac{y_4-y_3}{h_3}-\frac{y_3-y_2}{h_2}\\ \vdots\\ \frac{y_n-y_{n-1}}{h_{n-1}}-\frac{y_{n-1}-y_{n-2}}{h_{n-2}}\\ 0 \end{bmatrix}在n=4时通⽤公式⾃然边界\begin{bmatrix} 1 & 0 & 0 & 0 \\ h_0 & 2(h_0+h_1) & h_1 & 0 \\ 0 & h_1 & 2(h_1+h_2) & h_2 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3 \end{bmatrix}=6\begin{bmatrix} 0\\ \frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\ \frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\ 0 \end{bmatrix}固定边界\begin{bmatrix} 2 & 1 & 0 & 0 \\ h_0 & 2(h_0+h_1) & h_1 & 0 \\ 0 & h_1 & 2(h_1+h_2) & h_2 \\ 0 & 0 & 1 & 2 \\ \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3 \end{bmatrix}=6\begin{bmatrix} \frac{y_1-y_0}{h_0}-A\\ \frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\ \frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\ B-\frac{y_3-y_2}{h_2} \end{bmatrix}⾮节点边界\begin{bmatrix} -h_1 & h_0+h_1 & -h_0 & 0 \\ h_0 & 2(h_0+h_1) & h_1 & 0 \\ 0 & h_1 & 2(h_1+h_2) & h_2 \\ 0 & -h_2 & h_1+h_2 & -h_1 \\ \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3 \end{bmatrix}=6\begin{bmatrix} 0\\ \frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\ \frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\ 0 \end{bmatrix}图像插值x_{i+1}-x_i=1 \Rightarrow h_i(x)=1在n=4时,即四个点时如下所⽰p_{11}p_{12}p_{13}p_{14}p_{21}p_{22}p_{23}p_{24}pp_{31}p_{32}p_{33}p_{34}p_{41}p_{42}p_{43}p_{44}⾃然边界(可⽤TDMA或化简计算)\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3 \end{bmatrix}=6\begin{bmatrix} 0\\ y_0+y_2-2y_1\\ y_1+y_3-2y_2\\ 0 \end{bmatrix}固定边界(只能⽤TDMA计算)\begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 2 \\ \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3 \end{bmatrix}=6\begin{bmatrix} y_1-y_0-A\\ y_0+y_2-2y_1\\ y_1+y_3-2y_2\\ y_2-y_3+B \end{bmatrix}⾮节点边界(只能化简计算)\begin{bmatrix} -1 & 2 & -1 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & -1 & 2 & -1 \\ \end{bmatrix}\begin{bmatrix} m_0\\m_1\\m_2\\m_3 \end{bmatrix}=6\begin{bmatrix} 0\\ y_0+y_2-2y_1\\ y_1+y_3-2y_2\\ 0 \end{bmatrix}python代码1class BiSplineInterpolation:2 @staticmethod3 def TDMA(a, b, c, d):4 n = len(d)56 c[0] = c[0] / b[0]7 d[0] = d[0] / b[0]89for i in range(1, n):10 coef = 1.0 / (b[i] - a[i] * c[i - 1])11 c[i] = coef * c[i]12 d[i] = coef * (d[i] - a[i] * d[i - 1])1314for i in range(n - 2, -1, -1):15 d[i] = d[i] - c[i] * d[i + 1]1617return d1819 @staticmethod20 def Simplified_Natural4(y1, y2, y3, y4):21 # 四点⾃然边界化简公式22 d1 = y1 + y3 - 2 * y223 d2 = y2 + y4 - 2 * y32425 k0 = 026 k1 = (4 * d1 - d2) * 0.427 k2 = (4 * d2 - d1) * 0.428 k3 = 02930return [k0, k1, k2, k3]3132 @staticmethod33 def Simplified_Not_A_Knot4(y1, y2, y3, y4):34 # 四点⾮节点边界化简公式35 d1 = y1 + y3 - 2 * y236 d2 = y2 + y4 - 2 * y33738 k0 = 2 * d1 - d239 k1 = d140 k2 = d241 k3 = 2 * d2 - d14243return [k0, k1, k2, k3]4445 # TDMA矩阵说明46 # a0 和 c3 没有实际意义,占位⽤47 # a0 [b0 c0 00 ] [x0] [d0]48 # [a1 b1 c1 0 ] [x1] = [d1]49 # [0 a2 b2 c2] [x2] [d2]50 # [00 a3 b3] c3 [x3] [d3]5152 def SplineInterpolationNatural4(self, x, y1, y2, y3, y4):53 # ⽤TDMA计算54 # matrix_a = [0, 1, 1, 0]55 # matrix_b = [1, 4, 4, 1]56 # matrix_c = [0, 1, 1, 0]57 # matrix_d = [0, 6 * (y1 + y3 - 2 * y2), 6 * (y2 + y4 - 2 * y3), 0]58 # matrix_x = self.TDMA(matrix_a, matrix_b, matrix_c, matrix_d)5960 # 化简计算61 matrix_x = self.Simplified_Natural4(y1, y2, y3, y4)6263 a = y264 b = y3 - y2 - matrix_x[1] / 3.0 - matrix_x[2] / 6.065 c = matrix_x[1] / 2.066 d = (matrix_x[2] - matrix_x[1]) / 6.06768 s = a + b * x + c * x * x + d * x * x * x69return s7071 def SplineInterpolationClamped4(self, x, y1, y2, y3, y4):72 # 仅有TDMA计算,⽆法化简73 A, B = 1, 17475 matrix_a = [0, 1, 1, 1]76 matrix_b = [2, 4, 4, 2]77 matrix_c = [1, 1, 1, 0]78 matrix_d = [6 * (y2 - y1 - A), 6 * (y1 + y3 - 2 * y2), 6 * (y2 + y4 - 2 * y3), 6 * (B - y4 + y3)]79 matrix_x = self.TDMA(matrix_a, matrix_b, matrix_c, matrix_d)8081 a = y282 b = y3 - y2 - matrix_x[1] / 3.0 - matrix_x[2] / 6.083 c = matrix_x[1] / 2.084 d = (matrix_x[2] - matrix_x[1]) / 6.08586 s = a + b * x + c * x * x + d * x * x * x87return s8889 def SplineInterpolationNotAKnot4(self, x, y1, y2, y3, y4):90 # ⽆法使⽤TDMA计算91 matrix_x = self.Simplified_Not_A_Knot4(y1, y2, y3, y4)9293 a = y294 b = y3 - y2 - matrix_x[1] / 3.0 - matrix_x[2] / 6.095 c = matrix_x[1] / 2.096 d = (matrix_x[2] - matrix_x[1]) / 6.09798 s = a + b * x + c * x * x + d * x * x * x99return s100101 def biSpline4(self, srcImg, dstH, dstW):102 dstH, dstW = int(dstH), int(dstW)103 srcH, srcW, _ = srcImg.shape104 srcImg = np.pad(srcImg, ((1, 2), (1, 2), (0, 0)), 'edge')105 dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)106for dstY in range(dstH):107for dstX in range(dstW):108for channel in [0, 1, 2]:109 # p11 p12 p13 p14110 #111 # p21 p22 p23 p24112 # p113 # p31 p32 p33 p34114 #115 # p41 p42 p43 p44116 # 储存为 p(y, x)117 p = [dstY * srcH / dstH, dstX * srcW / dstW]118 p22 = [math.floor(p[0]), math.floor(p[1])]119 p21 = [p22[0], p22[1] - 1]120 p23 = [p22[0], p22[1] + 1]121 p24 = [p22[0], p22[1] + 2]122123 p11 = [p21[0] - 1, p21[1]]124 p12 = [p11[0], p22[1]]125 p13 = [p11[0], p23[1]]126 p14 = [p11[0], p24[1]]127128 p31 = [p21[0] + 1, p21[1]]129 p32 = [p31[0], p22[1]]130 p33 = [p31[0], p23[1]]131 p34 = [p31[0], p24[1]]132133 p41 = [p21[0] + 2, p21[1]]134 p42 = [p41[0], p22[1]]135 p43 = [p41[0], p23[1]]136 p44 = [p41[0], p24[1]]137138 diff_y, diff_x = p[0] - p22[0], p[1] - p22[1]139 r1 = self.SplineInterpolationNatural4(diff_x, srcImg[p11[0], p11[1], channel], srcImg[p12[0], p12[1], channel], srcImg[p13[0], p13[1], channel], srcImg[p14[0], p14[1], channel]) 140 r2 = self.SplineInterpolationNatural4(diff_x, srcImg[p21[0], p21[1], channel], srcImg[p22[0], p22[1], channel], srcImg[p23[0], p23[1], channel], srcImg[p24[0], p24[1], channel]) 141 r3 = self.SplineInterpolationNatural4(diff_x, srcImg[p31[0], p31[1], channel], srcImg[p32[0], p32[1], channel], srcImg[p33[0], p33[1], channel], srcImg[p34[0], p34[1], channel]) 142 r4 = self.SplineInterpolationNatural4(diff_x, srcImg[p41[0], p41[1], channel], srcImg[p42[0], p42[1], channel], srcImg[p43[0], p43[1], channel], srcImg[p44[0], p44[1], channel]) 143144 c = self.SplineInterpolationNatural4(diff_y, r1, r2, r3, r4)145146 dstImg[dstY, dstX, channel] = np.clip(c, 0, 255)。
保险法定准备金的插值算法
保险法定准备金的插值算法
保险法定准备金的插值算法通常采用线性插值法。
具体来说,就是利用相邻两个报备期的准备金率和保险公司的保费来计算当前期的准备金率。
假设第 $i$ 个报备期的准备金率为 $R_i$,第 $i$ 个报备期的保费为 $P_i$,第 $i+1$ 个报备期的准备金率为 $R_{i+1}$,第 $i+1$ 个报备期的保费为 $P_{i+1}$,当前期的报备期为 $T$,则当前期的准备金率 $R_T$ 可以通过下列公式计算:
$$R_T=\frac{T-T_i}{T_{i+1}-T_i}R_{i+1}+\frac{T_{i+1}-T}{T_{i+1}-T_i}R_i$$
其中,$T_i$ 和 $T_{i+1}$ 分别为第 $i$ 个报备期和第
$i+1$ 个报备期的报备时间。
这个公式的物理意义是,将报备期和准备金率看作一条直线,当前期与其相邻的两个报备期所在的两个点可以确定这条直线,从而计算出当前期的准备金率。
计算方法1.3分段线性插值
目录
• 引言 • 分段线性插值的基本原理 • 分段线性插值的构造方法
目录
• 分段线性插值的应用举例 • 分段线性插值的优缺点及改进方法 • 总结与展望
01
引言
目的和背景
数值计算中,插值是一种通过已知数 据点来估算未知数据点的方法。
分段线性插值作为一种常用的插值方 法,具有计算简单、易于实现等优点, 在实际问题中得到了广泛应用。
在许多实际问题中,函数关系往往是未知的 ,或者虽然知道函数关系但难以用解析式表 达,此时可以通过插值法来近似地表示函数 关系。
插值的概念和分类
插值的概念
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数 据点。
插值的分类
根据插值函数的形式和构造方法的不同,插值可分为多项式插值、分段插值、 样条插值、三角插值等。其中,分段线性插值是一种简单而常用的插值方法。
每个子区间上的插值函数只与该 区间上的节点有关,因此局部数 据的改变不会影响整个插值函数。
易于实现
分段线性插值的算法相对简单, 易于编程实现,且对计算机资源 要求不高。
分段线性插值的缺点
插值精度有限
由于分段线性插值在每个子区间上都是线性的,因此对于非线性程 度较高的函数,插值精度可能较低。
不光滑
在节点处,分段线性插值函数的一阶导数可能不连续,导致插值曲 线不够光滑。
科学计算与仿真
在科学计算和仿真领域,高维分段线性插值可以作为数值 计算的基本工具之一,用于求解高维偏微分方程和其他复 杂数学问题。
05
分段线性插值的优缺点及 改进方法
分段线性插值的优点
计算简单
分段线性插值相比于其他插值方 法,如多项式插值或样条插值, 计算更为简单,不涉及复杂的数 学运算。
机械手臂运动轨迹规划算法研究
机械手臂运动轨迹规划算法研究一、引言机械手臂是目前工业生产中不可或缺的重要设备之一,其具有可编程、自适应等特点,已经广泛应用于汽车、电子、医疗、物流等行业。
机械手臂的运动轨迹规划算法是机械手臂控制中的关键技术之一,其优劣对机械手臂在工业生产中的效率、稳定性、精度等方面产生重要影响。
二、机械手臂运动轨迹规划算法概述机械手臂运动轨迹规划算法是机械手臂控制的关键之一,其目的是为了让机械手臂运动到预定的位置,并满足一定的运动要求,如最短路径、最大速度、最小加速度等。
常见的机械手臂运动轨迹规划算法包括:1、插值算法插值算法是目前最常见的机械手臂运动轨迹规划算法之一,其采用插值技术来逐步地生成机械手臂的运动轨迹。
可以通过线性插值,三次样条插值等方式生成平滑运动轨迹,其速度、加速度、轨迹弧度等因素均可通过调节参数来实现。
2、最优化算法最优化算法是通过寻找最优化策略来生成机械手臂的运动轨迹。
最优化算法可以采用数学优化、遗传算法等方式来寻找最优化策略,其可以通过减少机械手臂的运动时间、最大加速度、最小冲击等因素来实现最优化目标。
3、基于学习的算法基于学习的算法是通过机器学习的方法来生成机械手臂的运动轨迹。
其可以通过大量的样本来训练神经网络,生成机械手臂的运动轨迹。
基于学习的算法可以学习机械手臂的运动特征,通过不断地迭代来实现更加精确的运动轨迹。
三、机械手臂运动轨迹规划算法应用机械手臂运动轨迹规划算法是机械手臂控制中的核心技术之一,其应用广泛,可以为企业提高生产效率、减少劳动力、降低工业事故等方面提供有效支持。
1、汽车制造业汽车制造业是机械手臂应用的一个重要领域。
在汽车生产线上,机械手臂可以完成喷漆、机加工、搬运等工作,通过运动轨迹规划算法,其可以快速、精准地完成这些工作,并减少人力成本。
2、电子制造业在电子制造业中,机械手臂应用非常广泛,其可以完成元器件的贴装、细节零件的组装等任务。
运动轨迹规划算法可以帮助机械手臂更加精准地完成这些任务,减少因误差产生的电子产品不良率。
医学成像中的双线性插值算法优化研究
医学成像中的双线性插值算法优化研究一、前言医学成像技术是现代医学诊断的重要手段之一,而医学成像中双线性插值算法的优化研究又是医学成像技术中的一个重要问题。
因此,本文将对医学成像中的双线性插值算法进行探讨及优化研究。
二、双线性插值算法在医学成像领域中,我们需要对获取的数据进行处理,通常需要将数据进行采样和重构。
双线性插值算法是其中一种常见的方法,它可以通过已知像素点的灰度值计算出缺失像素的灰度值,从而对图像进行重构。
该算法的基本思想为,利用缺失像素点周围四个已知角点像素的灰度值,对缺失点进行插值计算,从而得到缺失点的灰度值。
具体计算方式如下:设(x,y)为需要插值的像素点,则有:f(x,y)=a×f(i+1,j+1)+b×f(i,j+1)+f(x-i)a×f(i+1,j)+b×f(i,j)其中i、j为坐标整数部分,a、b为坐标小数部分。
三、双线性插值算法缺陷尽管双线性插值算法在医学成像中应用广泛,但该算法本身存在一些缺陷。
主要表现在以下几个方面:1.图像边缘处易失真在双线性插值算法中,ROI区域较小时,需要求解的插值点距离ROI边缘较近,此时误差较大。
因此,在ROI边缘处很容易出现图像失真的问题。
2.双线性插值算法速度慢在实际应用中,双线性插值算法需要对每个像素点确定四个方向的权重,这个计算过程需要大量的计算,导致图像处理速度较慢。
3.双线性插值算法容易出现锯齿状现象由于双线性插值算法是建立在灰度线性变化的假设上的,但是实际应用中图像中灰度值的变化是非线性的,因此在一些灰度值发生剧烈变化的情况下,很容易出现锯齿状现象。
四、优化研究为了克服双线性插值算法所存在的缺陷,在医学成像中使用更加高效、准确的算法,需要积极进行算法的优化研究。
以下是优化研究的具体方法:1.采用三次插值算法与双线性插值算法相比,三次插值算法通过拟合更多的控制点,可以获得更高的插值效果。
因此,采用三次插值算法可以有效减轻双线性插值算法的失真情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uchar code T[171] = {0,10,20,30,40,50,60,70,80,90,100};
程序流程:
1.获取PT100的阻值
2.然后用这个阻值和数组R的值比较,确定在那两项之间(采用逐个比较方式)
3.确认好后,再通过这两个值获取数组T里边的值,这样就知道是在那个温度区间了
在单片机的ROM区建立一个电阻—温度分度表单片机中怎么编程!
2011-12-22 10:11提问者: 匿名 |浏览次数:101次
要查表首先要在单片机的ROM区建立一个电阻—温度分度表,在检测值的范围内均匀选择若干个标定点,标定的点数越多则表格越大,对系统的描述也越精确。Pt100的铂电阻温度分度表,可以向Pt100的厂商索要,考虑到单片机的程序存储空间资源和实际的测量精度要求,并不需要每隔一摄氏度就取一个标定点,根据精度要求选择适当的温度间隔。例如在-200~650℃范围内每隔5℃标定一个Pt100的电阻值,即共171个标定点,分别记作R[i],对应的温度记作T[i],i取0~170。
T[46]=30℃,
假设这个 我怎么知道它在46 到47中间 然后得到温度也在46和47对应的温度间 c语言怎么编写的
希望得到高人指教 希望高人能留个QQ号码 小弟感激不尽!
回答
你首先建立一个数组:用于存放分度表上的阻值,例如 你上边说的
uchar c1.67,115.54,119.4,123.24,127.07,130.89,134.7,138.5};
如果用C语言直接建立个数组存放你的表就可以调用了,至于比较问题只能编程解决了
追问
[举例]:现经A/D采样和滤波得Pt100的电阻值为Rx=112.68Ω,求此时实测对象的温度Tx。
解:已知查Rx=112.68Ω,
表得 R[46]<Rx<R[47],
R[46]<Rx<R[47],
R[46]=111.67Ω,R[47]=113.61Ω,
如图10所示,采用线性插值算法进行标度变换时,将检测值Rx通过顺序查表,与标定点R[i]比较,确定区间R[i] <Rx<R [i+1],然后进行线性插值算法求得温度值Tx:
因为是每隔5℃标定一个电阻值,所以T[i+1]- T[i]=5,即:
[举例]:现经A/D采样和滤波得Pt100的电阻值为Rx=112.68Ω,求此时实测对象的温度Tx。
例如:112.68Ω 在数组R中为:R[3]和R[4]之间(这个操作要逐个比较获取)
然后以3,和4为区间读取数组T的数值 T[3]和 T[4]的数值 就是你要的温度数值了
解:已知查Rx=112.68Ω,
表得 R[46]<Rx<R[47],
R[46]=111.67Ω,R[47]=113.61Ω,
T[46]=30℃,
代入式2得:
(℃)
答:此时实测对象的温度Tx为32.60℃。
问题补充:
回答的号追加悬赏分 谢谢!
我来帮他解答
满意回答
2011-12-22 12:12