2017年上海市长宁、金山、青浦区高考二模数学试题

合集下载

上海市长宁区、青浦区、宝山区、嘉定区2017-2018学年高三数学二模试卷(文科) Word版含解析

上海市长宁区、青浦区、宝山区、嘉定区2017-2018学年高三数学二模试卷(文科) Word版含解析

2017-2018学年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(文科)一、填空题(共14小题,每小题5分,满分70分)1.设集合A={x||x|<2,x∈R},B={x|x2﹣4x+3≥0,x∈R},则A∩B=.2.已知i为虚数单位,复数z满足=i,则|z|= .3.设a>0且a≠1,若函数f(x)=a x﹣1+2的反函数的图象经过定点P,则点P的坐标是.4.计算:= .5.在平面直角坐标系内,直线l:2x+y﹣2=0,将l与两坐标轴围成的封闭图形绕y轴旋转一周,所得几何体的体积为.6.已知sin2θ+sinθ=0,θ∈(,π),则tan2θ= .7.定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f(x)≤0的解集是.8.在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px (p>0)的焦点,则抛物线C的方程为.9.已知x、y满足约束条件,则z=2x+y的最小值为.10.在(x2+)6(k为实常数)的展开式中,x3项的系数等于160,则k= .11.从棱长为1的正方体的8个顶点中任取3个点,则以这三点为顶点的三角形的面积等于的概率是.12.已知数列{a n}满足a1+a2+…+a n=n2+3n(n∈N+),则= .13.甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有1道题的选项不同,如果甲最终的得分为27分,那么乙的所有可能的得分值组成的集合为.14.对于函数f(x)=,其中b>0,若f(x)的定义域与值域相同,则非零实数a 的值为.二、选择题(共4小题,每小题5分,满分20分)15.“sinα=0”是“cosα=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件16.下列正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l217.已知、是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1 B.2 C.D.18.已知直线l:y=2x+b与函数y=的图象交于A,B两点,记△OAB的面积为S(O为坐标原点),则函数S=f(b)是()A.奇函数且在(0,+∞)上单调递增B.偶函数且在(0,+∞)上单调递增C.奇函数且在(0,+∞)上单调递减D.偶函数且在(0,+∞)上单调递减三、解答题(共5小题,满分60分)19.如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点;(1)求证:AC⊥平面BCC1B1;(2)求异面直线B1D与AC所成角的大小.20.已知函数f (x )=sin2x+cos2x ﹣1(x ∈R );(1)写出函数f (x )的最小正周期和单调递增区间;(2)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若f (B )=0, =,且a+c=4,试求b 的值.21.定义在D 上的函数f (x ),若满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界:(1)设f (x )=,判断f (x )在上是否有界函数,若是,请说明理由,并写出f (x )的所有上界的值的集合,若不是,也请说明理由;(2)若函数g (x )=1+a•()x +()x 在 .【考点】交集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可. 【解答】解:A={x||x|<2,x ∈R}={x|﹣2<x <2}, B={x|x 2﹣4x+3≥0,x ∈R}={x|x≥3或x≤1}, 则A∩B={x|﹣2<x≤1}, 故答案为:(﹣2,1].2.已知i 为虚数单位,复数z 满足=i ,则|z|= 1 .【考点】复数代数形式的混合运算.【分析】设出z=a+bi ,得到1﹣a ﹣bi=﹣b+(a+1)i ,根据系数相等得到关于a ,b 的方程组,解出a ,b 的值,求出z ,从而求出z 的模.【解答】解:设z=a+bi ,则==i ,∴1﹣a ﹣bi=﹣b+(a+1)i ,∴,解得,故z=﹣i,|z|=1,故答案为:1.3.设a>0且a≠1,若函数f(x)=a x﹣1+2的反函数的图象经过定点P,则点P的坐标是(3,1).【考点】反函数.【分析】由于函数f(x)=a x﹣1+2经过定点(1,3),再利用反函数的性质即可得出.【解答】解:∵函数f(x)=a x﹣1+2经过定点(1,3),∴函数f(x)的反函数的图象经过定点P(3,1),故答案为:(3,1).4.计算:= .【考点】极限及其运算.【分析】先利用排列组合公式,将原式化简成的形式,再求极限.【解答】解:===.故答案为:.5.在平面直角坐标系内,直线l:2x+y﹣2=0,将l与两坐标轴围成的封闭图形绕y轴旋转一周,所得几何体的体积为.【考点】用定积分求简单几何体的体积.【分析】由题意此几何体的体积可以看作是:V=,求出积分即得所求体积.【解答】解:由题意可知:V=,∴V=π(y3﹣),=.故答案为.6.已知sin2θ+sinθ=0,θ∈(,π),则tan2θ= .【考点】同角三角函数基本关系的运用.【分析】由已知等式化简可得sinθ(2cosθ+1)=0,结合范围θ∈(,π),解得cosθ=﹣,利用同角三角函数基本关系式可求tanθ,利用二倍角的正切函数公式可求tan2θ的值.【解答】解:∵sin2θ+sinθ=0,⇒2sinθcosθ+sinθ=0,⇒sinθ(2cosθ+1)=0,∵θ∈(,π),sinθ≠0,∴2cosθ+1=0,解得:cosθ=﹣,∴tanθ=﹣=﹣,∴tan2θ==.故答案为:.7.定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f(x)≤0的解集是.【考点】函数奇偶性的性质.【分析】根据条件判断函数的单调性和函数的零点,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【解答】解:当x≥0时,由f(x)=2x﹣4=0得x=2,且当x≥0时,函数f(x)为增函数,∵f(x)是偶函数,∴不等式f(x)≤0等价为f(|x|)≤f(2),即|x|≤2,即﹣2≤x≤2,即不等式的解集为,故答案为:.8.在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px (p>0)的焦点,则抛物线C的方程为y2=4x .【考点】抛物线的简单性质.【分析】先求出线段OA的垂直平分线方程,然后表示出抛物线的焦点坐标并代入到所求方程中,进而可求得p的值,即可得到抛物线方程.【解答】解:∵点A(1,1),依题意我们容易求得直线的方程为x+y﹣1=0,把焦点坐标(,0)代入可求得焦参数p=2,从而得到抛物线C的方程为:y2=4x.故答案为:y2=4x.9.已知x、y满足约束条件,则z=2x+y的最小值为﹣6 .【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(﹣2,﹣2),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(﹣2,﹣2)时,直线在y轴上的截距最小,z有最小值为2×(﹣2)﹣2=﹣6.故答案为:﹣6.10.在(x2+)6(k为实常数)的展开式中,x3项的系数等于160,则k= 2 .【考点】二项式系数的性质.【分析】T r+1=k r x12﹣3r,令12﹣3r=3,解得r.即可得出.【解答】解:T r+1=(x2)6﹣r=k r x12﹣3r,令12﹣3r=3,解得r=3.∴T4=x3,∴20k3=160,解得k=2.故答案为:2.11.从棱长为1的正方体的8个顶点中任取3个点,则以这三点为顶点的三角形的面积等于的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】从正方体的8个顶点中任意取3个构成三角形的顶点共有取法,其中以这三点为顶点的三角形的面积S=的三角形共有24个,由此能求出结果.【解答】解:从正方体的8个顶点中任意取3个构成三角形的顶点共有取法,其中以这三点为顶点的三角形的面积S=的三角形如图中的△ABC,这类三角形共有24个∴P(S=)==.故答案为:.12.已知数列{a n}满足a1+a2+…+a n=n2+3n(n∈N+),则= 2n2+6n .【考点】数列的求和.【分析】通过a1+a2+…+a n=n2+3n与a1+a2+…+a n﹣1=(n﹣1)2+3(n﹣1)作差,进而计算可知a n=2(n+1),分别利用等差数列、等比数列的求和公式计算即得结论.【解答】解:∵a1+a2+…+a n=n2+3n,∴当n≥2时,a1+a2+…+a n﹣1=(n﹣1)2+3(n﹣1),两式相减得:a n=(n2+3n)﹣=2(n+1),又∵a1=1+3=4满足上式,∴a n=2(n+1),=4+4n,∴=4n+4•=2n2+6n,故答案为:2n2+6n.13.甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有1道题的选项不同,如果甲最终的得分为27分,那么乙的所有可能的得分值组成的集合为{24,27,30} .【考点】集合的表示法;计数原理的应用.【分析】甲最终的得分为27分,可得:甲答对了10道题目中的9道,由于甲和乙都解答了所有的试题,甲必然有一道题目答错了,不妨设为第一题.由于他们只有1道题的选项不同,如果是第一道题,则乙可能答错,也可能答对,即可得出分数.如果是第一道题以外的一个题目,则乙一定答错,而第一道题,则乙也一定答错,即可得出.【解答】解:∵甲最终的得分为27分,∴甲答对了10道题目中的9道,∵甲和乙都解答了所有的试题,∴甲必然有一道题目答错了,不妨设为第一题.∵甲和乙都解答了所有的试题,经比较,他们只有1道题的选项不同,如果是第一道题,则乙可能答错,也可能答对,此时乙可得30分或27分.如果是第一道题以外的一个题目,则乙一定答错,而第一道题,则乙也一定答错,此时乙可得24分.综上可得:乙的所有可能的得分值组成的集合为{24,27,30}.故答案为:{24,27,30}.14.对于函数f(x)=,其中b>0,若f(x)的定义域与值域相同,则非零实数a的值为﹣4 .【考点】函数的值域;函数的定义域及其求法.【分析】根据函数的定义域与值域相同,故可以求出参数表示的函数的定义域与值域,由两者相同,故比较二区间的端点得出参数满足的方程解方程求参数即可.【解答】解:若a>0,由于ax2+bx≥0,即x(ax+b)≥0,∴对于正数b,f(x)的定义域为:D=(﹣∞,﹣]∪.由于此时max=f(﹣)=,故函数的值域 A=.由题意,有﹣=,由于b>0,所以a=﹣4.故答案为:﹣4.二、选择题(共4小题,每小题5分,满分20分)15.“sinα=0”是“cosα=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由sinα=0可得α=kπ(k∈Z),即可判断出结论.【解答】解:sinα=0可得α=kπ(k∈Z),∴cosα=±1,反之成立,∴“sinα=0”是“cosα=1”的必要不充分条件.故选:B16.下列正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l2【考点】空间中直线与平面之间的位置关系.【分析】根据各选项条件举出反例.【解答】解:对于A,若直线l1∥平面α,直线l2∥平面α,则l1与l2可能平行,可能相交,也可能异面,故A错误.对于B,若直线l与平面α相交于O点,在交点两侧各取A,B两点使得OA=OB,则A,B到平面α的距离相等,但直线l与α不平行,故B错误.对于C,当直线l⊂α或l∥α时,直线l与平面α所成的角为0,当l⊥α时,直线l与平面α所成的角为,故C错误.对于D,由定理“垂直于同一个平面的两条直线平行“可知D正确.故选:D.17.已知、是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1 B.2 C.D.【考点】平面向量数量积的运算.【分析】由向量垂直的条件可得•=0,运用向量的平方即为模的平方,可得|+|=,再化简运用向量的数量积的定义,结合余弦函数的值域,即可得到所求最大值.【解答】解:由题意可得•=0,可得|+|==,(﹣)•(﹣)=2+•﹣•(+)=||2﹣||•|+|cos<(+,>=0,即为||=cos<+,>,当cos<+,>=1即+,同向时,||的最大值是.故选:C.18.已知直线l:y=2x+b与函数y=的图象交于A,B两点,记△OAB的面积为S(O为坐标原点),则函数S=f(b)是()A.奇函数且在(0,+∞)上单调递增B.偶函数且在(0,+∞)上单调递增C.奇函数且在(0,+∞)上单调递减D.偶函数且在(0,+∞)上单调递减【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据条件求出AB的长度以及O到AB的距离,从而求出三角形OAB的面积函数,根据函数的表达式即可得到结论.【解答】解:设A(x1,y1),B(x2,y2),由2x+b=,即2x2+bx﹣1=0,则,则|AB|=,圆心到直线2x﹣y+b=0的距离d=,∴△OAB的面积S==,∴S=f(b)=,则函数f(b)为偶函数,当b>0时,y=和都为增函数,∴当b>0时,f(b)=为增函数.故选:B.三、解答题(共5小题,满分60分)19.如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点;(1)求证:AC⊥平面BCC1B1;(2)求异面直线B1D与AC所成角的大小.【考点】异面直线及其所成的角;直线与平面垂直的判定.【分析】(1)由已知推导出AC⊥BC,CC1⊥AC,由此能证明AC⊥平面BCC1B1.(2)以C为原点,直线CA、CB、CC1为x、y、z轴,建立空间直角坐标系,利用向量法能求出异面直线B1D与AC所成角的大小.【解答】证明:(1)∵底面△ABC是等腰直角三角形,且AC=BC,∴AC⊥BC,∵CC1⊥平面A1B1C1,∴CC1⊥AC,∵CC1∩BC=C,∴AC⊥平面BCC1B1.解:(2)以C为原点,直线CA、CB、CC1为x、y、z轴,建立空间直角坐标系,则C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1),=(2,﹣2,﹣1),=(﹣2,0,0),设异面直线B1D与AC所成角为θ,则cosθ===.∴.∴异面直线B1D与AC所成角的大小为arccos.20.已知函数f(x)=sin2x+cos2x﹣1(x∈R);(1)写出函数f(x)的最小正周期和单调递增区间;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0, =,且a+c=4,试求b的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用两角和的正弦化简,由周期公式求得周期,再由相位在正弦函数的增区间内求得x的范围求得f(x)单调递增区间;(2)把f(B)=0代入函数解析式,求得B,展开数量积=,求得ac的值,结合a+c=4,利用余弦定理求得b的值.【解答】解:(1)f(x)=sin2x+cos2x﹣1=.∴T=;由,得.∴函数f(x)的单调递增区间为[],k∈Z;(2)由f(B)==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cosB=,∴ac=3.又a+c=4,∴a2+c2=(a+c)2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cosB=7.则b=.21.定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界:(1)设f(x)=,判断f(x)在上是否有界函数,若是,请说明理由,并写出f(x)的所有上界的值的集合,若不是,也请说明理由;(2)若函数g(x)=1+a•()x+()x在上是增函数;从而可得|f(x)|≤1,从而求得;(2)由题意知﹣3≤1+a•()x+()x≤3在上是增函数;故f(﹣)≤f(x)≤f();即﹣1≤f(x)≤,故|f(x)|≤1,故f(x)是有界函数;故f(x)的所有上界的值的集合是.22.设椭圆Г:(a>b>0)的右焦点为F(1,0),短轴的一个端点B 到F的距离等于焦距:(1)求椭圆Г的标准方程;(2)设C、D是四条直线x=±a,y=±b所围成的矩形在第一、第二象限的两个顶点,P是椭圆Г上任意一点,若,求证:m2+n2为定值;(3)过点F的直线l与椭圆Г交于不同的两点M、N,且满足于△BFM与△BFN的面积的比值为2,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)由椭圆的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距,列出方程组,求出a,b,由此能求出椭圆Г的标准方程.(2)求出C(2,),D(﹣2,),设P(x0,y0),则,由已知=,得=1,由此能证明m2+n2=为定值.(3)=2等价于=2,设l:y=k(x﹣1),由,得(3+4k2)y2+6ky﹣9k2=0,由此利用韦达定理、椭圆性质,结合已知条件能求出直线l的方程.【解答】解:(1)∵椭圆Г:(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距,∴,解得a=2,b=,∴椭圆Г的标准方程为.证明:(2)∵C、D是四条直线x=±a,y=±b所围成的矩形在第一、第二象限的两个顶点,∴C(2,),D(﹣2,),设P(x0,y0),则,由已知=,得,∴=1,∴m2+n2=为定值.解:(3)=2等价于=2,当直线l的斜率不存在时, =1,不合题意,故直线l的斜率存在,设l:y=k(x﹣1),由,消去x,得(3+4k2)y2+6ky﹣9k2=0,设M(x1,y1),N(x2,y2),则,,由=2,得=﹣2,则,,∴3+4k2=8,k=,∴直线l的方程为y=.23.已知数列{a n}、{b n}满足:a,a n+b n=1,b;(1)求b1、b2、b3、b4;(2)求证:数列{}是等差数列,并求{b n}的通项公式;(3)设S n=a1a2+a2a3+…+a n a n+1,若不等式4aS n<b n对任意n∈N*恒成立,求实数a的取值范围.【考点】数列的求和;等差数列的通项公式;数列递推式.【分析】(1)通过已知条件代入计算即得结论;(2)通过两边同时减1并取倒数,利用a n+b n=1化简可知数列{}是等差数列,进而计算可得结论;(3)通过(2)可知b n=,进而裂项可知a n a n+1=﹣,并项相加可知S n=,进而问题转化为求的最小值,计算即得结论.【解答】(1)解:依题意,b1=1﹣a1=1﹣=,b2===,a2=1﹣b2=1﹣=,==,a3=1﹣b3=1﹣=,==;(2)证明:∵,a n+b n=1,∴b n+1﹣1=﹣1=﹣1=,两边同时取倒数,得: ==﹣1=﹣1=﹣1=﹣1,∴数列{}是等差数列,又∵==﹣4,∴=﹣4﹣(n﹣1)=﹣(n+3),∴数列{b n}的通项公式b n=1﹣=;(3)解:由(2)可知b n=,∴a n=1﹣b n=,a n a n+1==﹣,∴S n=a1a2+a2a3+…+a n a n+1=﹣+﹣+…+﹣=﹣=,∵不等式4aS n<b n对任意n∈N*恒成立,∴不等式4a•<对任意n∈N*恒成立,∴a<=1+,∵随着n的增大而减小,且=0,∴a≤1.2016年6月24日。

2017年上海市黄浦区高考数学二模试卷(解析版)

2017年上海市黄浦区高考数学二模试卷(解析版)

2017年上海市黄浦区高考数学二模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[1.(4分)函数y=的定义域是.2.(4分)若关于x,y的方程组有无数多组解,则实数a=.3.(4分)若“x2﹣2x﹣3>0”是“x<a”的必要不充分条件,则a的最大值为.4.(4分)已知复数z 1=3+4i,z2=t+i(其中i为虚数单位),且是实数,则实数t 等于.5.(4分)若函数(a>0,且a≠1)是R上的减函数,则a的取值范围是.6.(4分)设变量x,y满足约束条件则目标函数z=﹣2x+y的最小值为.7.(5分)已知圆C:(x﹣4)2+(y﹣3)2=4和两点A(﹣m,0),B(m,0)(m>0),若圆C上至少存在一点P,使得∠APB=90°,则m的取值范围是.8.(5分)已知向量,,如果∥,那么的值为.9.(5分)若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是.10.(5分)若将函数f(x)=的图象向左平移个单位后,所得图象对应的函数为偶函数,则ω的最小值是.11.(5分)三棱锥P﹣ABC满足:AB⊥AC,AB⊥AP,AB=2,AP+AC=4,则该三棱锥的体积V的取值范围是12.(5分)对于数列{a n},若存在正整数T,对于任意正整数n都有a n+T=a n成立,则称数列{a n}是以T为周期的周期数列.设b1=m(0<m<1),对任意正整数n都有若数列{b n}是以5为周期的周期数列,则m的值可以是.(只要求填写满足条件的一个m值即可)二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)下列函数中,周期为π,且在上为减函数的是()A.B.C.D.14.(5分)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π15.(5分)已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍倍,则其渐近线方程为()A.2x±y=0B.x±2y=0C.4x±3y=0D.3x±4y=0 16.(5分)如图所示,∠BAC=,圆M与AB,AC分别相切于点D,E,AD=1,点P 是圆M及其内部任意一点,且(x,y∈R),则x+y的取值范围是()A.B.C.D.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在直棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,D,E,F分别是A1B1,CC1,BC的中点.(1)求证:AE⊥DF;(2)求AE与平面DEF所成角的大小及点A到平面DEF的距离.18.(14分)在△ABC中,角A,B,C的对边分别为a,b,c,且b cos C,a cos A,c cos B成等差数列.(1)求角A的大小;(2)若,b+c=6,求的值.19.(14分)如果一条信息有n(n>1,n∈N)种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为p1,p2,…,p n,则称H=f(p1)+f(p2)+…f(p n)(其中f (x)=﹣x log a x,x∈(0,1))为该条信息的信息熵.已知.(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;(2)某次比赛共有n位选手(分别记为A1,A2,…,A n)参加,若当k=1,2,…,n﹣1时,选手A k获得冠军的概率为2﹣k,求“谁获得冠军”的信息熵H关于n的表达式.20.(16分)设椭圆M:的左顶点为A、中心为O,若椭圆M过点,且AP⊥PO.(1)求椭圆M的方程;(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE恒过一个定点.21.(18分)若函数f(x)满足:对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),则称函数f(x)为“L函数”.(1)试判断函数与是否是“L函数”;(2)若函数g(x)=3x﹣1+a(3﹣x﹣1)为“L函数”,求实数a的取值范围;(3)若函数f(x)为“L函数”,且f(1)=1,求证:对任意x∈(2k﹣1,2k)(k∈N*),都有.2017年上海市黄浦区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[1.(4分)函数y=的定义域是[0,2].【解答】解:要使函数有意义需2x﹣x2≥0解得0≤x≤2故答案为:[0,2]2.(4分)若关于x,y的方程组有无数多组解,则实数a=2.【解答】解:根据题意,若关于x,y的方程组有无数多组解,则直线ax+y﹣1=0与直线4x+ay﹣2=0重合,则有==,解可得a=2,故答案为:2.3.(4分)若“x2﹣2x﹣3>0”是“x<a”的必要不充分条件,则a的最大值为﹣1.【解答】解:因x2﹣2x﹣3>0得x<﹣1或x>3,又“x2﹣2x﹣3>0”是“x<a”的必要不充分条件,知“x<a”可以推出“x2﹣2x﹣3>0”,反之不成立.则a的最大值为﹣1.故答案为:﹣1.4.(4分)已知复数z 1=3+4i,z2=t+i(其中i为虚数单位),且是实数,则实数t等于.【解答】解:∵z1=3+4i,z2=t+i,∴=(3+4i)(t﹣i)=3t+4+(4t﹣3)i,∵是实数,∴4t﹣3=0,得t=.故答案为:.5.(4分)若函数(a>0,且a≠1)是R上的减函数,则a的取值范围是.【解答】解:∵函数f(x)(a>0且a≠1)是R上的减函数,∴0<a<1,且3a﹣0≥a0+1=2,∴≤a<1.故答案为:.6.(4分)设变量x,y满足约束条件则目标函数z=﹣2x+y的最小值为﹣4.【解答】解:由约束条件作出可行域如图所示,,联立方程组,解得B(3,2),化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=﹣2x+z过B时,直线在y轴上的截距最小,z有最小值为z=﹣2×3+2=﹣4.故答案为:﹣4.7.(5分)已知圆C:(x﹣4)2+(y﹣3)2=4和两点A(﹣m,0),B(m,0)(m>0),若圆C上至少存在一点P,使得∠APB=90°,则m的取值范围是[3,7].【解答】解:∵圆C:(x﹣4)2+(y﹣3)2=4,∴圆心C(4,3),半径r=2;设点P(a,b)在圆C上,则=(a+m,b),=(a﹣m,b);∵∠APB=90°,∴(a+m)(a﹣m)+b2=0;即m2=a2+b2;∴|OP|=,∴|OP|的最大值是|OC|+r=5+2=7,最小值是|OC|﹣r=5﹣2=3;∴m的取值范围是[3,7].故答案为[3,7].8.(5分)已知向量,,如果∥,那么的值为.【解答】解:∵向量,,∥,∴cos(+α)•4﹣1•1=0,求得cos(+α)=,即sin(﹣﹣α)=,即sin(﹣α)=,∴=1﹣2=1﹣2•=,故答案为:.9.(5分)若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是.【解答】解:∵任何三点不共线,∴共有=56个三角形.8个等分点可得4条直径,可构成直角三角形有4×6=24个,所以构成直角三角形的概率为=,故答案为.10.(5分)若将函数f(x)=的图象向左平移个单位后,所得图象对应的函数为偶函数,则ω的最小值是.【解答】解:∵将函数f(x)=的图象向左平移个单位后,所得图象对应的函数解析式为:f(x)=|sin[ω(x+)﹣]|=|sin[ωx+(﹣)]|,∵当﹣=时,即ω=6k+时,f(x)=|sin(ωx+)|=|﹣cos(ωx)|=|cos(ωx)|,f(x)为偶函数.∵ω>0,∴当k=0时,ω有最小值.故答案为:.11.(5分)三棱锥P﹣ABC满足:AB⊥AC,AB⊥AP,AB=2,AP+AC=4,则该三棱锥的体积V的取值范围是(0,]【解答】解:∵AP+AC=4,∴AP•AC≤()2=4,设∠P AC=θ,则0<θ<π,∴S△P AC=AP•AC•sinθ≤2sinθ≤2,∴0<S△P AC≤2.∵AB⊥AC,AB⊥AP,∴AB⊥平面P AC,∴V=S△P AC•AB=S△P AC,∴0<V≤.故答案为:.12.(5分)对于数列{a n},若存在正整数T,对于任意正整数n都有a n+T=a n成立,则称数列{a n}是以T为周期的周期数列.设b1=m(0<m<1),对任意正整数n都有若数列{b n}是以5为周期的周期数列,则m的值可以是﹣1.(只要求填写满足条件的一个m值即可)【解答】解:取m=﹣1=b1,则b2==,b3=,b4=+1,b5=,b6=﹣1,满足b n+5=b n.故答案为:﹣1.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)下列函数中,周期为π,且在上为减函数的是()A.B.C.D.【解答】解:C、D中函数周期为2π,所以错误当时,,函数为减函数而函数为增函数,故选:A.14.(5分)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π【解答】解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面为S=4π×12+π×12×2+2π×1×3=12π故选:D.15.(5分)已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍倍,则其渐近线方程为()A.2x±y=0B.x±2y=0C.4x±3y=0D.3x±4y=0【解答】解:双曲线的右焦点到左顶点的距离为a+c,右焦点到渐近线距离为b,所以有:a+c=2b,由4x±3y=0得,取a=3,b=4,则c=5,满足a+c=2b.故选:C.16.(5分)如图所示,∠BAC=,圆M与AB,AC分别相切于点D,E,AD=1,点P 是圆M及其内部任意一点,且(x,y∈R),则x+y的取值范围是()A.B.C.D.【解答】解:连接MA,MD,则∠MAD=,MD⊥AD,∵AD=1,∴MD=,MA=2,∵点P是圆M及其内部任意一点,∴2﹣≤AP≤2+,且当A,P,M三点共线时,x+y取得最值,当AP取得最大值时,以AP为对角线,以AB,AC为邻边方向作平行四边形AA1PB1,则△APB1和△AP A1是等边三角形,∴AB1=AA1=AP=2+,∴x=y=2+,∴x+y的最大值为4+2,同理可求出x+y的最小值为4﹣2.故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在直棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,D,E,F分别是A1B1,CC1,BC的中点.(1)求证:AE⊥DF;(2)求AE与平面DEF所成角的大小及点A到平面DEF的距离.【解答】解:(1)以A为坐标原点、AB为x轴、AC为y轴、AA1为z轴建立如图的空间直角坐标系.由题意可知A(0,0,0),D(0,1,2),E(﹣2,0,1),F(﹣1,1,0),故,…(4分)由,可知,即AE⊥DF.…(6分)(2)设是平面DEF的一个法向量,又,故由解得故.…(9分)设AE与平面DEF所成角为θ,则,…(12分)所以AE与平面DEF所成角为,点A到平面DEF的距离为.…(14分)18.(14分)在△ABC中,角A,B,C的对边分别为a,b,c,且b cos C,a cos A,c cos B成等差数列.(1)求角A的大小;(2)若,b+c=6,求的值.【解答】(本题满分为14分)解:(1)由b cos C,a cos A,c cos B成等差数列,可得b cos C+c cos B=2a cos A,…(2分)故sin B cos C+sin C cos B=2sin A cos A,所以sin(B+C)=2sin A cos A,…(4分)又A+B+C=π,所以sin(B+C)=sin A,故sin A=2sin A cos A,又由A∈(0,π),可知sin A≠0,故,所以.…(6分)(另法:利用b cos C+c cos B=a求解)(2)在△ABC中,由余弦定理得,…(8分)即b2+c2﹣bc=18,故(b+c)2﹣3bc=18,又b+c=6,故bc=6,…(10分)所以=…(12分)=c2+b2+bc=(b+c)2﹣bc=30,故.…(14分)19.(14分)如果一条信息有n(n>1,n∈N)种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为p1,p2,…,p n,则称H=f(p1)+f(p2)+…f(p n)(其中f (x)=﹣x log a x,x∈(0,1))为该条信息的信息熵.已知.(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;(2)某次比赛共有n位选手(分别记为A1,A2,…,A n)参加,若当k=1,2,…,n﹣1时,选手A k获得冠军的概率为2﹣k,求“谁获得冠军”的信息熵H关于n的表达式.【解答】解:(1)由,可得,解之得a=2.…(2分)由32种情形等可能,故,…(4分)所以,答:“谁被选中”的信息熵为5.…(6分)(2)A n获得冠军的概率为,…(8分)当k=1,2,…,n﹣1时,,又,故,…(11分),以上两式相减,可得,故,答:“谁获得冠军”的信息熵为.…(14分)20.(16分)设椭圆M:的左顶点为A、中心为O,若椭圆M过点,且AP⊥PO.(1)求椭圆M的方程;(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE恒过一个定点.【解答】解:(1)由AP⊥OP,可知k AP•k OP=﹣1,又A点坐标为(﹣a,0),故,可得a=1,…(2分)因为椭圆M过P点,故,可得,所以椭圆M的方程为.…(4分)(2)AP的方程为,即x﹣y+1=0,由于Q是椭圆M上的点,故可设,…(6分)所以…(8分)=当,即时,S△APQ取最大值.故S△APQ的最大值为.…(10分)(3)直线AD方程为y=k1(x+1),代入x2+3y2=1,可得,,又x A=﹣1,故,,…(12分)同理可得,,又k1k2=1且k1≠k2,可得且k1≠±1,所以,,,直线DE的方程为,…(14分)令y=0,可得.故直线DE过定点(﹣2,0).…(16分)(法二)若DE垂直于y轴,则x E=﹣x D,y E=y D,此时与题设矛盾.若DE不垂直于y轴,可设DE的方程为x=ty+s,将其代入x2+3y2=1,可得(t2+3)y2+2tsy+s2﹣1=0,可得,…(12分)又,可得,…(14分)故,可得s=﹣2或﹣1,又DE不过A点,即s≠﹣1,故s=﹣2.所以DE的方程为x=ty﹣2,故直线DE过定点(﹣2,0).…(16分)21.(18分)若函数f(x)满足:对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),则称函数f(x)为“L函数”.(1)试判断函数与是否是“L函数”;(2)若函数g(x)=3x﹣1+a(3﹣x﹣1)为“L函数”,求实数a的取值范围;(3)若函数f(x)为“L函数”,且f(1)=1,求证:对任意x∈(2k﹣1,2k)(k∈N*),都有.【解答】解:(1)对于函数,当t>0,s>0时,,又,所以f1(s)+f1(t)<f1(s+t),故是“L函数”.…(2分)对于函数,当t=s=1时,,故不是“L函数”.…(4分)(2)当t>0,s>0时,由g(x)=3x﹣1+a(3﹣x﹣1)是“L函数”,可知g(t)=3t﹣1+a(3﹣t﹣1)>0,即(3t﹣1)(3t﹣a)>0对一切正数t恒成立,又3t﹣1>0,可得a<3t对一切正数t恒成立,所以a≤1.…(6分)由g(t)+g(s)<g(t+s),可得3s+t﹣3s﹣3t+1+a(3﹣s﹣t﹣3﹣s﹣3﹣t+1)>0,即3t(3s﹣1)﹣(3s﹣1)+a(3﹣s﹣1)(3﹣t﹣1)=(3s﹣1)(3t﹣1)+a(3﹣s﹣1)(3﹣t﹣1)=(3s﹣1)(3t﹣1)+a•3﹣s﹣t(3s﹣1)(3t﹣1)>0,故(3s﹣1)(3t﹣1)(3s+t+a)>0,又(3t﹣1)(3s﹣1)>0,故3s+t+a>0,由3s+t+a>0对一切正数s,t恒成立,可得a+1≥0,即a≥﹣1.…(9分)综上可知,a的取值范围是[﹣1,1].…(10分)(3)由函数f(x)为“L函数”,可知对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),令s=t,可知f(2s)>2f(s),即,…(12分)故对于正整数k与正数s,都有,…(14分)对任意x∈(2k﹣1,2k)(k∈N*),可得,又f(1)=1,所以,…(16分)同理,故.…(18分)。

上海市浦东新区2017届高考数学二模试卷

上海市浦东新区2017届高考数学二模试卷

2017年上海市浦东新区高考数学二模试卷一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1.已知集合,集合B={y |0≤y <4},则A ∩B= .2.若直线l 的参数方程为,t ∈R ,则直线l 在y 轴上的截距是 .3.已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为 .4.抛物线的焦点和准线的距离是 .5.已知关于x ,y 的二元一次方程组的增广矩阵为,则3x ﹣y= .6.若三个数a 1,a 2,a 3的方差为1,则3a 1+2,3a 2+2,3a 3+2的方差为 . 7.已知射手甲击中A 目标的概率为0.9,射手乙击中A 目标的概率为0.8,若甲、乙两人各向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是 .8.函数,的单调递减区间是 .9.已知等差数列{a n }的公差为2,前n 项和为S n ,则= .10.已知定义在R 上的函数f (x )满足:①f (x )+f (2﹣x )=0;②f (x )﹣f (2﹣x )=0;③在[﹣1,1]上的表达式为,则函数f (x )与的图象在区间[﹣3,3]上的交点的个数为 .11.已知各项均为正数的数列{a n }满足(2a n +1﹣a n )(a n +1a n ﹣1)=0(n ∈N *),且a 1=a 10,则首项a 1所有可能取值中最大值为 .12.已知平面上三个不同的单位向量,,满足•==,若为平面内的任意单位向量,则||+|2|+3||的最大值为 .二、选择题(本大题共有4小题,满分16分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得5分,否则一律得零分.13.若复数满足|z+i|+|z﹣i|=2,则复数在平面上对应的图形是()A.椭圆B.双曲线C.直线D.线段14.已知长方体切去一个角的几何体直观图如图1所示给出下列4个平面图如图2:则该几何体的主视图、俯视图、左视图的序号依次是()A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)15.已知2sinx=1+cosx,则=()A.2 B.2或C.2或0 D.或016.已知等比数列a1,a2,a3,a4满足a1∈(0,1),a2∈(1,2),a3∈(2,4),则a4的取值范围是()A.(3,8)B.(2,16)C.(4,8)D.三、解答题(共5小题,满分80分)17.(14分)如图所示,球O的球心O在空间直角坐标系O﹣xyz的原点,半径为1,且球O分别与x,y,z轴的正半轴交于A,B,C三点.已知球面上一点.(1)求D,C两点在球O上的球面距离;(2)求直线CD与平面ABC所成角的大小.18.(14分)某地计划在一处海滩建造一个养殖场.(1)如图1,射线OA,OB为海岸线,,现用长度为1千米的围网PQ依托海岸线围成一个△POQ的养殖场,问如何选取点P,Q,才能使养殖场△POQ的面积最大,并求其最大面积.(2)如图2,直线l为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB(点A,B在直线l上),使三角形OAB面积最大,设其为S1;方案二:围成弓形CDE(点D,E在直线l上,C是优弧所在圆的圆心且),其面积为S2;试求出S1的最大值和S2(均精确到0.01平方千米),并指出哪一种设计方案更好.19.(18分)已知双曲线,其右顶点为P.(1)求以P为圆心,且与双曲线C的两条渐近线都相切的圆的标准方程;(2)设直线l过点P,其法向量为=(1,﹣1),若在双曲线C上恰有三个点P1,P2,P3到直线l的距离均为d,求d的值.20.(16分)若数列{A n}对任意的n∈N*,都有(k≠0),且A n≠0,则称数列{A n}为“k级创新数列”.(1)已知数列{a n}满足且,试判断数列{2a n+1}是否为“2级创新数列”,并说明理由;(2)已知正数数列{b n}为“k级创新数列”且k≠1,若b1=10,求数列{b n}的前n 项积T n;(3)设α,β是方程x2﹣x﹣1=0的两个实根(α>β),令,在(2)的条件下,记数列{c n}的通项,求证:c n+2=c n+1+c n,n∈N*.21.(18分)对于定义域为R的函数g(x),若函数sin[g(x)]是奇函数,则称g(x)为正弦奇函数.已知f(x)是单调递增的正弦奇函数,其值域为R,f (0)=0.(1)已知g(x)是正弦奇函数,证明:“u0为方程sin[g(x)]=1的解”的充要条件是“﹣u0为方程sin[g(x)]=﹣1的解”;(2)若f(a)=,f(b)=﹣,求a+b的值;(3)证明:f(x)是奇函数.2017年上海市浦东新区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1.已知集合,集合B={y|0≤y<4},则A∩B=[2,4).【考点】1E:交集及其运算.【分析】先求出集合A,由此利用交集的定义能求出A∩B.【解答】解:由≥0,解得x≥2或x<﹣1,即A=(﹣∞,﹣1)∪[2,+∞),集合B={y|0≤y<4}=[0,4),则A∩B=[2,4),故答案为:[2,4),【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.2.若直线l的参数方程为,t∈R,则直线l在y轴上的截距是1.【考点】QH:参数方程化成普通方程.【分析】令x=0,可得t=1,y=1,即可得出结论.【解答】解:令x=0,可得t=1,y=1,∴直线l在y轴上的截距是1.故答案为1.【点评】本题考查参数方程的运用,考查学生的计算能力,比较基础.3.已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为8π.【考点】L5:旋转体(圆柱、圆锥、圆台);LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】先利用圆锥的轴截面的性质求出底面的半径r,进而利用侧面积的计算公式计算即可.【解答】解:由题意,底面的半径r=2,∴该圆椎的侧面积S=π×2×4=8π,故答案为:8π.【点评】熟练掌握圆锥的轴截面的性质和侧面积的计算公式是解题的关键.4.抛物线的焦点和准线的距离是2.【考点】K8:抛物线的简单性质.【分析】首先将化成开口向上的抛物线方程的标准方程,得到系数2p=4,然后根据公式得到焦点坐标为(0,1),准线方程为y=﹣1,最后可得该抛物线焦点到准线的距离.【解答】解:化抛物线为标准方程形式:x2=4y∴抛物线开口向上,满足2p=4∵=1,焦点为(0,)∴抛物线的焦点坐标为(0,1)又∵抛物线准线方程为y=﹣,即y=﹣1∴抛物线的焦点和准线的距离为d=1﹣(﹣1)=2故答案为:2【点评】本题以一个二次函数图象的抛物线为例,着重考查了抛物线的焦点和准线等基本概念,属于基础题.5.已知关于x,y的二元一次方程组的增广矩阵为,则3x﹣y=5.【考点】OC:几种特殊的矩阵变换.【分析】根据增广矩阵求得二元一次方程组,两式相加即可求得3x﹣y=5.【解答】解:由二元一次方程组的增广矩阵为,则二元一次方程组为:,两式相加得:3x﹣y=5,∴3x﹣y=5,故答案为:5.【点评】本题考查增广矩阵的性质,考查增广矩阵与二元一次方程组转化,考查转化思想,属于基础题.6.若三个数a1,a2,a3的方差为1,则3a1+2,3a2+2,3a3+2的方差为9.【考点】BC:极差、方差与标准差.【分析】根据所给的三个数字的方差的值,列出方差的表示式要求3a1+2,3a2+2,3a3+2的方差值,只要根据原来方差的表示式变化出来即可.【解答】解:∵三个数a1,a2,a3的方差为1,设三个数的平均数是,则3a1+2,3a2+2,3a3+2的平均数是3+2有1=∴3a1+2,3a2+2,3a3+2的方差是+]==9故答案为:9.【点评】本题考查方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.7.已知射手甲击中A目标的概率为0.9,射手乙击中A目标的概率为0.8,若甲、乙两人各向A目标射击一次,则射手甲或射手乙击中A目标的概率是0.98.【考点】C9:相互独立事件的概率乘法公式.【分析】利用对立事件概率计算公式能求出甲、乙两人各向A目标射击一次,射手甲或射手乙击中A目标的概率.【解答】解:射手甲击中A目标的概率为0.9,射手乙击中A目标的概率为0.8,甲、乙两人各向A目标射击一次,射手甲或射手乙击中A目标的概率:p=1﹣(1﹣0.9)(1﹣0.8)=0.98. 故答案为:0.98.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率计算公式、对立事件概率计算公式的合理运用.8.函数,的单调递减区间是.【考点】H5:正弦函数的单调性.【分析】函数=﹣sin (x ﹣),将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递减区间;即可求的单调递减区间.【解答】解:由函数=﹣sin (x ﹣),令x ﹣,k ∈Z得: +2kπ≤x ≤,∵,当k=0时,可得单调递减区间为.故答案为:.【点评】本题主要考查三角函数的图象和性质的运用,属于基础题.9.已知等差数列{a n }的公差为2,前n 项和为S n ,则=.【考点】8J :数列的极限.【分析】先表示出S n ,a n ,即可求出极限的值.【解答】解:由于数列{a n }是公差为2的等差数列,S n 是{a n }的前n 项和,则S n =na 1+n (n ﹣1)•2=n (n +a 1﹣1), a n =a 1+(n ﹣1)•2=2n +a 1﹣2,则==.故答案为:.【点评】本题主要考察极限及其运算.解题的关键是要掌握极限的实则运算法则和常用求极限的技巧!10.已知定义在R 上的函数f (x )满足:①f (x )+f (2﹣x )=0;②f (x )﹣f (2﹣x )=0;③在[﹣1,1]上的表达式为,则函数f (x )与的图象在区间[﹣3,3]上的交点的个数为 6 .【考点】54:根的存在性及根的个数判断.【分析】先根据①②知函数的对称中心和对称轴,再分别画出f (x )和g (x )的部分图象,由图象观察交点的个数.【解答】解:∵①f (x )+f (2﹣x )=0,②f (x )﹣f (﹣2﹣x )=0, ∴f (x )图象的对称中心为(1,0),f (x )图象的对称轴为x=﹣1,结合③画出f (x )和g (x )的部分图象,如图所示,据此可知f (x )与g (x )的图象在[﹣3,3]上有6个交点. 故答案为:6.【点评】本题借助分段函数考查函数的周期性、对称性以及函数图象交点个数等问题,属于中档题.11.已知各项均为正数的数列{a n }满足(2a n +1﹣a n )(a n +1a n ﹣1)=0(n ∈N *),且a 1=a 10,则首项a 1所有可能取值中最大值为 16 .【考点】8H :数列递推式.【分析】各项均为正数的数列{a n }满足(2a n +1﹣a n )(a n +1a n ﹣1)=0(n ∈N *),可得a n +1=a n ,或a n +1a n =1.又a 1=a 10,a 9a 10=1,应该使得a 9取得最小值.再利用等比数列的通项公式即可得出.【解答】解:∵各项均为正数的数列{a n }满足(2a n +1﹣a n )(a n +1a n ﹣1)=0(n ∈N *),∴a n +1=a n ,或a n +1a n =1.又a 1=a 10,a 9a 10=1,应该使得a 9取得最小值.根据a n +1=a n ,可得数列{a n }为等比数列,公比为.取a 9=a 1×,a 1>0.又a 9=,∴=28,解得a 1=24=16. ∴a 1的最大值是16. 故答案为:16.【点评】本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.12.已知平面上三个不同的单位向量,,满足•==,若为平面内的任意单位向量,则||+|2|+3||的最大值为 5 .【考点】9R :平面向量数量积的运算.【分析】由向量投影的定义可得当++与共线时,取得最大值,再根据向量的数量积公式计算即可.【解答】解:||+|2|+3||=||+2||+3||,其几何意义为在的投影的绝对值与在上投影的绝对值的2倍与在上投影的绝对值的倍的3和,当++与共线时,取得最大值.∵•==,∴=﹣∴(||+|2|+3||)2=||2+4||2+9||2+4||+6||+12||=1+4+9+2+3+6=25,max故||+|2|+3||的最大值为5,故答案为:5.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.二、选择题(本大题共有4小题,满分16分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得5分,否则一律得零分.13.若复数满足|z+i|+|z﹣i|=2,则复数在平面上对应的图形是()A.椭圆B.双曲线C.直线D.线段【考点】A4:复数的代数表示法及其几何意义.【分析】|z+i|+|z﹣i|=2,在复平面上,复数z对应的点Z的集合表示的是:到两个定点E(0,﹣1),F(0,1)的距离之和为定值2的点的集合,而|EF|=2,即可得出结论.【解答】解:|z+i|+|z﹣i|=2,在复平面上,复数z对应的点Z的集合表示的是:到两个定点E(0,﹣1),F(0,1)的距离之和为定值2的点的集合,而|EF|=2,因此在复平面上,满足|z+i|+|z﹣i|=2的复数z对应的点Z的集合表示的是:线段,∴复数在平面上对应的图形是线段.故选:D.【点评】本题考查了复平面上的两点间的距离公式及其复数的几何意义、点的集合,属于基础题.14.已知长方体切去一个角的几何体直观图如图1所示给出下列4个平面图如图2:则该几何体的主视图、俯视图、左视图的序号依次是()A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)【考点】L7:简单空间图形的三视图.【分析】根据几何体的直观图得到三视图.【解答】解:由于几何体被切去一个角,所以正视图、俯视图以及侧视图的矩形都有对角线;关键放置的位置得到C;故选C.【点评】本题考查了几何体的三视图;属于基础题.15.已知2sinx=1+cosx,则=()A.2 B.2或C.2或0 D.或0【考点】GI:三角函数的化简求值.【分析】推导出cot==,由此能求出结果.【解答】解:∵cot===,2sinx=1+cosx,∴当cosx=﹣1时,sinx=0,无解;当cosx≠﹣1时,cot==2.故选:A.【点评】本题考查三角函数的化简求值,考查同角三角函数关系式、二倍角公式、降幂公式,考查推理论证能力、运算求解能力,考查转化化归思想,是中档题.16.已知等比数列a1,a2,a3,a4满足a1∈(0,1),a2∈(1,2),a3∈(2,4),则a4的取值范围是()A.(3,8)B.(2,16)C.(4,8)D.【考点】88:等比数列的通项公式.【分析】设公比为q,根据a1∈(0,1),a2∈(1,2),a3∈(2,4),可得可得q的取值范围,再利用a4=a3q,即可得出.【解答】解:设公比为q,则∵a1∈(0,1),a2∈(1,2),a3∈(2,4),∴∴③÷②:1<q<4④③÷①:或q>⑤由④⑤可得:<q<4∴a4=a3q,∴a4∈.故选:D.【点评】本题考查了等比数列的通项公式与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.三、解答题(共5小题,满分80分)17.(14分)(2017•浦东新区二模)如图所示,球O的球心O在空间直角坐标系O﹣xyz的原点,半径为1,且球O分别与x,y,z轴的正半轴交于A,B,C三点.已知球面上一点.(1)求D,C两点在球O上的球面距离;(2)求直线CD与平面ABC所成角的大小.【考点】MI:直线与平面所成的角;L*:球面距离及相关计算.【分析】(1)求出球心角,即可求D,C两点在球O上的球面距离;(2)求出平面ABC的法向量,即可求直线CD与平面ABC所成角的大小.【解答】解:(1)由题意,cos∠COD==,∴∠COD=,∴D,C两点在球O上的球面距离为;(2)A(1,0,0),B(0,1,0),C(0,0,1),重心坐标为(,,),∴平面ABC的法向量为=(,,),∵=(0,﹣,﹣),∴直线CD与平面ABC所成角的正弦=||=,∴直线CD与平面ABC所成角的大小为.【点评】本题考查球面距离,考查线面角,考查学生分析解决问题的能力,属于中档题.18.(14分)(2017•浦东新区二模)某地计划在一处海滩建造一个养殖场.(1)如图1,射线OA,OB为海岸线,,现用长度为1千米的围网PQ依托海岸线围成一个△POQ的养殖场,问如何选取点P,Q,才能使养殖场△POQ的面积最大,并求其最大面积.(2)如图2,直线l为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB(点A,B在直线l上),使三角形OAB面积最大,设其为S1;方案二:围成弓形CDE(点D,E在直线l上,C是优弧所在圆的圆心且),其面积为S2;试求出S1的最大值和S2(均精确到0.01平方千米),并指出哪一种设计方案更好.【考点】5D:函数模型的选择与应用.【分析】(1)设OP=a,OQ=b,则12=a2+b2﹣2abcos,再利用基本不等式的性质与三角形面积计算公式即可得出.(2)方案一:设OA=x(0<x<1),则OB=1﹣x.则S1=(1﹣x)sin∠AOB,利用基本不等式的性质即可得出最大值.方案二:设半径r(0<r<1),则=1.解得r=.可得S2=+,即可比较出S1与S2的大小关系.【解答】解:(1)设OP=a,OQ=b,则12=a2+b2﹣2abcos≥2ab+ab,可得ab,当且仅当时取等号.S=absin≤=.∴当且仅当时,养殖场△POQ的面积最大,(平方千米)(2)方案一:设OA=x(0<x<1),则OB=1﹣x.则S1=(1﹣x)sin∠AOB≤=,当且仅当x=时取等号.∴(平方千米),方案二:设半径r(0<r<1),则=1.解得r=.∴S2=+≈0.144(平方千米)∴S1<S2,方案二所围成的养殖场面积较大,方案二更好.【点评】本题考查了基本不等式的性质、三角形面积计算公式、余弦定理、圆的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(18分)(2017•浦东新区二模)已知双曲线,其右顶点为P.(1)求以P为圆心,且与双曲线C的两条渐近线都相切的圆的标准方程;(2)设直线l过点P,其法向量为=(1,﹣1),若在双曲线C上恰有三个点P1,P2,P3到直线l的距离均为d,求d的值.【考点】KM:直线与双曲线的位置关系.【分析】(1)利用点到直线的距离公式,求出圆的半径,即可求出圆的标准方程;(2)求出与直线l平行,且与双曲线消去的直线方程,即可得出结论.【解答】解:(1)由题意,P(2,0),双曲线的渐近线方程为y=±x,P到渐近线的距离d==,∴圆的标准方程为(x﹣2)2+y2=;(2)由题意,直线l的斜率为1,设与直线l平行的直线方程为y=x+m,代入双曲线方程整理可得x2+8mx+4m2+12=0,△=64m2﹣4(4m2+12)=0,可得m=±1,与直线l:y=x+2的距离分别为或,即d=或【点评】本题考查双曲线的方程与性质,考查圆的方程,考查直线与双曲线位置关系的运用,属于中档题.20.(16分)(2017•浦东新区二模)若数列{A n}对任意的n∈N*,都有(k≠0),且A n≠0,则称数列{A n}为“k级创新数列”.(1)已知数列{a n}满足且,试判断数列{2a n+1}是否为“2级创新数列”,并说明理由;(2)已知正数数列{b n}为“k级创新数列”且k≠1,若b1=10,求数列{b n}的前n 项积T n;(3)设α,β是方程x2﹣x﹣1=0的两个实根(α>β),令,在(2)的条件下,记数列{c n}的通项,求证:c n+2=c n+1+c n,n∈N*.【考点】8I:数列与函数的综合.【分析】(1)数列{2a n+1}是“2级创新数列”,下面给出证明:,可得a n+1+1=+1=≠0,即可证明.(2)正数数列{b n}为“k级创新数列”且k≠1,.b n===…==.又b1=10,利用指数的运算性质可得数列{b n}的前n项积T n=.(3)α,β是方程x2﹣x﹣1=0的两个实根(α>β),可得β2﹣β﹣1=0,α2﹣α﹣1=0.在(2)的条件下,记数列{c n}的通项=βn﹣1×=.【解答】(1)解:数列{2a n+1}是“2级创新数列”,下面给出证明:∵,∴2a n+1+1=+1=≠0,∴数列{2a n+1}是“2级创新数列”.(2)解:∵正数数列{b n}为“k级创新数列”且k≠1,∴.∴b n====…==.又b 1=10,∴数列{b n }的前n 项积T n =b n b n ﹣1•…•b 1==.(3)证明:α,β是方程x 2﹣x ﹣1=0的两个实根(α>β), ∴β2﹣β﹣1=0,α2﹣α﹣1=0.在(2)的条件下,记数列{c n }的通项=βn ﹣1×=βn ﹣1×=.∴c n +2=.c n +1+c n =+.∴c n +2﹣(c n +1+c n )==0.∴c n +2=c n +1+c n .【点评】本题考查了数列递推关系、指数的运算性质、一元二次风吹草动根与系数的关系、作差法,考查了推理能力、计算能力,属于中档题.21.(18分)(2017•浦东新区二模)对于定义域为R 的函数g (x ),若函数sin [g (x )]是奇函数,则称g (x )为正弦奇函数.已知f (x )是单调递增的正弦奇函数,其值域为R ,f (0)=0.(1)已知g (x )是正弦奇函数,证明:“u 0为方程sin [g (x )]=1的解”的充要条件是“﹣u 0为方程sin [g (x )]=﹣1的解”;(2)若f (a )=,f (b )=﹣,求a +b 的值;(3)证明:f (x )是奇函数. 【考点】3P :抽象函数及其应用.【分析】(1)根据正弦奇函数的定义,结合充要条件的定义,分别证明必要性和充分性,可得结论;(2)由f (x )是单调递增的正弦奇函数,f (a )=,f (b )=﹣,可得a ,b互为相反数,进而得到答案.(3)根据f (x )是单调递增的正弦奇函数,其值域为R ,f (0)=0得到:f (﹣x)=﹣f(x),可得结论.【解答】证明(1)∵g(x)是正弦奇函数,故sin[g(x)]是奇函数,当:“u0为方程sin[g(x)]=1的解”时,sin[g(u0)]=1,则sin[g(﹣u0)]=﹣1,即“﹣u0为方程sin[g(x)]=﹣1的解”;故:“u0为方程sin[g(x)]=1的解”的必要条件是“﹣u0为方程sin[g(x)]=﹣1的解”;当:“﹣u0为方程sin[g(x)]=﹣1的解”时,sin[g(﹣u0)]=﹣1,则sin[g(u0)]=1,即“u0为方程sin[g(x)]=1的解”;故:“u0为方程sin[g(x)]=1的解”的充分条件是“﹣u0为方程sin[g(x)]=﹣1的解”;综上可得:“u0为方程sin[g(x)]=1的解”的充要条件是“﹣u0为方程sin[g(x)]=﹣1的解”;解:(2)∵f(x)是单调递增的正弦奇函数,f(a)=,f(b)=﹣,则sin[f(a)]+sin[f(b)]=1﹣1=0,则a=﹣b,则a+b=0证明:(3)∵f(x)是单调递增的正弦奇函数,其值域为R,f(0)=0.故sin[f(﹣x)]+sin[f(x)]=0,即sin[f(﹣x)]=﹣sin[f(x)]=sin[﹣f(x)],f(﹣x)=﹣f(x),故f(x)是奇函数.【点评】本题考查的知识点是抽象函数及其应用,函数的奇偶性,函数的单调性,充要条件,难度中档.。

上海市长宁、金山、青浦区2017届高三二模数学试卷含答案

上海市长宁、金山、青浦区2017届高三二模数学试卷含答案

上海市长宁、金山、青浦区 2017 届高三二模数学试卷含答案2017 年徐汇区高三二模考试数学试卷(满分 150 分,考试时间 120 分钟)一、填空题(本大题共有 12 题,满分 54 分,第 1-6 题每题 4 分,第 7-12 题每题 5 分)考生应 在答题纸的相应位置直接填写结果。

1、设全集 U  1, 2,3, 4 ,集合 A  x x  5 x  4  0, x  Z ,则 CU A  _______________22、参数方程为 x  t2  y  2t( t 为参数)的曲线的焦点坐标为_______________3、已知复数 z 满足 z  1,则 z  2 的取值范围是_______________ 4、设数列 an  的前项和为 Sn ,若 S n  1 n2 an (n  N * ) ,则 lim S n  _______________ n  31   * 5、若  x   (n  4, n  N ) 的二项展开式中前三项的系数依次成等差数列,则 n  _____ 2x  2 3、、 4 5、 6、、 7 8、 9、 10 分别写在 10 张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大 6、把 1、、 于 6 的数的卡片的概率为_______________。

(结果用最简分数表示)17、若行列式 cos2 x 2 x cos 2 sin41 0 中元素 4 的代数余子式的值为 ,则实数 x 的取值集合为_______________ 2x 2 x sin 288、满足约束条件 x  2 y  2 的目标函数 z  y  x 的最小值是_______________log 2 x, 0  x  2  9、已知函数 f ( x)   2  x 5 ,若函数 g ( x)  f ( x)  k 有两个不同的零点,则实数 k 的取值范围是    , x  2  3  9_______________。

2017年浦东区高考数学二模试卷含答案

2017年浦东区高考数学二模试卷含答案

2017年浦东新区高考数学二模试卷含答案一、填空题〔本大题共有12小题,总分值54分〕只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知集合201x A xx ⎧-⎫=≥⎨⎬+⎩⎭,集合{|04}B y y =≤<,则A B =____________.2. 假设直线l 的参数方程为44,23x tt y t =-⎧∈⎨=-+⎩R ,则直线l 在y 轴上的截距是____________.3. 已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为____________.4. 抛物线214y x =的焦点到准线的距离为____________. 5. 已知关于,x y 的二元一次方程组的增广矩阵为215120⎛⎫⎪-⎝⎭,则3x y -=____________.6. 假设三个数123,,a a a 的方差为1,则12332,32,32a a a +++的方差为____________.7. 已知射手甲击中A 目标的概率为0.9,射手乙击中A 目标的概率为0.8,假设甲、乙两人各向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是____________. 8. 函数3sin ,0,62y x x ππ⎛⎫⎡⎤=-∈⎪⎢⎥⎝⎭⎣⎦的单调递减区间是____________. 9. 已知等差数列{}n a 的公差为2,前n 项和为n S ,则1limnn n n S a a →∞+=____________.10. 已知定义在R 上的函数()f x 满足:①()(2)0f x f x +-=;②()(2)0f x f x ---=;③在[1,1]-上的表达式为21,[1,0]()1,(0,1]x x f x x x ⎧⎪-∈-=⎨-∈⎪⎩,则函数()f x 与函数122,0()log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图像在区间[3,3]-上的交点的个数为____________.11. 已知各项均为正数的数列{}n a 满足:*11(2)(1)0()n n n n a a a a n ++--=∈N ,且110a a =,则首项1a 所有可能取值中的最大值为____________.12. 已知平面上三个不同的单位向量,,满足·=·=12,假设为平面内的任意单位向量,则的最大值为____________.二、选择题(本大题共有 4 小题,总分值 20 分) 每题都给出四个选项,其中有且只有一个选项是正确的,选对得 5 分,否则一律得零分.13、假设复数z 满足2=-++i z i z ,则复数z 在平面上对应的图形是〔 〕14、已知长方体切去一个角的几何体直观图如下图,给出以下4个平面图:则该几何体的主视图、俯视图、左视图的序号依次是〔〕A.〔1〕〔3〕〔4〕B.〔2〕〔4〕〔3〕C.〔1〕〔3〕〔2〕D.〔2〕〔4〕〔1〕15、已知x x cos 1sin 2+=,则=2cotx〔 〕 21 C.2或0D.21或0 16、已知等比数列1a ,2a ,3a ,4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是〔 〕A.)83(,B.)162(,C.)84(,D.(226),1三、解答题〔本大题共有5小题,总分值76分〕17. 〔本小题总分值14分,第1小题总分值6分,第2小题总分值8分〕如下图,球O 的球心O 在空间直角坐标系O xyz -的原点,半径为1,且球O 分别与,,x y z 轴的正半轴交于,,A B C 三点.已知球面上一点310,,22D ⎛⎫-⎪ ⎪⎝⎭.〔1〕求,D C 两点在球O 上的球面距离;〔2〕求直线CD 与平面ABC 所成角的大小.18. 〔本小题总分值14分,第1小题总分值6分,第2小题总分值8分〕 某地计划在一处海滩建造一个养殖场. 〔1〕如图,射线,OA OB 为海岸线,23AOB π∠=,现用长度为1千米的围网PQ 依托海岸线围成一个△POQ 的养殖场,问如何选取点,P Q ,才能使养殖场△POQ 的面积最大,并求其最大面积. 〔2〕如图,直线l 为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场. 方案一:围成三角形OAB 〔点,A B 在直线l 上〕,使三角形OAB 面积最大,设其为1S ; 方案二:围成弓形CDE 〔点,D E 在直线l 上,C 是优弧所在圆的圆心且23DCE π∠=〕,其面积为2S ;试求出1S 的最大值和2S 〔均精确到0.01平方千米〕,并指出哪一种设计方案更好.19. 〔本小题总分值14分,第1小题总分值6分,第2小题总分值8分〕已知双曲线22:143x y C -=,其右顶点为P . 〔1〕求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;〔2〕设直线l 过点P ,其法向量为=(1,1)-,假设在双曲线C 上恰有三个点123,,P P P 到直线l 的距离均为d ,求d 的值. 20、〔本小题总分值16分,第1小题总分值4分,第2小题总分值6分,第3小题总分值6分〕假设数列{}n A 对任意的*N n ∈,都有kn n A A =+1()0≠k ,且0≠n A ,则称数列{}n A 为“k 级创新数列”.〔1〕已知数列{}n a 满足n n n a a a 2221+=+且211=a ,试判断数列{}12+n a 是否为“2级创新数列”,并说明理由;〔2〕已知正数数列{}n b 为“k 级创新数列”且1≠k ,假设101=b ,求数列{}n b 的前n 项积n T ; 〔3〕设βα,是方程012=--x x 的两个实根)(βα>,令αβ=k ,在〔2〕的条件下,记数列{}n c 的通项n b n n T c nlog 1⋅=-β,求证:n n n c c c +=++12,*N n ∈.21、〔此题总分值18分,第1小题总分值4分,第2小题总分值6分,第3小题总分值8分〕对于定义域为R 的函数)(x g ,假设函数[])(sin x g 是奇函数,则称)(x g 为正弦奇函数. 已知)(x f 是单调递增的正弦奇函数,其值域为R ,0)0(=f .〔1〕已知)(x g 是正弦奇函数,证明:“0u 为方程[]1)(sin =x g 的解”的充要条件是“0u -为方程[]1)(sin -=x g 的解”;〔2〕假设2)(π=a f ,2)(π-=b f ,求b a +的值;〔3〕证明:)(x f 是奇函数.参考答案1. [2,4)2. 13. 8π4. 25. 56. 97. 0.988. 20,3π⎡⎤⎢⎥⎣⎦9.1410. 6 11. 16 12.13. D14. C15. C16. D17. 〔1〕3DC π=〔2〕arcsinθ=18. 〔1〕选取3OP OQ ==时养殖场△POQ 的面积最大,max 12S =〔平方千米〕 〔2〕1max 18S =〔平方千米〕,20.144S ≈〔平方千米〕 12S S <,方案二所围成的养殖场面积较大,方案二更好19. 〔1〕2212(2)7x y -+=〔2〕2d =220. 〔1〕是 〔2〕1*110()n k kn T n --=∈N〔3〕证明略21. 〔1〕证明略 〔2〕0a b += 〔3〕证明略。

上海市长宁、金山、青浦区2017届高三数学二模试卷

上海市长宁、金山、青浦区2017届高三数学二模试卷

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!上海市长宁、金山、青浦区2017届高三数学二模试卷2017.04一、填空题:(本大题共14小题,每小题5分,共70分)1. 已知集合{}|1,A x x x R =>-∈,集合{}|2,B x x x R =<∈,则A B =I .2. 已知复数z 满足()2332i z i -=+(i 为虚数单位),则z = .3.函数()sin 2cos 2cos sin x x f x xx的最小正周期为 .4.已知双曲线()()2222103x y a a a -=>+的一条渐近线方程为2y x =,则a = . 5.若圆柱的侧面展开图是边长为4cm 的正方形,则圆柱的体积为 . cm 3(精确到0.1cm 3)6.已知,x y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为 .7.直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是 .8.已知函数()22,0log ,01x x f x x x ⎧≤=⎨<≤⎩的反函数是()1f x -,则112f -⎛⎫= ⎪⎝⎭ .9.设多项式()()()()2311110,nx x x x x n N *++++++++≠∈L 的展开式中x 项的系数为nT ,则2limnn T n →∞= .10.生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生产生废品相互独立,若经过两道工序得到的零件不是废品的概率为0.9603,则p = .11.已知函数()f x x x a =-,若对任意的[]1212,2,3,x x x x ∈≠,恒有()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,则实数a 的取值范围为 . 12.对于给定的实数0k >,函数()kf x x=的图象上总存在点C,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为1,则k 的取值范围为 . 二、选择题:13.设,a b R ∈,则“4a b +>”是“1a >且3b >”的 A. 充分不必要条件 B. 必要不充分条件C. 充要条件D.既不充分也不必要条件14.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC ∆在该正方体各个面上的射影可能是A. ①②③④B. ①③C. ①④D. ②④15.如图,AB 为圆O 的直径且AB=4,C 为圆上不同于A,B 的任意一点,若P 为半径OC 上的动点,则()PA PB PC +⋅u u u r u u u r u u u r的最小值为A. -4B. -3C. -2D. -116.设1210,,x x x K 为1,2,,10L 的一个排列,则满足对于任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同的排列的个数为A.512B. 256C. 255D. 64三、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分14分)如图,在正方体1111ABCD A B C D -中,,E F 分别是1,BC CD 线段的中点.(1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11ABB A 所成角的大小.18.(本题满分14分)某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为3π(即3ACB π∠=),墙AB 的长度为6米(已有两面墙的可利用长度足够大),记.ABC θ∠=(1)若4πθ=,求ABC ∆的周长(结果精确到0.01米);(2)为了使小动物能健康成长,要求所建造的三角形露天活动室面积即ABC ∆的面积尽可能大,问θ当何值时,该活动室面积最大?并求最大面积.19.(本题满分14分)已知抛物线()220y px p =>,其准线方程为10x +=,直线l 过点(),0T t 0t >且与抛物线交于两点,A B ,O 为坐标原点.(1)求抛物线的方程,并证明:OA OB ⋅u u u r u u u r为值与直线倾斜角的大小无关;(2)若P 为抛物线上的动点,记PT 的最小值为函数()d t ,求()d t 的解析式.20.(本题满分16分)对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足:①()f x 在[],m n 内是单调函数;②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()()2112,0f x a R a a a x=+-∈≠是区间[],m n 上的“保值函数”,求a 的取值范围; (3)对(2)中函数()f x ,若不等式()22a f x x ≤对1x ≥恒成立,求实数a 的取值范围.21.(本题满分16分)已知数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意n N *∈都成立,数列{}n a 的前n 项和为n S .(1)若{}n a 是等差数列,求k 的值; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使得数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.。

【学生版本】2017二模客观难题分析

【学生版本】2017二模客观难题分析

目录1. 虹口 (2)2. 黄浦 (3)3. 杨浦 (4)4. 奉贤 (5)5. 长宁金山青浦 (6)6. 浦东 (7)7. 闵行 (8)8. 普陀 (9)9. 徐汇 (10)10. 静安 (11)11. 崇明 (12)12. 松江 (13)13. 嘉定 (13)14. 宝山 (14)15奉贤区: (15)16普陀区: (16)17杨浦区: (17)18闵行区 (17)19黄浦区 (18)20宝山区 (19)21浦东新区 (20)2017年上海市高三二模数学填选难题解析1. 虹口11. 在直角△ABC 中,2A π∠=,1AB =,2AC =,M 是△ABC 内一点,且12AM =, 若AM AB AC λμ=+,则2λμ+的最大值为12. 无穷数列{}n a 的前n 项和为n S ,若对任意的正整数n 都有12310{,,,,}n S k k k k ∈ ,则 10a 的可能取值最多..有 个16. 已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论: ①3450x y -+>;② 当0a >时,a b +有最小值,无最大值;③ 221a b +>; ④ 当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞ .正确的个数是( )A. 1B. 2C. 3D. 42. 黄浦11. 三棱锥P ABC -满足:AB AC ⊥,AB AP ⊥,2AB =,4AP AC +=,则该三棱锥的体积V 的取值范围是12. 对于数列{}n a ,若存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a是以T 为周期的周期数列,设1b m =(01)m <<,对任意正整数n 有11,11,01n n n n nb b b b b +->⎧⎪=⎨<≤⎪⎩,若数列{}n b 是以5为周期的周期数列,则m 的值可以是(只要求填写满足条件的一个m 值即可)16. 如图所示,23BAC π∠=,圆M 与AB 、AC 分别相切于点D 、E ,1AD =,点P 是 圆M 及其内部任意一点,且AP xAD yAE =+(,)x y R ∈,则x y +取值范围是( )A. [1,4+B. [4-+C. [1,2D. [23. 杨浦11. 已知0a >,0b >,当21(4)a b ab++取到最小值时,b =12. 设函数()||||a f x x x a =+-,当a 在实数范围内变化时,在圆盘221x y +≤内,且不在任一()a f x 的图像上的点的全体组成的图形的面积为16. 对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x R ∈均成立,则称()f x 是“控制增长函数”,在以下四个函数中:① 2()1f x x x =++;② ()f x = 2()sin()f x x =;④ ()sin f x x x =⋅. 是“控制增长函数”的有( )A. ②③B. ③④C. ②③④D. ①②④4. 奉贤11. 已知实数x 、y 满足方程22(1)(1)1x a y -++-=,当0y b ≤≤()b R ∈时,由此方程可以确定一个偶函数()y f x =,则抛物线212y x =-的焦点F 到点(,)a b 的轨迹上点的距离最大值为12. 设1x 、2x 、3x 、4x 为自然数1、2、3、4的一个全排列,且满足1234|1||2||3||4|6x x x x -+-+-+-=,则这样的排列有 个16. 如图,在△ABC 中,BC a =,AC b =,AB c =,O 是△ABC 的外心,OD BC ⊥ 于D ,OE AC ⊥于E ,OF AB ⊥于F ,则::OD OE OF 等于( ) A. ::a b c B.111::a b cC. sin :sin :sin A B CD. cos :cos :cos A B C5. 长宁金山青浦11. 已知函数()||f x x x a =-,若对任意1[2,3]x ∈,2[2,3]x ∈,12x x ≠,恒有1212()()()22x x f x f x f ++>,则实数a 的取值范围为12. 对于给定的实数0k >,函数()kf x x=的图像上总存在点C ,使得以C 为圆心,1为半 径的圆上有两个不同的点到原点O 的距离为1,则k 的取值范围是16. 设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( )A. 512B. 256C. 255D. 646. 浦东11. 已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=*()n N ∈,且110a a =, 则首项1a 所有可能取值中最大值为12. 已知平面上三个不同的单位向量a 、b 、c 满足12a b b c ⋅=⋅= ,若e 为平面内的任意单位向量,则||2||3||a e b e c e ⋅+⋅+⋅的最大值为16. 已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值 范围是( )A. (3,8)B. (2,16)C. (4,8)D.7. 闵行11. 已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP '= ,O 是坐标原点,则||PQ的取值范围是12. 已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项i a 、j a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =16. 设函数()y f x =的定义域是R ,对于以下四个命题: ① 若()y f x =是奇函数,则(())y f f x =也是奇函数; ② 若()y f x =是周期函数,则(())y f f x =也是周期函数; ③ 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;④ 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个8. 普陀11. 设0a <,若不等式22sin (1)cos 10x a x a +-+-≥对于任意的R x ∈恒成立,则a 的 取值范围是16. 关于函数2sin y x =的判断,正确的是( ) A. 最小正周期为2π,值域为[1,1]-,在区间[,]22ππ-上是单调减函数 B. 最小正周期为π,值域为[1,1]-,在区间[0,]2π上是单调减函数 C. 最小正周期为π,值域为[0,1],在区间[0,]2π上是单调增函数 D. 最小正周期为2π,值域为[0,1],在区间[,]22ππ-上是单调增函数9. 徐汇11. 如图:在△ABC 中,M 为BC 上不同于B 、C 的任意一点,点N 满足2AN NM = ,若AN xAB yAC =+,则229x y +的最小值为12. 设单调函数()y p x =的定义域为D ,值域为A ,如果单调函数()y q x =使得函数 (())y p q x =的值域也是A ,则称函数()y q x =是函数()y p x =的一个“保值域函数”,已 知定义域为[,]a b 的函数2()|3|h x x =-,函数()f x 与()g x 互为反函数,且()h x 是()f x 的一个“保值域函数”, ()g x 是()h x 的一个“保值域函数”,则b a -=16. 过椭圆2214x y m m +=-(4)m >右焦点F 的圆与圆22:1O x y +=外切,则该圆直径FQ 的端点Q 的轨迹是( )A. 一条射线B. 两条射线C. 双曲线的一支D. 抛物线10. 静安10. 若适合不等式2|4||3|5x x k x -++-≤的x 最大值为3,则实数k 的值为11. 已知1()1xf x x-=+,数列{}n a 满足112a =,对于任意*n N ∈都满足2()n n a f a +=,且0n a >,若2018a a =,则20162017a a +=15. 曲线C 为:到两定点(2,0)M -、(2,0)N 的距离乘积为常数16的动点P 的轨迹,以下 结论: ① 曲线C 经过原点;② 曲线C 关于x 轴对称,但不关于y 轴对称;③ △MPN 的面积不大于8;④ 曲线C 在一个面积为60的矩形范围内. 其中正确的个数为( ) A. 0 B. 1 C. 2 D. 311. 崇明11. 已知函数22sin(),0()3cos(),0x x x f x x x x πα⎧++>⎪=⎨⎪-++<⎩,[0,2)απ∈是奇函数,则α=12. 已知△ABC是边长为PQ 为△ABC 外接圆O 的一条直径,M 为△ABC 边长的动点,则PM MQ ⋅的最大值是16. 设函数()x x x f x a b c =+-,其中0c a >>,0c b >>,若a 、b 、c 是△ABC 的三条 边长,则下列结论:① 对于一切(,1)x ∈-∞都有()0f x >;② 存在0x >使x xa 、x b 、x c 不能构成一个三角形的三边长;③ 若△ABC 为钝角三角形,存在(1,2)x ∈,使()0f x =. 其中正确的个数为( )A. 3个B. 2个C. 1个D. 0个12. 松江11. 如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅的取值范围是13. 嘉定11. 设等差数列{}n a 的各项都是正数,前n 项和为n S ,公差为d . 若数列也是公差 为d 的等差数列,则}{n a 的通项公式为n a =12. 设x ∈R ,用[]x 表示不超过x 的最大整数(如[2.32]2=,[ 4.76]5-=-),对于给定的*n ∈N ,定义(1)([]1)(1)([]1)xnn n n x C x x x x --+=--+ ,其中[1,)x ∈+∞,则当3[,3)2x ∈时,函数xC x f 10)(=的值域是16. 已知()f x 是偶函数,且()f x 在[0,)+∞上是增函数,若(1)(2)f ax f x +≤-在1[,1]2x ∈上恒成立,则实数a 的取值范围是( )A. [2,1]-B. [2,0]-C. [1,1]-D. [1,0]-14. 宝山11. 设向量(,)m x y = ,(,)n x y =- ,P 为曲线1m n ⋅=(0)x >上的一个动点,若点P 到直 线10x y -+=的距离大于λ恒成立,则实数λ的最大值为15. 如图,在同一平面内,点P 位于两平行直线1l 、2l 两侧,且P 到1l 、2l 距离分别为1、3,点M 、N 分别在1l 、2l 上,||8PM PN +=,则PM PN ⋅ 的最大值为( )A. 15B. 12C. 10D. 916. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设2()x f x xλ+=(0)x >,若对于任意t ∈,总存在正数 m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ取值范围是( ) A. (0,2] B. (1,2] C. [1,2] D. [1,4]15奉贤区:11、已知实数y x ,满足方程1)1(122=-++-y a x )(,当)(0R b b y ∈≤≤时,由此方程可以确定一个偶函数,则抛物线221x y -=的焦点F 到点),(b a 的轨迹上点的距离最大值为 .12、设4321,,,x x x x 为自然数1,2,3,4的一个全排列,且满足643214321=-+-+-+-x x x x ,则这样的排列有 个.16、如图,在△ABC 中,Oc AB b AC a AB ,,,===是ABC∆的外心,,D BC OD 于⊥AC OE ⊥于E ,AB OF ⊥于F ,则OF OE OD ::等于( )A.c b a ::B.cb a 1:1:1 C.C B A sin :sin :sin D.C B A cos :cos :cos16普陀区:11、设0a <,若不等式22sin (1)cos 10+-+-≥x a x a 对于任意的x R ∈恒成立,则a 的取值范围是12、在ABC ∆中,D 、E 分别是AB 、AC 的中点,M 是直线DE 上的动点,若ABC ∆的面积为1,则2MB MC BC ⋅+ 的最小值为16、关于函数2sin y x =的判断,正确的是 ( )()A 最小正周期为2π,值域为[]1,1-,在区间,22ππ⎡⎤-⎢⎥⎣⎦上是单调减函数()B 最小正周期为π,值域为[]1,1-,在区间0,2π⎡⎤⎢⎥⎣⎦上是单调减函数()C 最小正周期为π,值域为[]0,1,在区间0,2π⎡⎤⎢⎥⎣⎦上是单调增函数()D 最小正周期为2π,值域为[]0,1,在区间,22ππ⎡⎤-⎢⎥⎣⎦上是单调增函数17杨浦区:11. 已知0a >,0b >,当21(4)a b ab++取到最小值时,b =12. 设函数()||||a f x x x a =+-,当a 在实数范围内变化时,在圆盘221x y +≤内,且不在 任一()a f x 的图像上的点的全体组成的图形的面积为16. 对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x R ∈均成立,则称()f x 是“控制增长函数”,在以下四个函数中:① 2()1f x x x =++;② ()f x = 2()sin()f x x =;④ ()sin f x x x =⋅. 是“控制增长函数”的有( )A. ②③B. ③④C. ②③④D. ①②④18闵行区(2017二模闵行11)已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ QP '= ,O 是坐标原点,则||PQ的取值范围是(2017二模闵行12)已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项i a 、j a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =(第11题图)16. 设函数()y f x =的定义域是R ,对于以下四个命题: ① 若()y f x =是奇函数,则(())y f f x =也是奇函数; ② 若()y f x =是周期函数,则(())y f f x =也是周期函数; ③ 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;④ 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个19黄浦区(2017二模黄浦11)三棱锥P ABC -满足:AB AC ⊥,AB AP ⊥,2AB =,4AP AC +=,则该三棱锥的体积V 的取值范围是 .(2017二模黄浦12)对于数列{}n a ,若存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 是以T 为周期的周期数列.设1(01)b m m =<<,对任意正整数n 都有111)1(01) (n n n n nb b b b b +->⎧⎪=⎨<⎪⎩≤,,若数列{}n b 是以5为周期的周期数列,则m 的值可以是 .(只要求填写满足条件的一个m 值即可)(2017二模黄浦16)如图所示,2π3BAC ∠=,圆M 与,AB AC 分别相切于点,D E , AD 1=,点P 是圆M 及其内部任意一点,且AP xAD yAE =+(,)x y ∈R ,则x y +的取值范围是( )A.[1,4+ B.[4-+ C.[1,2D.[220宝山区(2017二模宝山11)11. 设向量(,)m x y = ,(,)n x y =-,P 为曲线1m n ⋅= (0)x >上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为(2017二模宝山12)设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为(第16题图)(2017二模宝山16)16. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设2()x f x xλ+=(0)x >,若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ取值范围是( )A. (0,2]B. (1,2]C. [1,2]D. [1,4]21浦东新区(2017二模浦东11)已知各项均为正数的数列{}n a 满足:()()()11210N n n n n a a a a n *++--=∈,且101a a =,则首项1a 所有可能取值中的最大值为____________.(2017二模浦东12)已知平面上三个不同的单位向量,,a b c 满足12a b b c ⋅=⋅= ,若e 为平面内的任意单位向量,则23a e b e c e ⋅+⋅+⋅的最大值为____________.(2017二模浦东16)已知等比数列1234,,,a a a a 满足()10,1a ∈,()21,2a ∈,()32,4a ∈,则4a 的取值范围是( )A 、()3,8;B 、()2,16;C 、()4,8;D 、()青浦、长宁、金山区(2017二模青浦11)已知函数()a x x x f -=,若对于任意的,[][]2121,3,2,3,2x x x x ≠∈∈恒有()()222121x f x f x x f +>⎪⎭⎫ ⎝⎛+,则实数a 的取值范围是____________.(2017二模青浦12)对于给定的实数0>k ,函数()xkx f =的图像上总存在点C ,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为2,则k 的取值范围是_____________.(2017二模青浦16)设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( ) A 、512; B 、256; C 、255()4,8; D 、64静安区10、若适合不等式2435x x k x -++-≤的x 最大值为3,则实数k 的值为 。

07.2017年上海高三数学二模分类汇编:解析几何

07.2017年上海高三数学二模分类汇编:解析几何

2(2017奉贤二模). 若关于x 、y 的方程组12ax y x y +=⎧⎨+=⎩无解,则a =2(2017黄浦二模). 若关于x 、y 的方程组10420ax y x ay +-=⎧⎨+-=⎩有无数多组解,则实数a =4(2017虹口二模). 若方程组2322ax y x ay +=⎧⎨+=⎩无解,则实数a =4(2017浦东二模). 抛物线214y x =的焦点到准线的距离为 4(2017长宁二模). 已知双曲线22221(3)x y a a -=+(0)a >的一条渐近线方程为2y x =,则a =4(2017宝山二模). 已知双曲线222181x y a -=(0)a >的一条渐近线方程为3y x =,则a = 4(2017崇明二模). 设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m =6(2017虹口二模). 已知双曲线2221y x a-=(0a >),它的渐近线方程是2y x =±,则a的值为7(2017黄浦二模). 已知圆22:(4)(3)4C x y -+-=和两点(,0)A m -,(,0)B m ,0m >,若圆C 上至少存在一点P ,使得90APB ︒∠=,则m 的取值范围是8(2017嘉定二模). 已知双曲线1C 与双曲线2C 的焦点重合,1C 的方程为1322=-y x ,若2C 的一条渐近线的倾斜角是1C 的一条渐近线的倾斜角的2倍,则2C 的方程为8(2017奉贤二模). 双曲线2213yx -=的左右两焦点分别是1F 、2F ,若点P 在双曲线上,且12F PF ∠为锐角,则点P 的横坐标的取值范围是8(2017虹口二模). 在平面直角坐标系中,已知点(2,2)P -,对于任意不全为零的实数a 、b ,直线:(1)(2)0l a x b y -++=,若点P 到直线l 的距离为d ,则d 的取值范围是10(2017杨浦二模). 设A 是椭圆222214x y a a +=-(0)a >上的动点,点F 的坐标为(2,0)-,若满足||10AF =的点A 有且仅有两个,则实数a 的取值范围为10(2017闵行/松江二模). 已知椭圆2221y x b+=(01)b <<,其左、右焦点分别为1F 、2F ,12||2F F c =,若椭圆上存在点P ,使P 到直线1x c=距离是1||PF 与2||PF 的等差中项,则b 的最大值为11(2017奉贤二模). 已知实数x 、y 满足方程22(1)(1)1x a y -++-=,当o y b ≤≤(b R ∈)时,由此方程可以确定一个偶函数()y f x =,则抛物线212y x =-的焦点到点(,)a b 的轨迹上点的距离最大值为11(2017宝山二模). 设向量(,)m x y =,(,)n x y =-,P 为曲线1m n ⋅=(0)x >上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为 12(2017长宁二模). 对于给定的实数0k >,函数()kf x x=的图像上总存在点C ,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为1,则k 的取值范围是 13(2017普陀二模). 动点P 在抛物线122+=x y 上移动,若P 与点(0,1)Q -连线的中点为M ,则动点M 的轨迹方程为( )A. 22x y = B. 24x y = C. 26x y =D. 28x y = 14(2017崇明二模). ||2b <是直线y b =+与圆2240x y y +-=相交的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件15(2017崇明二模). 若等比数列{}n a 的公比为q ,则关于x 、y 的二元一次方程组152421a x a y a x a y +=⎧⎨+=⎩的解的情况下列说法正确的是( ) A. 对任意q R ∈(0q ≠),方程组有唯一解 B. 对任意q R ∈(0q ≠),方程组都无解 C. 当且仅当12q =时,方程组有无穷多解 D. 当且仅当12q =时,方程组无解 15(2017黄浦二模). 已知双曲线22221x y a b-=(0,0)a b >>的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为( )A. 20x y ±=B. 20x y ±=C. 430x y ±=D. 340x y ±=15(2017静安二模). 曲线C 为:到两定点(2,0)M -、(2,0)N 距离乘积为常数16的动点P 的轨迹,以下结论正确的个数为( )① 曲线C 一定经过原点;② 曲线C 关于x 轴对称,但不关于y 轴对称;③ △MPN 的面 积不大于8;④ 曲线C 在一个面积为60的矩形范围内.FA. 0B. 1C. 2D. 316(2017虹口二模). 已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论:① 3450a b -+>;② 当0a >时,a b +有最小值,无最大值;③ 221a b +>;④ 当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞; 正确的个数是( )A. 1B. 2C. 3D. 416(2017徐汇二模). 过椭圆2214x y m m +=-(4)m >右焦点F 的圆与圆22:1O x y +=外切,则该圆直径FQ 的端点Q 的轨迹是( )A. 一条射线B. 两条射线C. 双曲线的一支D. 抛物线18(2017崇明二模). 设1F 、2F 分别为椭圆2222:1x y C a b+=(0a b >>)的左、右焦点,点A 为椭圆C 的左顶点,点B 为椭圆C 的上顶点,且||AB =12BF F ∆为直角三角形;(1)求椭圆C 的方程;(2)设直线2y kx =+与椭圆交于P 、Q 两点,且OP OQ ⊥,求实数k 的值;19(20172017浦东二模). 已知双曲线22:143x y C -=,其右顶点为P . (1)求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;(2)设直线l 过点P ,其法向量为(1,1)n =-,若在双曲线C 上恰有三个点1P 、2P 、3P 到 直线l 的距离均为d ,求d 的值.19(2017静安二模). 设点1F 、2F 是平面上左、右两个不同的定点,12||2F F m =,动点P满足:21212||||(1cos )6PF PF F PF m ⋅+∠=(1)求证:动点P 的轨迹Γ为椭圆;(2)抛物线C 满足:① 顶点在椭圆Γ的中心;② 焦点与椭圆Γ的右焦点重合. 设抛物线C 与椭圆Γ的一个交点为A ,问:是否存在正实数m ,使得△12AF F 的边长为连 续自然数,若存在,求出m 的值;若不存在,说明理由.19(2017崇明二模). 某校兴趣小组在如图所示的矩形域ABCD 内举行机器人拦截挑战赛,在E 处按EP方向释放机器人甲,同时在A 处按某方向释放机器人乙,设机器人乙在Q 处成功拦截机器 人甲,若点Q 在矩形域ABCD 内(包含边界),则挑战成功,否则挑战失败;已知18AB = 米,E 为AB 中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直 线运动方式行进,记EP 与EB 的夹角为θ;(1)若60θ=︒,AD 足够长,则如何设置机器人乙的释放角度才能挑战成功? (结果精确到0.1︒)(2)如何设计矩形域ABCD 的宽AD 的长度,才能确保无论θ的值为多少,总可以通过 设置机器人乙的释放角度使机器人乙在矩形域ABCD 内成功拦截机器人甲?19(2017嘉定二模). 如图,已知椭圆C :12222=+b y a x (0>>b a )过点3(1,)2,两个焦点为)0,1(1-F 和2(1,0)F ,圆O 的方程为222a y x =+; (1)求椭圆C 的标准方程;(2)过1F 且斜率为k (0>k )的动直线l 与椭圆C 交于A 、B 两点,与圆O 交于P 、Q 两点(点A 、P 在x 轴上方),当||2AF 、||2BF 、||AB 成等差数列时,求弦PQ 的长;19(2017长宁/宝山二模). 已知抛物线22y px =(0)p >,其准线方程为10x +=,直线l过点(,0)T t (0)t >且与抛物线交于A 、B 两点,O 为坐标原点. (1)求抛物线方程,并证明:OA OB ⋅的值与直线l 倾斜角的大小无关;DABCP(2)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式.20(2017虹口二模). 已知椭圆2222:1x y C a b+=(0a b >>),定义椭圆C 上的点00(,)M x y 的“伴随点”为00(,)x y N a b; (1)求椭圆C 上的点M 的“伴随点”N 的轨迹方程; (2)如果椭圆C 上的点3(1,)2的“伴随点”为13(,)22b,对于椭圆C 上的任意点M 及它的 “伴随点”N ,求OM ON ⋅的取值范围;(3)当2a =,b =l 交椭圆C 于A ,B 两点,若点A ,B 的“伴随点”分别是P ,Q ,且以PQ 为直径的圆经过坐标原点O ,求OAB ∆的面积;20(2017闵行/松江二模). 设直线l 与抛物线24y x =相交于不同两点A 、B ,与圆222(5)x y r -+=(0)r >相切于点M ,且M 为线段AB 的中点.(1)若△AOB 是正三角形(O 为坐标原点),求此三角形的边长; (2)若4r =,求直线l 的方程;(3)试对(0,)r ∈+∞进行讨论,请你写出符合条件的直线l 的条数(只需直接写出结果).20(2017普陀二模). 已知曲线Γ:13422=+y x ,直线l 经过点()0,m P 与Γ相交于A 、B 两点;(1)若(0,C 且||2PC =,求证:P 必为Γ的焦点;(2)设0>m ,若点D 在Γ上,且||PD 的最大值为3,求m 的值; (3)设O 为坐标原点,若3=m ,直线l 的一个法向量为(1,)n k =,求AOB ∆面积的最大值;20(2017黄浦二模). 设椭圆2222:1x y M a b+=(0)a b >>的左顶点为A ,中心为O ,若椭圆M 过点11(,)22P -,且AP PO ⊥. (1)求椭圆M 的方程;(2)若△APQ 的顶点Q 也在椭圆M 上,试求△APQ 面积的最大值;(3)过点A 作两条斜率分别为1k 、2k 的直线交椭圆M 于D 、E 两点,且121k k =,求证: 直线DE 恒过一个定点.20(2017徐汇二模). 如图:椭圆2212x y +=与双曲线22221x y a b -=(0,0)a b >>有相同的焦点1F 、2F ,它们在y 右侧有两个交点A 、B ,满足220F A F B +=,将直线AB 左侧的椭圆部分(含A 、B 两点)记为曲线1W ,直线AB 右侧的双曲线部分(不含A 、B 两点)记为曲线2W ,以1F 为端点作一条射线,分别交1W 于点(,)P P P x y ,交2W 于点(,)M M M x y (点M 在第一象限),设此时11F M mF P =. (1)求2W 的方程; (2)证明:1P x m=,并探索直线2MF 与2PF 斜率之间的关系; (3)设直线2MF 交1W 于点N ,求△1MF N 的面积S 的取值范围.21(2017杨浦二模). 设双曲线Γ的方程为2213y x -=,过其右焦点且斜率不为零的直线1l 与双曲线交于A 、B 两点,直线2l 的方程为x t =, A 、B 在直线2l 上的射影分别为C 、D . (1)当1l 垂直于x 轴,2t =-时,求四边形ABDC 的面积;(2)当0t =,1l 的斜率为正实数,A 在第一象限,B 在第四象限时,试比较||||||||AC FB BD FA ⋅⋅和1的大小,并说明理由;(3)是否存在实数(1,1)t ∈-,使得对满足题意的任意直线1l ,直线AD 和直线BC 的交点 总在x 轴上,若存在,求出所有的t 的值和此时直线AD 与BC 交点的位置;若不存在,说 明理由.21(2017奉贤二模). 已知椭圆2222:1x y E a b+=(0a b >>),左焦点是1F ;(1)若左焦点1F 与椭圆E 的短轴的两个端点是正三角形的三个顶点,点1)2Q 在椭圆E 上,求椭圆E 的方程;(2)过原点且斜率为t (0t >)的直线1l 与(1)中的椭圆E 交于不同的两点G 、H ,设1(0,1)B ,1(2,0)A ,求四边形11AGB H 的面积取得最大值时直线1l 的方程;(3)过左焦点1F 的直线2l 交椭圆E 于M 、N 两点,直线2l 交直线x p =-(0p >)于点P ,其中p 是常数,设1λ=,1NF μ=,计算μλ+的值(用p 、a 、b 的代数式表示);。

2017年浦东区高考数学二模试卷含答案

2017年浦东区高考数学二模试卷含答案

2017年浦东区高考数学二模试卷含答案LT2017年浦东新区高考数学二模试卷含答案2017.4一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知集合201x A x x ⎧-⎫=≥⎨⎬+⎩⎭,集合{|04}B y y =≤<,则A B =____________.2. 若直线l 的参数方程为44,23x tt y t =-⎧∈⎨=-+⎩R ,则直线l 在y 轴上的截距是____________.3. 已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为____________.4. 抛物线214y x =的焦点到准线的距离为____________. 5. 已知关于,x y 的二元一次方程组的增广矩阵为215120⎛⎫⎪-⎝⎭,则3x y -=____________.6. 若三个数123,,a a a 的方差为1,则12332,32,32a a a +++的方差为____________.7. 已知射手甲击中A 目标的概率为0.9,射手乙击中A 目标的概率为0.8,若甲、乙两人各向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是____________.8. 函数3sin ,0,62y x x ππ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦的单调递减区间是____________.9. 已知等差数列{}na 的公差为2,前n 项和为nS ,则1limnn n n S a a →∞+=____________.10. 已知定义在R 上的函数()f x 满足:①()(2)0f x f x +-=;②()(2)0f x f x ---=;③在[1,1]-上的表达式为21,[1,0]()1,(0,1]x x f x x x ⎧⎪-∈-=⎨-∈⎪⎩,则函数()f x 与函数122,0()log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图像在区间[3,3]-上的交点的个数为____________. 11. 已知各项均为正数的数列{}n a 满足:*11(2)(1)0()n n n n a a a a n ++--=∈N ,且110aa =,则首项1a 所有可能取值中的最大值为____________.12. 已知平面上三个不同的单位向量,,满足·=·=12,若为平面内的任意单位向量,则的最大值为____________.二、选择题(本大题共有 4 小题,满分 20 分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5 分,否则一律得零分.13、若复数z 满足2=-++i z i z ,则复数z 在平面上对应的图形是( )A.椭圆B.双曲线C.直线D.线段 14、已知长方体切去一个角的几何体直观图如图所示,给出下列4个平面图:则该几何体的主视图、俯视图、左视图的序号依次是()A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)15、已知x x cos 1sin 2+=,则=2cot x ( )A.2B.2或21C.2或0D.21或0 16、已知等比数列1a ,2a ,3a ,4a 满足)1,0(1∈a ,)2,1(2∈a,)4,2(3∈a ,则4a 的取值范围是( )A.)83(,B.)162(,C.)84(,D.(226),1三、解答题(本大题共有5小题,满分76分) 17. (本小题满分14分,第1小题满分6分,第2小题满分8分)如图所示,球O 的球心O 在空间直角坐标系O xyz -的原点,半径为1,且球O 分别与,,x y z 轴的正半轴交于,,A B C 三点. 已知球面上一点310,,22D ⎛⎫-⎪ ⎪⎝⎭.(1)求,D C 两点在球O 上的球面距离;(2)求直线CD 与平面ABC 所成角的大小.18. (本小题满分14分,第1小题满分6分,第2小题满分8分)某地计划在一处海滩建造一个养殖场.(1)如图,射线,OA OB 为海岸线,23AOB π∠=,现用长度为1千米的围网PQ 依托海岸线围成一个△POQ 的养殖场,问如何选取点,P Q ,才能使养殖场△POQ 的面积最大,并求其最大面积.(2)如图,直线l 为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB (点,A B 在直线l 上),使三角形OAB 面积最大,设其为1S ;方案二:围成弓形CDE (点,D E 在直线l 上,C 是优弧所在圆的圆心且23DCE π∠=),其面积为2S ;试求出1S 的最大值和2S (均精确到0.01平方千米),并指出哪一种设计方案更好.19. (本小题满分14分,第1小题满分6分,第2小题满分8分) 已知双曲线22:143x y C -=,其右顶点为P .(1)求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;(2)设直线l 过点P ,其法向量为=(1,1)-,若在双曲线C 上恰有三个点123,,P P P 到直线l 的距离均为d ,求d 的值.20、(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 若数列{}nA 对任意的*N n ∈,都有kn n A A=+1()0≠k ,且0≠nA,则称数列{}nA 为“k 级创新数列”.(1)已知数列{}na 满足nn n a a a2221+=+且211=a,试判断数列{}12+na是否为“2级创新数列”,并说明理由;(2)已知正数数列{}nb 为“k 级创新数列”且1≠k ,若101=b ,求数列{}nb 的前n 项积nT ;(3)设βα,是方程012=--x x的两个实根)(βα>,令αβ=k ,在(2)的条件下,记数列{}nc 的通项nb n nT cn log 1⋅=-β,求证:nn n c c c +=++12,*N n ∈.21、(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)对于定义域为R 的函数)(x g ,若函数[])(sin x g 是奇函数,则称)(x g 为正弦奇函数.已知)(x f 是单调递增的正弦奇函数,其值域为R ,)0(=f .(1)已知)(x g 是正弦奇函数,证明:“0u 为方程[]1)(sin =x g 的解”的充要条件是“0u -为方程[]1)(sin -=x g 的解”;(2)若2)(π=a f ,2)(π-=b f ,求b a +的值; (3)证明:)(x f 是奇函数.郭老师 高中数学10 / 13参考答案1. [2,4)2. 13. 8π4. 25. 56. 97. 0.98 8.20,3π⎡⎤⎢⎥⎣⎦9. 14 10. 6 11. 1612. 13. D 14. C 15. C 16. D17. (1)3DC π= (2)θ= 18. (1)选取3OP OQ ==时养殖场△POQ 的面积最大,max12S=(平方千米) (2)1max18S=(平方千米),20.144S≈(平方千米)12S S <,方案二所围成的养殖场面积较大,方案二更好 19. (1)2212(2)7x y -+=(2)2d =220. (1)是 (2)1*110()n k knTn --=∈N。

2017年上海市高考数学·二模汇编 数列

2017年上海市高考数学·二模汇编 数列

2017届高中数学·二模汇编 数列一、填空题1、设多项式()()()()23*11110,nx x x x x n N ++++++++≠∈的展开式中x 项的系数为n T ,则2limnn T n →∞=____________2、设1210,,,x x x 为1,2,,10的一个排列,则满足对任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为____________ 3、设数列{}n a 的前n 项和为n S ,若*21()3n n S a n N =-∈,则lim n n S →∞=_________4、已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项,i j a a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S = .5、计算:=⎪⎭⎫⎝⎛+∞→311lim n n .6、已知等差数列{}n a 的公差为2,前n 项和为n S ,则1limnn n n S a a →∞+=7、已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=*()n N ∈,且110a a =,则首项1a 所有可能取值中最大值为8、已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项,i j a a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =___.9、各项均不为零的数列}{n a 的前n 项和为n S . 对任意*N ∈n ,)2,(11++-=n n n n a a a m 都是直线kx y =的法向量.若n n S ∞→lim 存在,则实数k 的取值范围是______10、已知xx x f +-=11)(,数列}{n a 满足211=a ,对于任意*N ∈n 都满足)(2n n a f a =+,且0>n a ,若1820a a =,则20172016a a +的值为_________11、=++++∞→nn n n n 3232lim11_______________. 12、设等差数列}{n a 的各项都是正数,前n 项和为n S ,公差为d .若数列{}nS 也是公差为d 的等差数列,则}{na 的通项公式为=n a ___________13、对于数列{}n a ,若存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 是以T 为周期的周期数列.设1(01)b m m =<<,对任意正整数n 都有 111)1(01) (n n n n n b b b b b +->⎧⎪=⎨<⎪⎩≤,,若数列{}n b 是以5为周期的周期数列,则m的值可以是 .(只要求填写满足条件的一个m 值即可)14、无穷数列{}n a 的前n 项和为n S ,若对任意的正整数n 都有{}12310,,,,n S k k k k ∈,则10a 的可能取值最多..有 个.15、已知{}n a 为等差数列,若16a =,350a a +=,则数列{}n a 的通项公式为_______16、已知数列{}n a 是无穷等比数列,它的前n 项的和为n S ,该数列的首项是二项式71x x ⎛⎫+ ⎪⎝⎭展开式中的x 的系数,公比是复数iz 311+=的模,其中i 是虚数单位,则n n S ∞→lim =_____.二、填空题1、设1210x x x ,,,为1210,,,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( )(A )512 (B )256 (C )255 (D )64 2、设等差数列{}n a 的公差为d , 0d ≠. 若{}n a 的前10项之和大于其前21项之和, 则 ( )(A) 0d <(B) 0d > (C) 160a <(D)160a >3、已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( ) A. (3,8) B. (2,16) C. (4,8)D.三、解答题1、已知数列{}n a 的前n 项和为n S ,且22n n S a =-(*n N ∈).(1)求{}n a 的通项公式;(2)设1122++-=n n n b b ,81=b ,n T 是数列{}nb 的前n 项和,求正整数k ,使得对任意*n N ∈均有k n T T ≥恒成立; (3)设11(1)(1)n n n n a c a a ++=++,n R 是数列{}n c 的前n 项和,若对任意*n N ∈均有n R λ<恒成立,求λ的最小值.2、已知数列{}n a 是首项等于116且公比不为1的等比数列,n S 是它的前n 项和,满足325416S S =-. (1)求数列{}n a 的通项公式;(2)设log n a n b a =(0a >且1)a ≠,求数列{}n b 的前n 项和n T 的最值.3、如果一条信息有n 1,)n n >∈N (种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为12,,,n p p p ,则称H =12()()()n f p f p f p ++(其中()f x =log ,a x x -(0,1)x ∈)为该条信息的信息熵.已知11()22f =. (1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小; (2)某次比赛共有n 位选手(分别记为12,,,n A A A )参加,若当1,2,k =,1n -时,选手k A 获得冠军的概率为2k -,求“谁获得冠军”的信息熵H 关于n 的表达式.4、已知()y f x =是R 上的奇函数,(1)1f -=-,且对任意(),0x ∈-∞,()11x f x f x x ⎛⎫=⎪-⎝⎭都成立. (1) 求12f ⎛⎫-⎪⎝⎭、13f ⎛⎫- ⎪⎝⎭的值;(2) 设1()()n a f n n*=∈N ,求数列{}n a 的递推公式和通项公式;(3) 记121321n n n n n T a a a a a a a a --=++++,求1limn n nT T +→∞的值.5、给定数列}{n a ,若满足a a =1(0>a 且1≠a ),对于任意的*,N ∈m n ,都有m n m n a a a ⋅=+,则称数列}{n a 为指数数列.(1)已知数列}{n a ,}{n b 的通项公式分别为123-⋅=n n a ,nn b 3=,试判断}{n a ,}{n b 是不是指数数列(需说明理由);(2)若数列}{n a 满足:21=a ,42=a ,n n n a a a 2312-=++,证明:}{n a 是指数数列; (3)若数列}{n a 是指数数列,431++=t t a (*N ∈t ),证明:数列}{n a 中任意三项都不能构成等差数列.6、若数列{}n A 对任意的*n N ∈,都有1k n n A A +=(0)k ≠,且0n A ≠,则称数列{}n A 为“k 级创新数列”.(1)已知数列{}n a 满足2122n n n a a a +=+且112a =,试判断数列{}21n a +是否为“2级创新数列”,并说明理由; (2)已知正数数列{}n b 为“k 级创新数列”且1k ≠,若110b =,求数列{}n b 的前n 项积n T ;(3)设α、β是方程210x x --=的两个实根()αβ>,令k βα=,在(2)的条件下,记数列{}n c 的通项1log n n n b n c T β-=⋅,求证:21n n n c c c ++=+,*n N ∈.7、数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里,a k 均为实数)(1)若{}n a 是等差数列,求k ; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.8、已知数列}{n a 中,11=a ,a a =2,)(21+++=n n n a a k a 对任意*N ∈n 成立,数列}{n a 的前n 项和为n S .(1)若}{n a 是等差数列,求k 的值; (2)若1=a ,21-=k ,求n S ; (3)是否存在实数k ,使数列}{n a 是公比不为1的等比数列且任意相邻三项m a ,1+m a ,2+m a 按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.9、设数列{}n a 满足4n n a A B n =⋅+⋅, 其中,A B 是两个确定的实数, 0B ≠.(1) 若1A B ==, 求{}n a 的前n 项之和; (2) 证明:{}n a 不是等比数列; (3) 若12a a =, 数列{}n a 中除去开始的两项之外, 是否还有相等的两项? 并证明你的结论.10、现有正整数构成的数表如下:第一行: 1第二行: 1 2第三行: 1 1 2 3第四行: 1 1 2 1 1 2 3 4第五行: 1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5…… …… ……第k 行:先抄写第1行,接着按原序抄写第2行,然后按原序抄写第3行,⋯,直至按原序抄写第1k -行,最后添上数k .(如第四行,先抄写第一行的数1,接着按原序抄写第二行的数1,2,接着按原序抄写第三行的数1,1,2,3,最后添上数4).将按照上述方式写下的第n 个数记作n a (如11a =,21a =,32a =,41a =,⋯,73a =,⋯,14153,4,a a ==).(1)用k t 表示数表第k 行的数的个数,求数列{}k t 的前k 项和k T ;(2)第8行中的数是否超过73个?若是,用0n a 表示第8行中的第73个数,试求0n 和0n a 的值;若不是,请说明理由;(3)令123n n S a a a a =++++,求2017S 的值.11、已知数列{}n a (*N ∈n ),若{}1++n n a a 为等比数列,则称{}n a 具有性质P .(1)若数列{}n a 具有性质P ,且3,1321===a a a ,求4a 、5a 的值;(2)若()nn n b 12-+=,求证:数列{}n b 具有性质P ; (3)设=+++n c c c 21n n +2,数列{}n d 具有性质P ,其中11=d ,123c d d =-,232c d d =+,若310>m d ,求正整数m 的取值范围.12、对于数列{}n a ,定义12231n n n T a a a a a a +=+++,*n N ∈.(1) 若n a n =,是否存在*k N ∈,使得2017k T =?请说明理由;(2) 若13a =,61nn T =-,求数列{}n a 的通项公式; (3) 令21*112122,n n n n T T n b T T T n n N +--=⎧=⎨+-≥∈⎩,求证:“{}n a 为等差数列”的充要条件是“{}n a 的前4项为等差数列,且{}n b 为等差数列”.13、某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入)(n g 是生产时间n 个月的二次函数kn n n g +=2)((k 是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.(1)求前8个月的累计生产净收入)8(g 的值;(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.14、已知等差数列}{n a 的前n 项和为n S ,91-=a ,2a 为整数,且对任意*N ∈n 都有5S S n ≥.(1)求}{n a 的通项公式;(2)设341=b ,⎩⎨⎧-+-=+为偶数为奇数n b n a b n n n n ,)2(,,1(*N ∈n ),求}{n b 的前n 项和n T ; (3)在(2)的条件下,若数列}{n c 满足)N ()21()1(*5122∈-++=++n b b c n a n n n n λ.是否存在实数λ,使得数列}{n c 是单调递增数列.若存在,求出λ的取值范围;若不存在,说明理由.。

青浦区2017学年高三年级第二次学业质量调研测试二模数学

青浦区2017学年高三年级第二次学业质量调研测试二模数学

主视图 左视图俯视图(第7题图)青浦区2017学年高三年级第二次学业质量调研测试数学试卷2018.04(满分150分,答题时间120分钟)考生注意:1.本场考试时间120分钟.试卷共4页,满分150分.答题纸共2页. 2.作答前,在答题纸正面填写姓名、准考证号,并正确填涂准考证号.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.不等式|3|2x -<的解集为__________________.2.若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 3.若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________.4.已知两个不同向量(1,)OA m =u u u r ,(1,2)OB m =-u u u r,若OA AB ⊥u u u r u u u r ,则实数m =____________.5.在等比数列{}n a 中,公比2q =,前n 项和为n S ,若51S =,则10S = .6.若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为____________.7.如图所示,一个圆柱的主视图和左视图都是边长为1的正方形, 俯视图是一个直径为1的圆,那么这个圆柱的体积为__________. 8.621(1)(1)x x++展开式中2x 的系数为______________. 9.高三某位同学参加物理、化学、政治科目的等级考,已知这位同 学在物理、化学、政治科目考试中达A +的概率分别为78、34、512, 这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是 .10.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数2()2g x x x m =-+. 如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f x g x ≤,则实数m 的取值范围是 .11.已知曲线C y =:2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=u u u r u u u r r,则m 取值范围是 .12.已知22s 1(,,0)cos 1a a in M a a a a θθθ-+=∈≠-+R ,则M 的取值范围是 . 二、选择题(本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设,αβ是两个不同的平面,b 是直线且b β⊂≠.则“b α⊥”是“αβ⊥”的( ). (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分又不必要条件14.若已知极限sin lim0n n n →∞=,则3sin lim sin 2n n nn n→∞--的值为( ).(A )3-(B )32-(C )1-(D )12-15.已知函数()f x 是R 上的偶函数,对于任意x ∈R 都有(6)()(3)f x f x f +=+成立,当[]12,0,3x x ∈,且12x x ≠时,都有1212()()0f x f x x x ->-.给出以下三个命题:①直线6x =-是函数()f x 图像的一条对称轴; ②函数()f x 在区间[]9,6--上为增函数; ③函数()f x 在区间[]9,9-上有五个零点. 问:以上命题中正确的个数有( ). (A )0个(B )1个(C )2个(D )3个16.如图所示,将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉 两个正方形内部的八条线段后可以形成一正八角星.设正八角星的中心为,并且12,OA e OB e ==u u u r u r u u u r u u r.若将点到正八角星16个顶点的向量都写成 12e e λμλμ+∈R u r u u r,、的形式,则λμ+的取值范围为( ).(A )22,2⎡⎤-⎣⎦(B )22,12⎡⎤-+⎣⎦(C )12,12⎡⎤--+⎣⎦(D )12,2⎡⎤--⎣⎦三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在正四棱锥P ABCD -中,22PA AB ==,E ,F 分别为PB ,PD 的中点. (1)求正四棱锥P ABCD -的全面积;(2)若平面AEF 与棱PC 交于点M ,求平面AEM F 与平面ABCD 所成锐二面角的大小(用反三角函数值表示).18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知向量(cos ,1)2x m =-u r ,2(3sin ,cos )22x x n =r ,设函数()1f x m n =⋅+u r r .(1)若[0,]2x π∈,11()10f x =,求x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别是c b a ,,且满足2cos 23,b A c a ≤-求()f B 的取值范围.O O e 2e 1BAO(第16题图)19.(本题满分14分,第1小题满分6分,第2小题满分8分)已知椭圆2222C 1(0)x y a b a b+=>>:的一个顶点坐标为(2,0)A ,且长轴长是短轴长的两倍.(1)求椭圆C 的方程;(2)过点(1,0)D 且斜率存在的直线交椭圆于G H 、,G 关于x 轴的对称点为G ',求证:直线G H '恒过定点()4,0.20.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分.设函数()2()5f x ax a x=-+∈R . (1)求函数的零点;(2)当3a =时,求证:()f x 在区间(),1-∞-上单调递减;(3)若对任意的正实数a ,总存在[]01,2x ∈,使得0()f x m ≥,求实数m 的取值范围.21.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.给定数列{}n a ,若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.(1)已知数列{}n a 的通项公式为3nn a =,试判断{}n a 是否为封闭数列,并说明理由; (2)已知数列{}n a 满足122++=+n n n a a a 且212=-a a ,设n S 是该数列{}n a 的前n 项和,试问:是否存在这样的“封闭数列”{}n a ,使得对任意n ∈*N 都有0≠n S ,且12111111818n S S S <+++<L ,若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由; (3)证明等差数列{}n a 成为“封闭数列”的充要条件是:存在整数1m ≥-,使1a md =.青浦区2017学年高三年级第二次学业质量调研测试数学参考答案及评分标准 2018.04说明:1.本解答列出试题一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后续部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,但是原则上不应超出后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第17题至第21题中右端所注的分数,表示考生正确做到这一步应得的该题分数. 4.给分或扣分均以1分为单位.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果. 1.{}15x x <<或(1,5); 2.52i 2-; 3.13;4.1; 5.33;6.12-; 7.π4;8.30;9.151192; 10. 5m ≥-; 11.1[,1]2-; 12.4433M +≤≤. 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13. A ;14. D ; 15. B ;16. C .三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)因为正四棱锥P ABCD -,取AB 中点G ,连接PG ,PA AB ==Q ,PG ∴=21=482S S S +=+⨯⨯=+侧全底(2)连接AC ,连接BD ,记AC BD O =I ,因为OA ,OB ,OP 两两互相垂直,如图建立空间直角坐标系O xyz -.因为PB AB ==Rt Rt POB AOB ≅△△.所以2OA OP ==.所以(2,0,0)A ,(0,2,0)B ,(2,0,0)C -,(0,2,0)D -,(0,0,2)P ,(0,1,1)E ,(0,1,1)F -.所以(2,1,1)AE =-u u u r ,(2,1,1)AF =--u u u r . 设平面AEMF 的法向量为(,,)n x y z =r ,所以0,0,n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即20,20.x y z x y z -++=⎧⎨--+=⎩所以0y =.令1x =,2z =,所以(1,0,2)n =r.因为平面平面ABCD 的一个法向量为(0,0,1)m =u r设m u r 与n r 的夹角为ϕ,cos 5m n m n ϕ⋅===-⋅u r ru rr arccos 5ϕ⇒= 所以平面AEMF 与平面ABCD所成锐二面角的大小是. 18.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)21cos ()cos cos 112222x x x xf x x +=-+=-+111sin cos sin()22262x x x π=-+=-+ ∵113() sin(); [0,]10652f x x x ππ=∴-=∈Q 又 ∴33arcsin arcsin 6565x x ππ-=⇒=+ (2)由A C A B a c A b sin 3sin 2cos sin 232cos 2-≤-≤得2sin cos2sin()B A A B A⇒≤+-2sin cos2[sin cos cos sin)B A A B A B A ⇒≤+2sin cos cos(0,]26A B A B Bπ⇒≥⇒≥⇒∈∴111sin()(,0],()sin()()(0,]62622B f B B f Bππ-∈-=-+⇒∈即19.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)因为椭圆2222C1(0)x ya ba b+=>>:的一个顶点坐标为(2,0)A,即2a=又长轴长是短轴长的两倍,即241a b b=⇒=,所以椭圆方程2214xy+=;(2)解一:设直线GH的方程为(1)y k x=-,点1122,,x y x yG(),H()则11,x y'-G()联立方程组222222(1)(14)844044y k xy k x k x kx y=-⎧+-+-=⎨+=⎩消去可得由韦达定理可得22121222844,,1414k kx x x xk k-+==++直线211121(),y yy y x xx x++=--,G H:211212211121214()4(4)=y y y x x y y yx y y xx x x x+--++==-+---当时,222212122121844[528][5()28]1414=k kkk x x x x k kx x x x-⨯-⨯-+--++=--2222214088[8]1414==0k k k k k x x ---++-所以直线则H 'G 过定点(4,0)20.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分. 解:(1)①当0a =时,函数的零点为25x =-; ②当2508a a ≥-≠且时,函数的零点是52x a ±=;③当258a <-时,函数无零点; (2)当3a =时,2()3+5f x x x =-,令2()3+5g x x x=- 任取12,(,1)x x ∈-∞-,且12x x <, 则()211212121212()2322()()3535x x x x g x g x x x x x x x -+⎛⎫-=-+--+= ⎪⎝⎭ 因为12x x <,12,(,1)x x ∈-∞-,所以210x x ->,121x x >,从而()211212()230x x x x x x -+>即1212()()0()()g x g x g x g x ->⇒>故()g x 在区间(),1-∞-上的单调递减当(),1x ∈-∞-时,()()6,g x ∈+∞22()3+5=3+5()f x x x g x x x∴=--= 即当3a =时,()f x 在区间(),1-∞-上单调递减;(3)对任意的正实数a ,存在[]01,2x ∈使得0()f x m ≥,即0max ()f x m ≥,当()0,x ∈+∞时,25,02()+5255,2ax x x f x ax x ax x xa ⎧-+<<⎪⎪=-=⎨+⎪-+-≥⎪⎩ 即()f x在区间50,2a ⎛ ⎝⎭上单调递减,在区间⎫+∞⎪⎪⎝⎭上单调递增; 所以{}{}0max ()max (1),(2)max 7,62f x f f a a ==--, 又由于0a >,{}8max 7,623a a --≥,所以83m ≤.21.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分. 解:(1){}n a 不是封闭数列.因为取1,2n n ==,则123912a a +=+=,233123<<即123,m a a m +≠∈*N 从而{}12n a a a +∉,所以{}n a 不是封闭数列;(2)因为122++=+n n n a a a ,所以{}n a 是等差数列,又212=-a a ,所以()121-+=n a a n , 若{}n a 是“封闭数列”,所以对任意,s t ∈*N ,必存在p ∈*N ,使得()()()111212121a s a t a p +-++-=+-,即()121a p s t =--+,故1a 是偶数,又对任意n ∈*N 都有0≠n S ,且12111111818n S S S <+++<L ,所以11111818S <<,故118811a <<,故1a 可取的值为2,4,6 经检验得:41=a 或61=a ;(3)证明:(必要性)任取等差数列的两项,()s t a a s t ≠,若存在k a ,使s t k a a a +=,则1112(2)(1)(1)a s t d a k d a k s t d ++-=+-⇒=--+,故存在1m k s t =--+∈Z ,使1a md =下面证明1m ≥-①当0d =时,显然成立②当0d ≠时,若1m <-时则取2p m =-≥,对不同的两项1,p a a ,存在q a ,使1p q a a a +=,即2(1)(1)0md m d md q d qd +--=+-⇒=,这与0,0q d >≠矛盾,故存在整数1m ≥-,使1a md =(充分性)若存在整数1m ≥-,使1a md =,则任取等差数列的两项,()s t a a s t ≠,于是111+(1)(1)(1)(1)s t a a a s d a t d a s d md t d=+-++-=+-++-11(2)s m t a s m t d a ++-=+++-=,由于3,1s t m +≥≥-,1s t m ∴++-为正整数,即{}1s m t n a a ++-∈证毕.。

2017届上海市长宁区高三二模数学卷(含答案)

2017届上海市长宁区高三二模数学卷(含答案)

长宁区2016学年第二学期高三年级质量调研测试数学试题2017.04.05(满分150分.答题时间120分钟)考生注意:1.本场考试时间120分钟.试卷共4页.满分150分.答题纸共2页. 2.作答前.在答题纸正面填写姓名、准考证号.将核对后的条形码贴在答题纸指定位置. 3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域.不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题.用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题.满分54分.第1~6题每题4分.第7~12题每题5分) 考生应在答题纸的相应位置直接填写结果. 1.已知集合{}1A x x x =>-∈R ,.集合{}2B x x x =<∈R ,.则AB =______.2.已知复数z 满足(23i)32i z -=+(i 为虚数单位).则._________||=z3.函数sin 2cos ()2cos sin x x f x xx=的最小正周期是___________.4.已知双曲线22221(0)(3)x y a a a -=>+的一条渐近线方程为2y x =.则a =________. 5.若圆柱的侧面展开图是边长为4cm 的正方形.则圆柱的体积为_______3cm (结果精确到30.1cm ).6.已知x y ,满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩.则2z x y =+的最大值是_________.7.直线12x t y t=-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是_______.8.已知函数220,()log 01x x f x x x ⎧≤=⎨<≤⎩,,的反函数是1()f x -.则11()=2f -________.9.设多项式23*1(1)(1)(1)(0nx x x x x n ++++++++≠∈N ),的展开式中x 项的系数为n T .则2limnn T n →∞=_________.B 1DA 1C 1D 1A BP C第15题图10.生产零件需要经过两道工序.在第一、第二道工序中产生废品的概率分别为0.01和p .每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是0.9603.则p =________.11.已知函数()f x x x a =-.若对任意[]12,3x ∈.[]22,3x ∈.12x x ≠.恒有1212()()(22x x f x f x f ++>.则实数a 的取值范围为___________. 12.对于给定的实数0k >.函数xkx f =)(的图像上总存在点C .使得以C 为圆心.1为半径的圆上有两个不同的点到原点O 的距离为1.则k 的取值范围是_________.二、选择题(本大题共有4题.满分20分.每题5分) 每题有且只有一个正确选项.考 生应在答题纸的相应位置.将代表正确选项的小方格涂黑. 13.设a b ∈R ,.则“4a b +>”是“1a >且3b >”的( ).(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分又不必要条件14.如图.P 为正方体1111D C B A ABCD -中1AC 与1BD 的交点.则ΔPAC 在该正方体各个面上的射影可能是( ).①②③ ④ (A )①②③④(B )①③(C )①④(D )②④15.如图.AB 为圆O 的直径且4AB =.C 为圆上不同于A 、B 的任意一点.若P 为半径OC 上的动点.则()PA PB PC +⋅的 最小值是( ). (A )4-(B )3-(C )2-(D )1-16.设1210x x x ,,,为1210,,,的一个排列.则满足对任意正整数m n ,.且110m n ≤<≤.都有m n x m x n +≤+成立的不同排列的个数为( ).(A )512 (B )256 (C )255 (D )64三、解答题(本大题共有5题.满分76分) 解答下列各题必须在答题纸的相应位置写出 必要的步骤.θ ABC17.(本题满分14分.第1小题满分8分.第2小题满分6分)如图.在正方体1111ABCD A B C D -中.E F 、分别是线段1BC CD 、的中点. (1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18.(本题满分14分.第1小题满分6分.第2小题满分8分)某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室.地面形状如图所示.已知已有两面墙的夹角为π3(即π3ACB ∠=).墙AB 的长度为6米(已有两面墙的可利用长度足够大).记θ=∠ABC .(1)若π4θ=.求ΔABC 的周长(结果精确到0.01米); (2)为了使小动物能健康成长.要求所建造的三角形露天活动室面积即ABC ∆的面积尽可能大.问当θ为何值时.该活动室面积最大?并求出最大面积.19.(本题满分14分.第1小题满分6分.第2小题满分8分)ABCD1A1BFE1D1C已知抛物线px y 22=(0>p ).其准线方程为01=+x .直线l 过点)0,(t T (0>t )且与抛物线交于A 、B 两点.O 为坐标原点.(1)求抛物线方程.并证明:⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点.记||PT 的最小值为函数)(t d .求)(t d 的解析式. 20.(本题满分16分.第1小题满分4分.第2小题满分6分.第3小题满分6分)对于定义域为D 的函数)(x f y =.如果存在区间[,]m n D ⊆.其中m n <.同时满足:①)(x f 在],[n m 内是单调函数;②当定义域是],[n m 时.)(x f 的值域也是],[n m .则称函数)(x f 是区间],[n m 上的“保值函数”.区间],[n m 称为“保值区间”.(1)求证:函数x x x g 2)(2-=不是定义域]1,0[上的“保值函数”; (2)若函数xa a x f 2112)(-+=(,0a a ∈≠R )是区间],[n m 上的“保值函数”.求a 的取值范围;(3)对(2)中函数)(x f .若不等式x x f a 2|)(|2≤对1≥x 恒成立.求实数a 的取值范围. 21.(本题满分18分.第1小题满分4分.第2小题满分6分.第3小题满分8分)已知数列}{n a 中.11=a .a a =2.)(21+++=n n n a a k a 对任意*N ∈n 成立.数列}{n a 的前n 项和为n S .(1)若}{n a 是等差数列.求k 的值; (2)若1=a .21-=k .求n S ; (3)是否存在实数k .使数列}{n a 是公比不为1的等比数列且任意相邻三项m a .1+m a .2+m a 按某顺序排列后成等差数列?若存在.求出所有k 的值;若不存在.请说明理由.2016学年第二学期高三质量调研数学参考答案及评分标准说明1.本解答列出试题一种或几种解法.如果考生的解法与所列解法不同.可参照解答中评分标准的精神进行评分.2.评阅试卷.应坚持每题评阅到底.不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误.影响了后续部分.但该步以后的解答未改变这一题的内容和难度时.可视影响程度决定后面部分的给分.但是原则上不应超出后面部分应给分数之半.如果有较严重的概念性错误.就不给分.3.第17题至第21题中右端所注的分数.表示考生正确做到这一步应得的该题分数. 4.给分或扣分均以1分为单位.一.填空题(本大题满分54分)本大题共有12题.1-6每题4分.7-12每题5分考生应在答题纸相应编号的空格内直接填写结果. 1.(1,2)-; 2.1; 3.π; 4.3; 5.5.1; 6.3; 7.2;8.1-;9.12;10.0.03;11.[)3,+∞;12.()0,2.二.选择题(本大题满分20分)本大题共有4题.每题有且只有一个正确答案.考生应在答题纸的相应编号上.将代表答案的小方格涂黑.选对得5分.否则一律得零分.13.B ;14.C ; 15.C ;16.A .三.解答题(本大题满分74分)本大题共有5题.解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共2小题.第(1)小题8分.第(2)小题6分.解:(1)设正方体棱长为2.以D 为原点.直线DA .DC .1DD 为x .y .z 轴.建立空间直角坐标系.则(0,0,0)D .(2,2,0)B .(0,2,0)C .1(0,0,2)D . 故(1,2,0)E .(0,1,1)F .{1,1,1}EF =--.1{0,0,2}AA =………………………………………4分设异面直线EF 与1AA 所成角的大小为α.向量EF 与1AA 所成角为β.则11cos cos EF AA EF AA αβ==…………………………………………6分==⇒α=即异面直线EF 与1AA 所成角的大小为……………………………8分 (2)由(1)可知.平面11AA B B 的一个法向量是(1,0,0)n =.…………10分 设直线EF 与平面11AA B B 所成角的大小是θ.向量EF 与n 所成角为γ.则s cos EF n in EF nθγ==.…………………………………………………12分s 3in θ=arcs θ=.解:(1)在△ABC 中.由正弦定理得ππππsin sin sin π3434AB AC BC==⎛⎫-- ⎪⎝⎭.…………………………………………2分 化简得.AC =.7πBC ==.…………………4分 所以.17.59c AC BC AB =++=≈米.即ΔABC 的周长为17.59米;…………………………………………6分(2)1πsin 23ABC S AC BC ∆=⋅⋅…………………………………………8分πsin 3θθ⎛⎫+ ⎪⎝⎭………………………………………………10分1sin 2θθθ⎛⎫=⎪ ⎪⎝⎭21cos 2cos )222θθθθθ⎫-==+⎪⎪⎭π26θ⎛⎫=-+ ⎪⎝⎭12分因为2π0θ<<.所以当ππ2θ-=.19.(本题满分14分)本题共2小题.第(1)小题6分.第(2)小题8分. 解:(1)由题意.2=p .所以抛物线的方程为x y 42=.…………………2分 当直线l 的斜率不存在时.直线l 的方程为t x =.则)2,(t t A .)2,(t t B -.t t 42-=⋅.…………………………………………………………3分当直线l 的斜率k 存在时.则0≠k .设l 的方程为)(t x k y -=.),(11y x A .),(22y x B .由⎩⎨⎧-==,)(,42t x k y x y 消去x .得0442=--kt y ky .故⎪⎩⎪⎨⎧-==+,4,42121t y y k y y 所以.t t y y y y y y x x OB OA 41622122212121-=+=+=⋅.……………………5分 综上.OB OA ⋅的值与直线l 倾斜角的大小无关.……………………………6分(2)设),(00y x P .则0204x y =.44)]2([)(||202020-+--=+-=t t x y t x PT .…………………………………………8分因为00≥x .所以⎩⎨⎧<<≥-=.20,,2,12)(t t t t t d ……………………………………14分20.(本题满分16分)本题共3小题.第(1)小题4分.第(2)小题6分.第(3)小题6分. 解:(1)函数x x x g 2)(2-=在]1,0[∈x 时的值域为]0,1[-.……………2分 不满足“保值函数”的定义.因此函数x x x g 2)(2-=不是定义域]1,0[上的“保值函数”.………………4分 (2)因为函数xa a x f 2112)(-+=在],[n m 内是单调增函数. 因此n n f m m f ==)(,)(.…………………………………………6分 因此n m ,是方程x xa a =-+2112的两个不相等的实根. 等价于方程01)2(222=++-x a a x a 有两个不相等的实根…………………8分 由04)2(222>-+=∆a a a 解得23-<a 或21>a .…………………………10分 (3)xa a x f a 12)(22-+=.22212()|()|2222a a a f x x a f x x x x+-≤⇔≤⇔-≤≤.即为⎪⎩⎪⎨⎧-≥++≤+,212,12222x x a a x x a a 对1≥x 恒成立.…………………………………………12分 令x x x h 12)(+=.易证)(x h 在),1[+∞单调递增.同理x xx g 21)(-=在),1[+∞单调递减.因此.1)1()(,3)1()(max min -====g x g h x h .…………………………………14分所以⎩⎨⎧-≥+≤+,12,3222a a a a 解得123≤≤-a .…………………………………………15分又23-<a 或21>a .所以a 的取值范围是112a <≤.……………………16分21.(本题满分18分)本题共3小题.第(1)小题4分.第(2)小题6分.第(3)小题8分.解:(1)若}{n a 是等差数列.则对任意*N ∈n .121+++-=-n n n n a a a a .即212+++=n n n a a a .故21=k .………………………………………………………………4分 (2)21-=k 时.)(2121+++-=n n n a a a .即212++--=n n n a a a .)(112n n n n a a a a +-=++++.故n n n n n n a a a a a a +=+-=++++++11223)(.……5分所以.当n 是偶数时.n a a na a a a a a S n n n =+=++++++=-)(22114321 ;………………………7分 当n 是奇数时.2)(2132-=+-=+a a a a .)()()(15432114321n n n n n a a a a a a a a a a a a a S +++++++=++++++=--n n -=-⨯-+=2)2(211.…………………………………………………………8分 综上.⎩⎨⎧=-=-=kn n k n n S n 2,,12,2(*N ∈k ).………………………………………10分(3)若}{n a 是等比数列.则公比a a a q ==12.由题意1≠a . 故1-=m m a a .m m a a =+1.12++=m m a a .……………………………………11分① 若1+m a 为等差中项.则212+++=m m m a a a .即112+-+=m m m a a a .212a a +=. 解得1=a (舍去);…………………………………………………………13分 ② 若m a 为等差中项.则212+++=m m m a a a .即112+-+=m m m a a a .22a a +=.因为1≠a .解得2-=a .52121121-=+=+=+=+-++a a a a a a a a k m m m m m m ;…15分 ③ 若2+m a 为等差中项.则122+++=m m m a a a .即112-++=m m m a a a .122+=a a .因为1≠a .解得21-=a .5212-=+=a a k .………………………………17分 综上.存在实数k 满足题意.52-=k .………………………………18分。

2017上海所有区高三数学二模集锦(含答案)

2017上海所有区高三数学二模集锦(含答案)

2017上海所有区高三数学二模集锦(含答案)宝山xx年第二学期高三数学教学质量检测试卷一、填空题考生应在答题纸的相应位置直接填写结果.1.若集合A??x|x?0?,B??x|x?1?,则A?B?____________2.已知复数z满足2i?z?1?i,则z?____________3.函数f?x??sinxcosx的最小正周期是____________cosxsinxx2y2?1?a?0?的一条渐近线方程y?3x,则a?____________ 4.已知双曲线2?a815.若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为____________xy06.已知x,y满足?x?y?2,则z?2x?y的最大值是____________x20xt1x3cos7.直线?与曲线?的交点个数是____________y2ty2sin2xx018.已知函数f?x的反函数是f?x?,则f?1____________2log2x0x19.设多项式1?x??1?x1?x??1?x?为Tn,则lim23n?x?0,n?N?的展开式中x项的系数*Tn?____________n??n210.生产零件需要经过两道工序,在第一、第二道工序中产生的概率分别为和p,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是,则p?____________11.设向量m??x,y?,n??x,?y?,P为曲线m?n?1?x?0?上的一个动点,若点P到直线x?y?1?0的距离大于?恒成立,则实数?的最大值为____________12.设x1,x2,?,x10为1,2,?,10的一个排列,则满足对任意正整数m,n,且1?m?n?10,都有xm?m?xn?n成立的不同排列的个数为____________二、选择题每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设a,b?R,则“a?b?4”是“a?1且b?3”的 A. 充分而不必要条件 C. 充要条件B. 必要而不充分条件D. 既不充分又不必要条件PAC在该正方体各个14.如图,P为正方体ABCD?A1BC11D1中AC1与BD1的交点,则面上的射影可能是A. ①②③④15.如图,在同一平面内,点P位于两平行直线l1,l2同侧,且P到l1,l2的距离分别为1,3.B.①③C. ①④D.②④点M,N分别在l1,l2上,PM?PN?8,则PM?PN的最大值为A. 15B. 12C. 10D. 916.若存在t?R与正数m,使F?t?m??F?t?m?成立,则称“函数F?x?在x?t处存x2??在距离为2m的对称点”,设f?xx?0?,若对于任意t?x?2,6,总存在正数m,使得“函数f?x?在x?t处存在距离为2m的对称点”,则实数?的取值范围是A. ?0,2B. 1,2C. 1,2D. 1,4三、解答题解答下列各题必须在答题纸的相应位置写出必要的步骤.17.E、F分别是线段BC、CD1的中点. 如图,在正方体ABCD?A1BC11D1中,求异面直线EF与AA1所成角的大小;求直线EF与平面AA1B1B所成角的大小.18.已知抛物线y?2px?p?0?,其准线方程为x?1?0,直线l 过点T?t,0??t?0?且与2抛物线交于A、B两点,O为坐标原点.求抛物线方程,并证明:OA?OB的值与直线l 倾斜角的大小无关;若P为抛物线上的动点,记PT的最小值为函数d?t?,求d?t?的解析式.19.对于定义域为D的函数y?f?x?,如果存在区间?m,n??D?m?n?,同时满足:①f?x?在?m,n?内是单调函数;②当定义域是?m,n?时,f?x?的值域也是?m,n?则称函数f?x?是区间?m,n?上的“保值函数”.求证:函数g?x??x?2x不是定义域0,1上的“保值函数”; 2?? 已知f?x??2?值范围.11?2?a?R,a?0?是区间?m,n?上的“保值函数”,求a的取aax20. 数列?an?中,已知a1?1,a2?a,an?1?k?an?an?2?对任意n?N都成立,数列?an?的*前n项和为Sn. 若?an?是等差数列,求k;若a?1,k??1,求Sn; 2是否存在实数k,使数列?an?是公比不为1的等比数列,且任意相邻三项am,am?1,am?2按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理.21. 设TüR,若存在常数M?0,使得对任意t?T,均有t?M,则称T为有界集合,同时称M为集合T的上界.2x?11设A1??y|y?x,x?R?、A2??x|sinx??,试判断A1、A2是否为有界集2?2?1合,并说明理;已知f?x??x?u,记f1?x??f?x?,fn?x??ffn?1?x??n?2,3,??.若m?R,21?u??,,且B??fn?m?|n?N*?为有界集合,求u 的值及m的取值范围;4设a、b、c均为正数,将?a?b?、?b?c?、?c?a?中的最小数记为d,是否存在正数0,1?,使得?为有界集合C?{y|y?222d,a、b、c均为正数}的上界,222a?b?c若存在,试求?的最小值;若不存在,请说明理.参考答案1.(0,1)3. ?5. 6. 3 7. 2 8. -19.1 210.14. C11.213. B17. arctan2 ?4x,证明略 d(t)??22 2?2t?1,(t?2)? t,(0?t?2)19. 证明略13或a 22120. k?2a>2n(n2k1,kN)Sn n,(n2k,kN)k2 为有界集合,上界为1;A2不是有界集合 u1?11?,m,? 4?22?1 5解析:设a0?m,a1?f?m?,an?f?an?1?,n?1,2,3,...,则an?fn?m?11?1?22∵a1?f?m??m?u?,则a2?a1?a1?a1?u??a1u??042?4?21?1?且an?an?1??an?1u??0?an?an?12?4?*若B?fn?m?|n?N为有界集合,则设其上界为M0,既有an?M0,n?N2??*∴an?an?an?1?an?1?an?2?...?a2?a1?a1??an?an?1an?1?a n?2??...??a2?a1??a12221?1?1?11?1an?1???u???an?2???u??...??a1???u??m2?u2?4?2?42?4??2221??1?1?1?1?2an?1?an?2 ...??a1m??n?uu?n?uu2??2?2?4?4若an?M0恒成立,则n?u111?u??u??0 恒成立,又?u?M0?444?112,∴f?x??x? 441设m2∴u?1?1?1?10,则a1?a0?f?m??m2?a1?a0?2?2?4?2?∴an?an?1?...?a1?m?21 211??记g?x??f?x??x??x??,则当x1?x2?时,g?x1??g?x2?22??∴g?an?1??f?an?1??an?1?an?an?1?g?m??a1?a0?? 22∴an?a1??2?n?1?,若an?M0恒成立,则??0,矛盾。

2017届上海各区高三数学二模试卷汇总

2017届上海各区高三数学二模试卷汇总

第 33 页 共 57 页
第 34 页 共 57 页
第 35 页 共 57 页
第 36 页 共 57 页
第 37 页 共 57 页
第 38 页 共 57 页
第 39 页 共 57 页
第 40 页 共 57 页
第 41 页 共 57 页
第 42 页 共 57 页
第 43 页 共 57 页
第 44 页 共 57 页
第 45 页 共 57 页
第 46 页 共 57 页
第 47 页 共 57 页
第 48 页 共 57 页
第 49 页 共 57 页
第 50 页 共 57 页
第 51 页 共 57 页
第 52 页 共 57 页
第 53 页 共 57 页Fra bibliotek第 54 页 共 57 页
2017 届上海各区高三数学二模试卷汇总
第 1 页 共 57 页
第 2 页 共 57 页
第 3 页 共 57 页
第 4 页 共 57 页
第 5 页 共 57 页
第 6 页 共 57 页
第 7 页 共 57 页
第 8 页 共 57 页
第 9 页 共 57 页
第 10 页 共 57 页
第 55 页 共 57 页
第 56 页 共 57 页
第 57 页 共 57 页
第 11 页 共 57 页
第 12 页 共 57 页
第 13 页 共 57 页
第 14 页 共 57 页
第 15 页 共 57 页
第 16 页 共 57 页
第 17 页 共 57 页
第 18 页 共 57 页
第 19 页 共 57 页
第 20 页 共 57 页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年上海市长宁、金山、青浦区高考二模数学试

学校_________ 班级__________ 姓名__________ 学号__________
一、填空题
1. 已知集合,集合,则
________.
2. 已知复数z满足(i为虚数单位),则________.
3. 函数的最小正周期是________.
4. 已知双曲线的一条渐近线方程为,则
________.
5. 若圆柱的侧面展开图是边长为4cm的正方形,则圆柱的体积为
________.(结果精确到)
6. 已知满足,则的最大值是_______.
7. 直线(为参数)与曲线(为参数)的交点个数是
_______.
8. 已知函数的反函数是,则______.
9. 设多项式()的展开式中
项的系数为,则_______.
10. 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为和,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是,则_______.
11. 已知函数,若对任意,,,恒有
,则实a的取值范围为________.
12. 对于给定的实数,函数的图像上总存在点C,使得以C为圆心,1为半径的圆上有两个不同的点到原点O的距离为1,则k的取值范围是________.
二、单选题
13. 设,则“”是“且”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件
14. 如图,P为正方体中与的交点,则在该正方体各个面上的射影可能是()
A.①②③④B.①③C.①④D.②④
15. 如图,AB为圆O的直径且,C为圆上不同于A、B的任意一点,若P 为半径OC上的动点,则的最小值是()
A.-4 B.-3 C.-2 D.-1
16. 设,,…,为1,2,…,10的一个排列,则满足对任意正整数
m,n,且,都有成立的不同排列的个数为
()
A.512 B.256 C.255 D.64
三、解答题
17. 如图,在正方体中,分别是线段的中点.(1)求异面直线与所成角的大小;
(2)求直线与平面所成角的大
小.
18. 某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地
面形状如图所示,已知已有两面墙的夹角为,墙的长度为米,(已有两面墙的可利用长度足够大),记.
(1)若,求的周长(结果精确到0.01米);
(2)为了使小动物能健康成长,要求所建的三角形露天活动室面积,的
面积尽可能大,当为何值时,该活动室面积最大?并求出最大面积.
19. 已知抛物线(),其准线方程,直线过点
(),且与抛物线交于、两点,为坐标原点.
(1)求抛物线方程,并注明:的值与直线倾斜角的大小无关;
(2)若为抛物线上的动点,记的最小值为函数,求的解析式.
20. 对于定义域为的函数,如果存在区间,其中,同时满足:
①在内是单调函数:②当定义域为时,的值域为,
则称函数是区间上的“保值函数”,区间称为“保值函数”.
(1)求证:函数不是定义域上的“保值函数”;
(2)若函数()是区间上的“保值函数”,求的取值范围;
(3)对(2)中函数,若不等式对恒成立,求实数的取值范围.
21. 已知数列中,已知,对任意都成立,数列的前n项和为.
(1)若是等差数列,求k的值;
(2)若,,求;
(3)是否存在实数k,使数列是公比不为1的等比数列,且任意相邻三项,,按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.。

相关文档
最新文档