新习题册波动光学分册

合集下载

波动光学习题参考答案

波动光学习题参考答案

=2400(nm) k=2 l2 =800(nm)
红外光
k=3 l3 =480(nm) k=4 l4 =343(nm)
可见光 紫外光
结束 返回
若透射光干涉增强则反射光干涉相消
由干涉相消条件
2ne
+
l
2
=(k+
1 2
)l
取k=2
l2
=
2ne k
=
2×1.5×0.4×103 2
=600
(nm)
取k=3
两式相减Δ得x到´=:DD´dbDb´
+
d D
(x ´
x )=0
(x´ x )<0
即条纹向下移动,而条纹间距不变
结束 返回
7、 用单色光源S照射双缝,在屏上形
成干涉图样,零级明条纹位于O 点,如图所
示。若将缝光源 S 移至位置S ´,零级明条
纹将发生移动。欲使零级明条纹移回 O 点,
必须在哪个缝处覆盖一薄云母片才有可能?
低),作图表示明条纹;
(2)求明条纹距中心线的距离;
(3)共能看到多少条明条纹;
(4)若将玻璃片B向下
平移,条纹如何移动?
A
d
若玻璃片移动了l /4,
问这时还能看到几条明条纹? B
结束 返回
解:对于边缘处e =0由于有半波损失为暗纹
暗纹条件:
2e
+
l
2
=
(2k+1) 2l
k=0,1,2,...
暗纹最高级数
结束 返回
解:由暗纹条件
2ne
=
(2k+1)
l
2
=(k+
1 2

医用物理学练习册---10波动光学含答案

医用物理学练习册---10波动光学含答案

10波动光学一、选择题1、以下叙述除哪个以外都是电磁波:(A)可见光;(B)声波;(C)X射线;(D) 射线;(E)无线电波。

[ ]2、波由一种介质进入另一介质时一定不变的物理量是:(A)频率;(B)波长;(C)波速;(D)传播方向。

[ ]3、以下哪个不是两束相干光的必备条件:(A)振动方向一致;(B)频率相同;(C)传播距离相同;(D)位相差恒定;[ ]4、光程的数值取决于:(A)光的传播距离;(B)光传播的几何距离和媒质的折射率;(C)媒质的折射率;(D)媒质对光的吸收。

[ ]5、在吹肥皂泡的过程中,以恒定的方向看到肥皂泡表面花样颜色改变,这是由下述哪个量的变化引起的:(A)折射率;(B)泡内压强;(C)泡膜的厚度;(D)表面张力系数。

[ ]6、在夫琅禾费单缝衍射实验中,仅增大缝宽而其余条件均不变时,中央明纹宽度的变化是:(A)减小;(B)增大;(C)不变; (D)先减小,后增大。

[ ]7、把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为()L d ,所用单色光在真空中波长为λ,则屏上干涉条纹中相邻的两明条纹之间的距离是:(A)/L nd λ; (B)/n L d λ;(C)/L d λ; (D)/2L nd λ。

[ ]8、波长为λ的单色光垂直投射在一单缝上,若P 点为衍射图样的二级明纹,则对P 点而言,单缝可分割成的半波带数目为:(A)2; (B)3;(C)4; (D)5。

[ ]9、用波长为600nm 和400nm 的单色光分别作单缝衍射实验,且实验装置相同,若测得600nm 光束的中央亮纹宽度为3mm ,则400nm 光束的中央亮纹宽度为:(A)3/2mm ; (B)2mm ;(C)3mm ; (D)4mm 。

[ ]10、光线通过厚度为浓度为的某种溶液,透射光是入射光的1/3,如使溶液的浓度和厚度各增加一倍,这个比值将为:(A)1/3 ; (B)1/9 ;(C)1/81 ; (D) 1/1 。

波动光学习题参考答案页PPT文档共145页文档

波动光学习题参考答案页PPT文档共145页文档

谢பைடு நூலகம்!
波动光学习题参考答案页PPT文档
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

新习题册波动光学分册资料

新习题册波动光学分册资料

一.光的干涉一. 选择题:1.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) )()(111222t n r t n r +-+(B) ])1([])1([111222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ B ]光程δ:光束在折射率为n 的介质中传播l 路程,相当于其在真空中传播了n*l 的路程。

122222211111,,r L L t n t r L t n t L -=+-=+-=δ2. 如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ A ] :光程差:相位差,π,δϕλδϕ∆=∆2 先算光程差,只考虑2n 介质中的路程,即2n *e 2=δ; 再算相位差,带入上式得:λλϕen 42*e 222ππ==∆n3.把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ A ] 光在介质中的波长为nλ 而各级明条纹中心到O点的距离x 满足P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 1 3λ为介质中的波长,’’λλdk x k D ±=±,而无论明条纹之间的间距还是暗条纹之间的间距都是相等的,可以用01x -x 计算得,带入得到ndx λD = 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B ) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ B ]各级明条纹中心到O 点的距离x ,λdk x k D ±=±,A 是减小D ,B 是减小d ,C 是增大d ,D 是减小λ,所以选B5.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹[ B ]当由题意得光程差的变化量为2.5λ,是奇数倍的半波长,故由明条纹变为暗条纹6. 在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ.[ B ] 明暗环半径公式为光在介质中的波长’,暗环),,(’明环),,(’)(λλλ⎪⎩⎪⎨⎧=== 3...10k k ...321k 21-k r R R把nλ带入得到暗环半径公式,选B二.填空题:1.在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=___2π(n 1 – n 2) e / λ___.光程差e n -n -e 1-n e 1-n 21122211)(,)(,)(====δδδδδ,而相位差与光程差之间的关系π2λδϕ=∆ 带入即得2. 在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央零级明纹与第五级明之间的距离为x ,则入射光的波长为__ xd / (5D )___.各级明条纹中心到O 点的距离x 为),,,,(...3210k dk x k =±=±λD ,则x 0-5d x -x x 0550===∆λ)(D ,则D 5xd =λ 3.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___变小___;若使单色光波长减小,则干涉条纹间距______变小_____. 两缝之间的距离λdx D =∆,距离增大d 变大则x ∆变小;λ减小则x ∆变小。

大学物理-波动光学习题(包括振动、波动、波的干涉、光的干涉、光的衍射、光的偏振)

大学物理-波动光学习题(包括振动、波动、波的干涉、光的干涉、光的衍射、光的偏振)

第四篇 光学第一章 振动一、选择题1. 一质点作简谐振动, 其运动速度与时间的关系曲线如下图。

假设质点的振动规律用余弦函数描述,那么其初相应为:[ ] (A)6π (B) 65π (C) 65π- (D) 6π- (E) 32π-2. 如下图,一质量为m 的滑块,两边分别与劲度系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。

滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。

现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。

取坐标如下图,那么其振动方程为:[ ] ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos(A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D) ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (E)3. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。

假设t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,那么质点第二次通过x = -2cm 处的时刻为:[ ](A) 1s ; (B)s 32; (C) s 34; (D) 2s 。

4. 一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。

与其对应的振动曲线是: [ ]5. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的:[ ](A)167; (B) 169; (C) 1611; (D) 1613; (E) 1615。

(A)-(B)(C)(D)-06. 图中所画的是两个简谐振动的振动曲线,假设 这两个简谐振动可叠加,那么合成的余弦振动 的初相为: [ ] π21(A) π(B) π23(C) 0(D)二、填空题1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,0=t 时的初位移为0.04m, s -1,那么振幅A = ,初相位 =2. 两个弹簧振子的的周期都是0.4s, 设开始时第一个振子从平衡位置向负方向运动,经过0.5s 后,第二个振子才从正方向的端点开始运动,那么这两振动的相位差为 。

波动光学练习题

波动光学练习题

第11章波动光学练习题(总9页) -本页仅作为预览文档封面,使用时请删除本页-第十一章波动光学一、填空题(一)易(基础题)1、光学仪器的分辨率R= 。

2、若波长为625nm的单色光垂直入射到一个每毫米有800条刻线的光栅上时,则第一级谱线的衍射角为。

3、在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波面可划分为个半波带。

4、当光由光疏介质进入光密介质时,在交界面处的反射光与入射光有相位相反的现象,这种现象我们称之为。

5、干涉相长的条件是两列波的相位差为π的(填奇数或偶数)倍。

6、可见光要产生干涉现象必须满足的条件是:。

7、在麦克耳逊干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片,插入薄片使这条光路的光程改变了;8、波长为λ的单色光垂直照射在由两块平玻璃板构成的空气劈尖上,测得相邻明条纹间距为L,若将劈尖角增大至原来的2倍,则相邻条纹的间距变为。

9、单缝衍射中狭缝愈窄,条纹间距愈。

10、在单缝夫琅和费衍射实验中,第一级暗纹发生在衍射角300的方向λ=,则缝宽为。

上,所用单色光波长为500nm11、用波长为λ的单色光垂直照射置于空气中厚度为e的折射率为的透明薄膜,两束反射光的光程差为;12、光学仪器的分辨率与和有关,且越小,仪器的分辨率越高。

13、当一束自然光通过两片偏振化方向成30o的偏振片后,其出射光与入射光的光强之比为。

(二)中(一般综合题)1、若麦克耳逊干涉仪的可动反射镜M 移动的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为 mm 。

2、在杨氏双缝干涉实验中,如果相干光源1S 和2S 相距0.20d mm =,1S 、2S 到屏幕E 的垂直距离为 1.0D m =。

若第二级明纹距中心点O 的距离为,则单色光的波长为 ;相邻两明条纹之间的距离为 。

3、用单色光垂直照射空气劈形膜,当劈形膜的夹角减小时,干涉条纹_______劈棱方向移动,干涉条纹间距__________。

第九章波动光学有答案习题

第九章波动光学有答案习题

一 计算题9-1-1 在双缝干涉实验中,用波长.1nm 546=λ的单色光照射,双缝与屏的距离mm 300='d 。

测得中央明纹两侧的两个第五级明条纹的间距为12.2mm ,求双缝间的距离。

9-1-2 √将一折射率58.1=n 的云母片覆盖于杨氏双缝中上面的一条缝上,使得屏上原中级极大的所在点O 改变为第五级明纹。

假定nm 550=λ,求:(1)条纹如何移动?(2)云母片厚度t 。

λk r r =-12λ`)1(12k n d r r =-+-=k5`=knm n k d 38.4741158.155051`=-⨯=-=λ9-1-3 使一束水平的氦氖激光器发出的激光(.8nm 632=λ)直照射一双缝。

在缝后.0m 2处的墙上观察到中央明纹和第一级明纹的间隔为4cm 1。

求:(1)两缝的间距;(2)在中央条纹以上还能看到几级明纹?9-1-4 用很薄的玻璃片盖在双缝干涉装置的一条缝上,这时屏上零级条纹移到原来第7级明纹的位置上。

如果入射光的波长nm 550=λ,玻璃片的折射率58.1=n ,求:此玻璃片的厚度。

9-1-5 劳埃德镜干涉装置如图所示,光源波长m 102.77-⨯=λ,求:镜的右边缘到第一条明纹的距离。

9-1-6白光垂直照射到空气中一厚度为nm 380的肥皂膜上,设肥皂的折射率32.1=n。

求:该膜习题9-1-5图的正面呈现的颜色。

9-1-7 √折射率60.1=n 的两块标准平面玻璃板直径形成一个劈形膜(劈尖角θ很小)。

用波长nm 600=λ的单色光垂直照射,产生等厚干涉条纹。

假如在劈形膜内充满40.1=n 的液体时,相邻明条纹间距比劈形膜内是空气时的间距缩小mm 5.0=∆l ,那么劈尖角θ应是多少?2/tan l λθθ=≈ln2/t a n λθθ=≈θλ20=lθλn l 2=)11(20nl l l -=-=∆θλr a d n l 4471071.1)4.111(1052106)11(2---⨯=-⨯⨯⨯=-∆=λθ9-1-8一薄玻璃片,厚度为m .40μ,折射率为1.50,用白光垂直照射,求:在可见光范围内,哪些波长的光在反射中加强?哪些波长的光在透射中加强?9-1-9 √一片玻璃(5.1=n )表面有一层油膜(32.1=n ),今用一波长连续可调的单色光垂直照射油面。

《大学物理》习题册题目及答案第18单元 波动光学

《大学物理》习题册题目及答案第18单元 波动光学

第18单元 波动光学(一)学号 姓名 专业、班级 课程班序号一 选择题[ A ]1. 如图所示,折射率为2n 、厚度为e的透明介质薄膜的上方和下方的透明介质折射率分别为1n 和3n ,已知321n n n <<。

若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 22n e (B) 2e n 2λ-21(C ) 22n e λ- (D) 22n e 22n λ-[ A ]2. 双缝干涉的实验中,两缝间距为d ,双缝与屏幕之间的距离为D (D >>d ),单色光波长为λ,屏幕上相邻的明条纹之间的距离为 (A) d D λ (B) Dd λ (C) d D 2λ (D) D d2λ[ B ]3. 如图,1S 、2S 是两个相干光源,它们到P点的距离分别为 1r 和2r 。

路径1S P垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径P S 2垂直穿过厚度为2t 、折射率为2n 的另一块介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+(B) ])1([])1([111222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -[ C ]4. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且321n n n ><, 1λ 为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为(A) 1122λπn e n (B) πλπ+1212n en (C) πλπ+1124n e n (D) 1124λπn en 。

[ B ]5. 如图,用单色光垂直照射在观察牛顿环的装置上。

当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹ﻫ(A) 向右平移 (B) 向中心收缩(C) 向外扩张 (D) 静止不动1λe1n 2n 3单色光O.λe1n 2n 3①②S 1 S 21r 2r 1n 2n 1t 2tP(E ) 向左平移[ D ]6. 在迈克尔逊干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 (A)2λ (B) n 2λ (C) nλ(D) )1(2-n λ ﻫ二 填空题1. 如图所示,两缝 1s 和 2s 之间的距离为d ,媒质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为21sin r r d θ--。

大学物理第十四章波动光学习题+解答

大学物理第十四章波动光学习题+解答
缝实验,在光屏P处产生第五级明纹极大,现将折射率 n = 1.5的薄透明玻璃片盖在其中一条缝上,此时P处变 成中央明纹极大的位置,则此玻璃片厚度为
(A) 5.0×10-4cm (C) 7.0×10-4cm
✓(B) 6.0×10-4cm (D) 8.0×10-4cm
不盖玻璃片时: r2 r1 5
再透过第二个偏振片后光强度为
I1
1 2
I0
I2
I1 cos2
60
1 8
I0

n1 n2 n3
第五条暗纹对应 k 4
e 9
4n2
4-7 用一束具有两种波长的平行光垂直入射在平面
透射光栅上,1= 600 nm,2= 400nm (1nm=10-9m), 发现距中央明纹 5cm 处1光的第k级主极大和 2光的
第(k+1)级主极大相重合,放置在光栅与屏之间的透镜
的焦距f = 50 cm,则k =
sin 1
21
ab
2 450 2 103
0.45
1 26.740
sin 2
22
ab
2 650 2 103
0.65
2 40.540
Δx x2 x1 f (tan2 tan 1)
f
Δx
tan 2 tan 1
35.1
cm 1m
0.8553 0.5039
4-11 将两偏振片叠放在一起,它们的偏振化方向 之间的夹角为 60°。一束强度为 I0 ,光矢量的振动 方向与两偏振片的偏振化方向皆成 30°的线偏振光, 垂直入射到偏振片上。
(1)求透过每块偏振片后的光束强度; (2)若将原入射光束换为强度相同的自然光,求 透过每块偏振片后的光束强度。

波动光学(习题与答案)

波动光学(习题与答案)

第11章 波动光学一. 基本要求1. 解获得相干光的方法。

掌握光程的概念以及光程差与相位差的关系。

2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。

3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。

4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 理解自然光和偏振光及偏振光的获得方法和检验方法。

6. 理解马吕斯定律和布儒斯特定律。

二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。

产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。

获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。

2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。

若光波先后通过几种介质,其总光程为各分段光程之和。

若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。

来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。

3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。

其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,(ΛΛλλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。

波动光学练习题及答案

波动光学练习题及答案

波动光学练习题及答案一、选择题1、对于普通光源,下列说法正确的是:[ C ](A)普通光源同一点发出的光是相干光(B)两个独立的普通光源发出的光是相干光(C)利用普通光源可以获得相干光(D)普通光源发出的光频率相等2、杨氏双缝干涉实验是:[ A ](A) 分波阵面法双光束干涉(B) 分振幅法双光束干涉(C) 分波阵面法多光束干涉(D) 分振幅法多光束干涉3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ C ](A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等4、光在真空中和介质中传播时,正确的描述是: [ C ](A)波长不变,介质中的波速减小(B) 介质中的波长变短,波速不变(C) 频率不变,介质中的波速减小(D) 介质中的频率减小,波速不变5、用单色光做双缝干涉实验,下述说法中正确的是[ A C ](A)相邻干涉条纹之间的距离相等(B)中央明条纹最宽,两边明条纹宽度变窄(C)屏与缝之间的距离减小,则屏上条纹宽度变窄(D)在实验装置不变的情况下,红光的条纹间距小于蓝光的条纹间距6、用单色光垂直照射杨氏双缝时,下列说法正确的是:[ C ](A) 减小缝屏距离,干涉条纹间距不变(B) 减小双缝间距,干涉条纹间距变小(C) 减小入射光强度, 则条纹间距不变(D) 减小入射波长, 则条纹间距不变7、如图所示, 薄膜的折射率为n 2,入射介质的折射率为n 1,透射介质为n 3,且n 1<n 2<n 3,入射光线在两介质交界面的反射光线分别为(1)和(2),则产生半波损失的情况是:(A) (1)光产生半波损失, (2)光不产生半波损失 [ B ] (B) (1)光 (2)光都产生半波损失 (C) (1)光 (2)光都不产生半波损失(D) (1)光不产生半波损失,(2)光产生半波损失8、在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。

大学物理波动光学习题答案

大学物理波动光学习题答案

学习资料收集于网络,仅供参考学习资料收集于网络,仅供参考学习资料学习资料 第七章 波动光学习题答案1.从一光源发出的光线,从一光源发出的光线,通过两平行的狭缝而射在距双缝通过两平行的狭缝而射在距双缝100 cm 的屏上,如两狭缝中心的距离为0.2 mm ,屏上相邻两条暗条纹之间的距离为3 mm ,求光的波长(Å为单位)。

已知已知 D=100cm a=0.2mm D=100cm a=0.2mm d x=3mm求l [解] l =a d x/D=3x/D=3××10-3×0.20.2××10-3/100/100××10-2=0.6=0.6××10-6m=6000 Å2.用波长为7000 Å的红光照射在双缝上,距缝1 m 处置一光屏,如果21个明条纹(谱线以中央亮条为中心而对称分布)共宽2.3 cm ,求两缝间距离。

,求两缝间距离。

[解] 明条纹间距明条纹间距 cm a=6.084.用波长为4800 Å的蓝光照射在缝距为0.1 mm 的双缝上,求在离双缝50 cm 处光屏上干涉条纹间距的大小。

涉条纹间距的大小。

[解]=2.4mm 5.什么是光程?在不同的均匀媒质中,在不同的均匀媒质中,单色光通过相等光程时,单色光通过相等光程时,单色光通过相等光程时,其几何路程是否相同其几何路程是否相同? 需要时间是否相同?[解]光程=nx 。

在不同的均匀媒质中,单色光通过相等光程时,其几何路程是不同。

需要时间相同相同6.在两相干光的一条光路上,在两相干光的一条光路上,放入一块玻璃片,其折射率为放入一块玻璃片,其折射率为1.6,结果中央明条纹移到原是第六级明条纹处,设光线垂直射入玻璃片,入射光波长为6.6×103 Å。

求玻璃片厚度。

求玻璃片厚度。

已知已知 n=1.6 n=1.6 l =6.6=6.6××103Å 求 d[解]光程差MP-d+nd-NP=0 ∵ NP-MP=6l∴ (n-1n-1))d=6ld=6l /(n-1)=6.6/(n-1)=6.6××10-6m7.在双缝干涉实验中,用钠光灯作光源(l =5893 Å),屏幕离双缝距离D=500mm ,双缝间距a=1.2mm ,并将干涉实验装置整个地浸在折射率1.33的水中,相邻干涉条纹间的距离为多大?若把实验装置放在空气中,干涉条纹变密还是变疏?(通过计算回答)已知n 水=1.33 l =5893Å D=500 mm a=1.2mm 比较d x 水和d x 空气 [解] d x 水=D l /na=500/na=500××5893×10-10×10-3/(1.2×10-3×1.33)=1.85×10-4m d x 空气=D l /a=500×5893×10-10×10-3/(1.2×10-3)=2.46×10-4m∴ 干涉条纹变疏干涉条纹变疏8.用白光垂直照射到厚度为4×10-5 cm 的薄膜上,薄膜的折射率为1.5。

(答案1)波动光学习题

(答案1)波动光学习题

(答案1)波动光学习题波动光学习题光程、光程差1.在真空中波长为λ的单⾊光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ.[ A ]2.在相同的时间内,⼀束波长为λ的单⾊光在空⽓中和在玻璃中(A) 传播的路程相等,⾛过的光程相等.(B) 传播的路程相等,⾛过的光程不相等.(C) 传播的路程不相等,⾛过的光程相等.(D) 传播的路程不相等,⾛过的光程不相等.[ C ]3.如图,S 1、S 2是两个相⼲光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过⼀块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另⼀介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )() (111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ B ]4.如图所⽰,平⾏单⾊光垂直照射到薄膜上,经上下两表⾯反射的两束光发⽣⼲涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为⼊射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为 (A) 2πn 2e / ( n 1 λ1). (B)[4πn 1e / ( n 2 λ1)] + π. (C) [4πn 2e / ( n 1 λ1) ]+ π.(D) 4πn 2e / ( n 1 λ1).[ C ]5.真空中波长为λ的单⾊光,在折射率为n 的均匀透明媒质中,从A 点沿某⼀路径传播到B点,路径的长度为l .A 、B 两点光振动相位差记为?φ,则(A) l =3 λ / 2,?φ=3π. (B) l =3 λ / (2n ),?φ=3n π.(C) l =3 λ / (2n ),?φ=3π. (D) l =3n λ / 2,?φ=3n π.[]6.如图所⽰,波长为λ的平⾏单⾊光垂直⼊射在折射率为n 2的薄膜上,经上下两个表⾯反射的两束光发⽣⼲涉.若薄膜厚度为e ,⽽且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π.[ A ] P S 1S2 r 1 n 1 n 2 t 2 r 2 t 1n 13λ1 n 1 3λ7.如图所⽰,折射率为n 2、厚度为e 的透明介质薄膜的上⽅和下⽅的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若⽤波长为λ的单⾊平⾏光垂直⼊射到该薄膜上,则从薄膜上、下两表⾯反射的光束①与②的光程差是[ A ] (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).8.若⼀双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介质所遮盖,此时由双缝分别到屏上原中央极⼤所在处的两束光的光程差δ=_____(n 1-n 2)e 或(n 2-n 1)e 均可__.9.如图所⽰,假设有两个同相的相⼲点光源S 1和S 2,发出波长为λ的光.A 是它们连线的中垂线上的⼀点.若在S 1与A 之间插⼊厚度为e 、折射率为n 的薄玻璃⽚,则两光源发出的光在A 点的相位差?φ=___2π (n -1) e / λ_____.若已知λ=500nm ,n =1.5,A 点恰为第四级明纹中⼼,则e =_ 4×103__nm .10.如图,在双缝⼲涉实验中,若把⼀厚度为e 、折射率为n 的薄云母⽚覆盖在S 1缝上,中央明条纹将向___上__移动;覆盖云母⽚后,两束相⼲光⾄原中央明纹O 处的光程差为___(n -1)e _.11.波长为λ的单⾊光垂直照射如图所⽰的透明薄膜.膜厚度为e ,两束反射光的光程差δ=___2.60 e _.12.⽤波长为λ的单⾊光垂直照射置于空⽓中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ=__ 3e +2/λ或 3e -2/λ _.双缝⼲涉1.⽤⽩光光源进⾏双缝实验,若⽤⼀个纯红⾊的滤光⽚遮盖⼀条缝,⽤⼀个纯蓝⾊的滤光⽚遮盖另⼀条缝,则(A) ⼲涉条纹的宽度将发⽣改变.(B) 产⽣红光和蓝光的两套彩⾊⼲涉条纹.(C) ⼲涉条纹的亮度将发⽣改变.(D) 不产⽣⼲涉条纹.[ D ]2. 在双缝⼲涉实验中,两条缝的宽度原来是相等的.若其中⼀缝的宽度略变窄(缝中⼼位置不变),则(A) ⼲涉条纹的间距变宽.(B) ⼲涉条纹的间距变窄.(C) ⼲涉条纹的间距不变,但原极⼩处的强度不再为零.(D) 不再发⽣⼲涉现象.[ C ]3.在双缝⼲涉实验中,为使屏上的⼲涉条纹间距变⼤,可以采取的办法是(A) 使屏靠近双缝. (B) 使两缝的间距变⼩.(C) 把两个缝的宽度稍微调窄.(D) 改⽤波长较⼩的单⾊光源.[ B ]n 3 S4.在双缝⼲涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分⾯处放⼀⾼折射率介质反射⾯M ,如图所⽰,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹.(D) ⽆⼲涉条纹.[ B ]5.在双缝⼲涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的⼲涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .[ B ]6.在双缝⼲涉实验中,⼊射光的波长为λ,⽤玻璃纸遮住双缝中的⼀个缝,若玻璃纸中光程⽐相同厚度的空⽓的光程⼤2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既⾮明纹也⾮暗纹; (D) ⽆法确定是明纹,还是暗纹.[ B ]7.在双缝⼲涉实验中,若单⾊光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到⽰意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变. (B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增⼤. (D)中央明条纹向上移动,且条纹间距增⼤。

《大学物理》习题册题目及答案第20单元波动光学

《大学物理》习题册题目及答案第20单元波动光学

第20单元 波动光学(三) 学号 姓名 专业、班级 课程班序号一 选择题[ B ]1. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过。

当其中一偏振片慢慢转动180o 时透射光强度发生的变化为:(A) 光强单调增加。

(B) 光强先增加,后又减小至零。

(C) 光强先增加,后减小,再增加。

(D) 光强先增加,然后减小,再增加,再减小至零。

[ C ]2. 使一光强为I 0的平面偏振光先后通过两个偏振片P 1和P 2,P 1和 P 2的偏振化方向与原入射光光矢量振动方向的夹角分别为α和90o ,则通过这两个偏振片后的光强I 是 (A)α20cos 21I (B) 0 (C) )2(sin 4120αI (D) α20sin 41I (E) α40cos I[ A ]3. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片。

若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A)21 (B)51 (C)31 (D)32[ D ]4. 某种透明媒质对于空气的临界角(指反射)等于45º,光从空气射向此媒质时的布儒斯特角是(A)35.3º (B)40.9º (C)45º (D)54.7º (E)57.3º[ D ]5. 自然光以60º入射角照射到某两介质交界面时,反射光为完全偏振光,则可知折射光为(A) 完全偏振光,且折射角是30º。

(B) 部分偏振光,且只是在该光由真空入射到折射率为3的介质时,折射角是30o 。

(C) 部分偏振光,但须知两种介质的折射率才能确定折射角。

(D) 部分偏振光,且折射角是30º。

二 填空题1. 一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30o 时,反射光是完全偏振光,则此玻璃板的折射率等于 3 。

2. 如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射。

波动光学课后习题答案(第四章)

波动光学课后习题答案(第四章)

3
4.14 解:根据 1/2 波片的性能,即将入射的线偏振光转换为线偏振光,但振动方 向相对入射振动方向转动 2角,其中角是入射光束振动方向与波片快轴的夹 角。因此,出射光束的振动方向旋转速度为 2。 4.15 解:光束经过不同距离引起的相位差有不同变化,从 0 逐渐变化到,在不 同位置两线偏振光叠加得到的合成光束的偏振态如教材 22 页的图 1-15 所示。 4.16 略。 4.17 略,参考教材第一章的 21-23 页。 4.18 略。 4.19 解:分析过程如下图: (1) 入射的自然光经过通过方向沿 x 轴的偏振片, 其透射强度为 该光束沿着波片主截面的两个分量分别是

2
m 0,1, 2, 时,经过半波片的线偏振光振动方向沿第二
偏振片的通光方向相同,透射光强最大;波片转动一周时,出现四次强度最 大值。 当 2 m
m 0,1, 2, 时,经过半波片的线偏振光振动方向垂直于第二
偏振片的通光方向, 透射光强最小; 波片转动一周时, 出现四次强度最小值。
2
根据教材 21-22 页和 248-250 页的介绍可知, (1) 当入射光的振动方向与 x 轴夹角为 45°,则 Ex E y ,则 1/4 波片的透射 光束是一圆偏振光,而且 y x ,则出射光的旋向为左旋。 2 (2) 当入射光的振动方向与 x 轴夹角为-45°, 则 Ex E y , 则 1/4 波片的透射 光束是一圆偏振光,而且 y x ,则出射光的旋向为右旋。 2 (3) 当入射光的振动方向与 x 轴夹角为 30°,则 Ex E y ,则出射光束为椭圆 偏振光,旋向为左旋。 4.10 解:参考 225 页的图 4-7 可知。具体描述略。 4.11 略。 4.12 解:类似于教材 239 页的图 4-27。当入射光束经过第一个界面时,折射光束 产生两个振动方向垂直的分量,o 光和 e 光,但传播方向相同。当光束继续传播 遇到晶体和空气的界面发生双反射,反射光束的波矢沿着光轴方向,则反射光束 的两线偏振光的折射率相同,均为 no。反射角根据反射定律确定,即

《大学物理》习题册题目及答案第19单元 波动光学

《大学物理》习题册题目及答案第19单元 波动光学

第19单元 波动光学(二)学号 姓名 专业、班级 课程班序号一 选择题[C]1. 在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕E 上的中央衍射条纹将 (A) 变宽,同时向上移动 (B) 变宽,同时向下移动 (C) 变宽,不移动 (D) 变窄,同时向上移动 (E) 变窄,不移动[ D ]2. 在双缝衍射实验中,若保持双缝S1和S2的中心之间的距离d 不变,而把两条缝的宽度a 稍微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少 (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多 (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变 (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少 (E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多[ C ]3. 在如图所示的单缝夫琅和费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹(A) 间距变大 (B) 间距变小 (C) 不发生变化(D) 间距不变,但明暗条纹的位置交替变化[ B ]4. 一衍射光柵对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该 (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大的光栅 (C) 将光栅向靠近屏幕的方向移动 (D) 将光栅向远离屏幕的方向移动[ B ]5. 波长λ =5500 Å的单色光垂直入射于光柵常数d = 2⨯10-4cm 的平面衍射光柵上,可能观察到的光谱线的最大级次为(A) 2 (B) 3 (C) 4 (D) 5二 填空题1. 用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第二个暗条纹中心相对应的半波带的数目是_____4_________。

2. 如图所示,在单缝夫琅和费衍射中波长λ的单色光垂直入射在单缝上。

大学物理课后习题附答案波动光学习题附答案

大学物理课后习题附答案波动光学习题附答案

d
dk
k
2n2
k0,1,2,
油膜边缘 k0,d00明纹
k 1 , d 125 n0 m
k2 , d 2 50 n0 m
波动光学习题课选讲例题
物理学教程 (第二版)
h
r
oR
第十四章 波动光学
k3 , d375 n0 m
d k4 , d4 10n0m
由于h8.010 2nm
故可观察到四条明纹 . 当 油滴展开时,条纹间距变 大,条纹数减少.
6n 0,m 02 30
解: k 2 ,( b b )s3 i n 0 2 6n 0m 0
b b 24 n0 m 2 0.400
(2)透光缝可能的最小宽度 b 等于多大?
bbk 3 b k k
b kb 3 k
当 k1 时
bm in 0.5b
透光缝可能的最小宽度 b = 0.800 um = 800 nm
长为 的光,A 是连线中垂线上的一点,S 1 与A 间插
e 入厚度为 的薄片,求 1)两光源发出的光在 A 点的
相位差;2)已知 50n0m, n1.5, A为第四级 明纹中心, 求薄片厚度 e 的大小.
S1 *
e
n
2(n1)e
S2*
* A (n1)e4
e4450 n0 m 4 130 nm
n1 1.51
则他将观察到油层呈什么颜色?
(2) 如果一潜水员潜入该区域水下,又将看到油
层呈什么颜色?
解 (1) Δ r2 d1n k
2n1d, k1,2,
k
k 1 , 2 n 1 d 11 n0 m 4
k 2 , n 1 d 5n 5m 2 绿色
k3, 3 2n1d36n8m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.光的干涉一.选择题:1.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) )()(111222t n r t n r +-+(B) ])1([])1([111222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ B ]光程δ:光束在折射率为n 的介质中传播l 路程,相当于其在真空中传播了n*l 的路程。

122222211111,,r L L t n t r L t n t L -=+-=+-=δ2. 如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ A ]:光程差:相位差,π,δϕλδϕ∆=∆2 先算光程差,只考虑2n 介质中的路程,即2n *e 2=δ; 再算相位差,带入上式得:λλϕen 42*e 222ππ==∆n3.把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ A ]P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 1 3λ光在介质中的波长为nλ 而各级明条纹中心到O 点的距离x 满足为介质中的波长,’’λλdk x k D ±=±,而无论明条纹之间的间距还是暗条纹之间的间距都是相等的,可以用01x -x 计算得,带入得到ndx λD = 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B ) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ B ]各级明条纹中心到O 点的距离x ,λdk x k D ±=±,A 是减小D ,B 是减小d ,C 是增大d ,D 是减小λ,所以选B5.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹[ B ]当由题意得光程差的变化量为2.5λ,是奇数倍的半波长,故由明条纹变为暗条纹6. 在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ.[ B ] 明暗环半径公式为光在介质中的波长’,暗环),,(’明环),,(’)(λλλ⎪⎩⎪⎨⎧=== 3...10k k ...321k 21-k r R R把nλ带入得到暗环半径公式,选B二.填空题:1.在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=___2π(n 1 – n 2) e / λ___.光程差e n -n -e 1-n e 1-n 21122211)(,)(,)(====δδδδδ,而相位差与光程差之间的关系π2λδϕ=∆ 带入即得2. 在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央零级明纹与第五级明之间的距离为x ,则入射光的波长为__ xd /(5D )___.各级明条纹中心到O 点的距离x 为),,,,(...3210k dk x k =±=±λD ,则x 0-5d x -x x 0550===∆λ)(D ,则D 5xd =λ 3.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___变小___;若使单色光波长减小,则干涉条纹间距______变小_____. 两缝之间的距离λdx D =∆,距离增大d 变大则x ∆变小;λ减小则x ∆变小。

4. 在双缝干涉实验中,所用光波波长λ=5.461×10–4 mm ,双缝与屏间的距离D =300 mm ,双缝间距为d =0.134 mm ,则中央明条纹两侧的两个第三级明条纹之间的距离为______7.32 mm _______.各级明条纹中心到O 点的距离x ,λdk x k D ±=±,则d6x -x x 3-3λD ==∆,带入可得5. 图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A点处所对应的空气薄膜厚度为e =__λ23_. 该题是利用等厚条纹可以检验精密加工工件表面的质量。

根据纹路弯曲方向,判断工件表面上纹路是凹还是凸,当条纹向左偏时凹,向右偏时凸。

⎪⎩⎪⎨⎧=+==+=暗纹),,()(明纹),,(...210k 21k 2...321k k 2e 2λλλδ,由题意得k=3,代入得e=λ23 6. 用波长为λ的单色光垂直照射到空气劈形膜上,从反射光中观察干涉条纹,距顶点为L 处是暗条纹.使劈尖角θ 连续变大,直到该点处再次出现暗条纹为止.劈尖角的改变量∆θ是_______λ / (2L )___________________. 当劈尖角变大时L 处右端端点处厚度增加,LL L 22sin sin 2λθθλθθθθλ=∆=≈=,所以,即很小时,,当7. 波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ (以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__λ/(2n θ)___. 为介质中的波长’,’λθλsin 2=L ,当θ足够小时,θθ≈sin ,所以由题意得θλn 2=L 8. 波长为λ的平行单色光垂直地照射到劈形膜上,劈形膜的折射率为n ,第二条明纹与第五条明纹所对应的薄膜厚度之差是___3λ / (2n )_____. 明纹,,,’’...321k k 2e 2==+=λλδ当第二条明纹时,k=2,得n 43e 2λ=,同理n 49e 5λ=,所以n23n 46e -e e 25λλ===∆ 9. 已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反图b 图a射镜移动距离d 的过程中,干涉条纹将移动____2d /λ_____条. 每当有一条条纹移过时,可动反射镜移动了2λ距离;由题意得,当1M 移动d 时,x d 12=λ,可得λd 2x =条 10. 在迈克耳孙干涉仪的一条光路中,插入一块折射率为n ,厚度为d 的透明薄片.插入这块薄片使这条光路的光程改变了___2( n – 1) d __. 若只考虑插入薄片,则光程差为(n-1)d ,迈克尔干涉仪是来回两次,须乘以211. 以一束待测伦琴射线射到晶面间距为0.282 nm (1 nm = 10-9 m)的晶面族上,测得与第一级主极大的反射光相应的掠射角为17°30′,则待测伦琴射线的波长为____0.170 nm ____.带入布拉格方程λθk dsin 2=得三.计算题:1.在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求:(1) 零级明纹到屏幕中央O 点的距离.(2) 相邻明条纹间的距离.解:(1) 如图,设P 0为零级明纹中心则 D O P d r r /012≈- 3分(l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ屏∴ ()d D d r r D O P /3/120λ=-= 3分(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 2分明纹条件 λδk ±= (k =1,2,....)()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距 d D x x x k k /1λ=-=+∆ 2分2.在杨氏双缝实验中,设两缝之间的距离为0.2 mm .在距双缝1 m 远的屏上观察干涉条纹,若入射光是波长为400 nm 至760 nm 的白光,问屏上离零级明纹20 mm 处,哪些波长的光最大限度地加强?(1 nm =10-9 m)解:已知:d =0.2 mm ,D =1 m ,l =20 mm依公式: λδk l D d ==∴ Ddl k =λ=4×10-3 mm =4000 nm 2分 故当 k =10 λ1= 400 nmk =9 λ2=444.4 nmk =8 λ3= 500 nmk =7 λ4=571.4 nmk =6 λ5=666.7 nm这五种波长的光在所给观察点最大限度地加强. 3分3.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.解:(1) 明环半径 ()2/12λ⋅-=R k r 2分 ()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分 (2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分故在OA 范围内可观察到的明环数目为50个. 1分4.在Si 的平表面上氧化了一层厚度均匀的SiO 2薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的AB 段).现用波长为600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中AB 段共有8条暗纹,且B 处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为3.42,SiO 2折射率为1.50)解:类似劈尖干涉,但上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2e =21( 2k +1 )n λ, (k =0,1,2,…) 2分 A 处为明纹,B 处第8个暗纹对应上式k =7 1分()n k e 412λ+==1.5×10-3 mm 2分5.在折射率为1.58的玻璃表面镀一层MgF 2(n = 1.38)透明薄膜作为增透膜.欲使它对波长为λ = 632.8 nm 的单色光在正入射时尽量少反射,则薄膜的厚度最小应是多少?解:尽量少反射的条件为n21k 22λ)(+=e ( k = 0, 1, 2, …) 令 k = 0 得 d min = λ / 4n 4分= 114.6 nm 1分A,膜二.光的衍射一.选择题:1.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ]根据单缝衍射特点,相邻两条暗纹之间的距离即明条纹的宽度,暗条纹公式λθk asin ±=,中央明纹两侧为k 取值1时对应的暗条纹,即λθ=asin ,故当缝宽度a 变小时,则θ变大2.一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (1nm=10−9m)(A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ ]公式λϕ=asin ,af fsin ftan x 1λϕϕ=≈=,中央明条纹宽1x 2x =∆,a=1.0mm ,mm 0.2x =∆,可求出波长λ=500nm 3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ] 由公式2k asin λθ=,30,3k θ==o代入可求出a=3λ 4.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ] 由公式λθk asin ±=得,当缝宽度a 变小时,则θ变大5.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 光栅衍射,光谱仪和干涉仪大都是用光栅的。

相关文档
最新文档