数学分析试题库-选择题
数学分析期末考试复习题及参考答案
数学分析 --复习资料一、单选题1、设 f (x) = x (x + 1)(x + 2) … (x +2004) , 则 f ' (0) = ( )A. 0B. 2003!C. 2004!D. 2005!参考答案: C2、设,则交换积分次序后为 ( )。
A.B.C.D.参考答案: A3、( )A. -2B. 2C. 0D. 发散参考答案: D4、幂级数的收敛域为( )。
A.B.C.D.参考答案: B5、 f (x) 在 x0 点连续的充分条件是( )。
A. f (x0 +0) 、f (x0 - 0) 存在B. f (x) 在 x0 点的极限存在C. f-' (x0 ) 、f+' (x0 ) 存在D. f (x) 在 x0 点的某空心邻域内连续参考答案: C6、已知,f (x) = ( )A.B.C.D.参考答案: C7、积分=A. 1;B. ;C. ;D. 。
参考答案: D8、已知, 则( );A.B.C.D.参考答案: D9、设,则( )。
A.B.C.D.参考答案: C10、下面广义积分发散的一个是A. ;B. ;C. ;D. 。
参考答案: C11、使函数序列一致收敛的区域为A. ;B. ;C. ;D. 。
其中。
参考答案: B12、锥面被柱面所截部分的面积是( )。
A.B.C.D.参考答案: B13、( );A.B.C.D.参考答案: C14、幂级数的收敛域为( );A. (-1,1)B.C.D.参考答案: B15、函数连续,则在[a,b]上=( )A.B.C.D.参考答案: B16、级数为( )级数。
A. 收敛B. 绝对收敛C. 条件收敛D. 发散参考答案: B17、 f (x) 在 x0 点连续,则下列命题不成立的是( )。
A. f (x0 +0) 、f (x0 - 0) 存在B. f (x) 在 x0 点的极限存在C. f (x) 在 x0 点的某邻域内有界D. f (x) 在 x0 点的某空心邻域内连续参考答案: D18、函数在 [a,b] 上可积的充要条件是( )A."e>0,$ s>0和d>0使得对任一分法D,当l(D)<d时,对应于wi³e的那些区间Dxi长度之和∑Dxi< s B."e>0,s>0, d>0使得对某一分法D,当l(D)<d时,对应于wi³e的那些区间Dxi长度之和∑Dxi< s C."e>0,$d>0使得对任一分法D,当l(D)D."e>0, s>0,$ d>0使得对任一分法D,当l(D)参考答案: D19、已知, 则( );A.B.C.D.参考答案: C20、幂级数的收敛半径为A. ;B. 1;C. 2;D.参考答案: D21、A. AB. BC. CD. D参考答案: C22、函数f (x) = ln (ln x) 的定义域是( )A. x > 0B. x ≥ 0C. x > 1D. x ≥ 1参考答案: C23、( );A.B.C.D.参考答案: C24、下列反常积分收敛的是( )。
数学分析试题及答案解析
WORD 格式整理2014 ---2015 学年度第二学期 《数学分析 2》A 试卷学院 班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题 3 分,共 21 分)( 正确者后面括号内打对勾,否则打叉 )1.若 f x 在 a,b 连续,则 f x 在 a,b 上的不定积分 f x dx 可表为x af t dt C ( ).2. 若 f x ,g x 为连续函数,则 f x g x dx f x dx g x dx ( ).3. 若f x dx 绝对收敛,g x dx 条件收敛,则 [ f x g x ]dx 必aaa然条件收敛().4. 若f x dx 收敛,则必有级数f n 收敛( ) 1n 15. 若 f n 与 g n 均在区间 I 上内闭一致收敛,则 f ng n 也在区间 I上内闭一致收敛().6. 若数项级数a 条件收敛,则一定可以经过适当的重排使其发散 n n 1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数, 并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().专业资料值得拥有WORD 格式整理二. 单项选择题(每小题 3 分,共 15 分)8.若 f x 在 a,b 上可积,则下限函数axf x dx 在 a,b 上()A.不连续B. 连续C. 可微D. 不能确定9.若g x 在 a,b 上可积,而f x 在 a,b 上仅有有限个点处与g x 不相等,则()A. f x 在 a,b 上一定不可积;B. f x 在 a,b 上一定可积, 但是babf x dxg x dx;aC. f x 在 a,b 上一定可积,并且babf x dxg x dx;aD. f x 在 a,b 上的可积性不能确定 .10.级数n1 1 12nn 1nA. 发散B. 绝对收敛C. 条件收敛D. 不确定11.设u n 为任一项级数,则下列说法正确的是()uA. 若lim u n 0 ,则级数nn一定收敛;un 1B. 若lim 1,则级数u n 一定收敛;n unun 1C. 若N,当n N时有,1,则级数u n 一定收敛;un专业资料值得拥有WORD 格式整理u n 1D. 若 N,当nN 时有, 1,则级数u n 一定发散;u n12. 关于幂级数na n x 的说法正确的是()A. na n x 在收敛区间上各点是绝对收敛的; B. na n x 在收敛域上各点是绝对收敛的;C. na n x 的和函数在收敛域上各点存在各阶导数;D.na n x 在收敛域上是绝对并且一致收敛的;三. 计算与求值(每小题 5 分,共 10分)1 1.lim nnnn 1 n 2nn专业资料值得拥有WORD 格式整理ln sin x13.dx2cos x四. 判断敛散性(每小题 5 分,共 15 分)3 x 12.dx0 1 2x x专业资料值得拥有14.n1 n! n n15.n 1nn1 2nn 1 2专业资料值得拥有五. 判别在数集D上的一致收敛性(每小题 5 分,共 10 分)sin nx16.f n , 1,2 , ,x n Dn专业资料值得拥有WORD 格式整理2n17. D , 2 2,nx六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面30 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
数值分析试卷及答案
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
大学数学试题题库及答案
大学数学试题题库及答案一、选择题(每题5分,共20分)1. 下列哪个选项是微积分的基本定理?A. 牛顿-莱布尼茨公式B. 泰勒公式C. 欧拉公式D. 柯西-黎曼公式答案:A2. 矩阵的行列式表示为:A. 矩阵的对角线元素之和B. 矩阵的对角线元素之积C. 矩阵的对角线元素之差的绝对值D. 矩阵的对角线元素之和的平方答案:B3. 以下哪个函数不是周期函数?A. sin(x)B. cos(x)C. e^xD. tan(x)答案:C4. 以下哪个选项是线性代数中矩阵的特征值?A. 矩阵的行数B. 矩阵的列数C. 矩阵的迹D. 矩阵的行列式答案:C二、填空题(每题5分,共20分)1. 圆的面积公式为______。
答案:πr²2. 欧拉公式中e^(ix)等于______。
答案:cos(x) + i*sin(x)3. 线性代数中,一个矩阵是可逆的当且仅当其______不为零。
答案:行列式4. 微积分中,不定积分的基本定理表明,如果F(x)是f(x)的一个原函数,则∫f(x)dx = F(x) + C,其中C是______。
答案:常数三、解答题(每题10分,共60分)1. 计算定积分∫(0到π) sin(x)dx。
答案:-cos(x) | (0到π) = 22. 求函数f(x) = x² - 4x + 3在x=2处的切线方程。
答案:y = x - 13. 证明:如果一个数列{a_n}收敛于L,则它的子数列{a_{2n}}也收敛于L。
答案:略4. 解线性方程组:\[\begin{cases}x + 2y = 5 \\3x - y = 1\end{cases}\]答案:\[\begin{cases}x = 2 \\y = 1.5\end{cases}\]5. 计算级数∑(1到∞) (1/n²)的和。
答案:π²/66. 证明:对于任意正整数n,有1³ + 2³ + ... + n³ = (n(n+1)/2)²。
西安科技大学真题 612 数学分析复习题及答案
,记此级数的
和函数为 s( x ) ,则使 s( x) f ( x ) 成立的范围是
(A) [ , ) ; (B) ( , ) ; (C) [ , ] ; (D) ( , ]
8.
曲线
y
1
x x
2
,y
0, x
0和x
2 所围成的平面图形的面积为
(A) 4;
(B) 1 ln 2 ; 2
(C) 1 ln 5 ; 2
y sin3xdx)
a
0
0
(D) cos
x
sin[(
y sin3tdt)]dy sin(
y sin3tdt)
a
0
0
lim 5.
1
(e x
1)
(D)
n
x
(A) e
(B) e2
(C) e3
(D) e4
二.填空题(每题 2 分,共 10 分)
lim 1. y
n
1
1 xn
(x
0)
的间断点为:
证明:
由3
1
f (u)du 1
知道
1 f (u)du 1 ,所以
1
(
f
(u)
u2
)du
0
。
0
0
3
0
因为 f (u) u2 C[0,1] ,故由积分中值定理知: [0,1] ,使得
1
(f
(u) u2)du
f
( ) 2 (1 0)
0 ,即
[0,1] :
f
( )
2。
0
3. 设 f (x) 在区间[a,b] 上有二阶导数。 f '(a) f '(b) 0 ,证明:在区间 (a,b) 内至少存在一
数学分析试题库
数学分析题库一. 选择题1. 函数712arcsin 162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-. 2. 函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定.3. 点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4. 当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小;(C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小. 5. x x x x 2)1(lim -∞→的值( ). (A )e; (B)e 1; (C)2e ; (D)0. 6. 函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ).(A )00)()(x x x f x f -- ; (B)xx f x x f x x ∆-∆+→)()(lim 0 ; (C) ()()xf x f x ∆-→∆0lim 0 ; (D)()()x x x f x x f x ∆∆--∆+→∆2lim 000. 7. 若()()2102lim 0=-→x f x f x ,则()0f '等于( ). (A )4; (B)2; (C)21; (D)41,8. 过曲线x e x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ;(D)x y =-1.9. 若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的;(C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的.10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ).(A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-t t e y e x 35确定,则=dx dy ( ). (A )t e 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数;(C ) 严格递增函数; (D ) 严格递减函数.13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1;14.极限01lim sin x x x →=( ) (A ) 0 ; (B) 1 ; (C ) 2 ; (D )。
上海财经大学数学分析测试题(大)
《数学分析》考试题一、(满分10分,每小题2分)单项选择题:1、{n a }、{n b }和{n c }是三个数列,且存在N,∀ n>N 时有≤n a ≤n b n c ,则( )A. {n a }和{n b }都收敛时,{n c }收敛;B. {n a }和{n b }都发散时,{n c }发散;C. {n a }和{n b }都有界时,{n c }有界;D. {n b }有界时,{n a }和{n c }都有界;2、=)(x f ⎪⎪⎩⎪⎪⎨⎧>+=<,0 ,2.( ,0 ,0,,sin x x k x k x x kx 为常数)函数 )(x f 在 点00=x 必 ( )A.左连续;B. 右连续C. 连续D. 不连续 3、''f (0x )在点00=x 必 ( )A. x x f x x f x ∆-∆+→∆)()(lim 02020 ;B. '000)()(lim ⎪⎪⎭⎫ ⎝⎛∆-∆+→∆x x f x x f x ; C. '000)()(lim ⎪⎪⎭⎫ ⎝⎛∆-∆+→∆x x f x x f x ; D. x x f x x f x ∆-∆+→∆)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。
则 ( )A. ∈∃ξ(b a ,),使0)('=ξf ;B. ∈∃ξ(b a ,),使0)('≠ξf ;C. ∈∀x (b a ,),使0)('≠x f ;D.当)(b f >)(a f 时,对∈∀x (b a ,),有)('x f >0 ;5、设在区间Ⅰ上有⎰+=c x F dx x f )()(, ⎰+=c x G dx x g )()(。
则在Ⅰ上有( )A. ⎰=)()()()(x G x F dx x g x f ;B. c x G x F dx x g x f +=⎰)()()()( ;C. ⎰+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;D. c x G x F dx x G x g dx x F x f +=+⎰)()()]()()()([ ;二、(满分15分,每小题3分)填空题 :6、121323lim -+∞→⎪⎭⎫ ⎝⎛-+x x x x = ; 7、)sgn(cos )(x x f =。
数学分析试题与答案
2014---2015学年度第二学期《数学分析2》A 试卷一. 1.若f 2... .二. 1.若2.A.()x f 在[]b a ,上一定不可积;B.()x f 在[]b a ,上一定可积,但是()()⎰⎰≠ba ba dx x g dx x f ;C.()x f 在[]b a ,上一定可积,并且()()⎰⎰=b ab a dx x g dx x f ;D.()x f 在[]b a ,上的可积性不能确定.3.级数()∑∞=--+12111n n n nA.发散B.绝对收敛C.条件收敛D.不确定 4.设∑n u 为任一项级数,则下列说法正确的是() A.若0lim =∞→n n u ,则级数∑nu 一定收敛;B.若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;1.1.⎰+02.∑∞=1!n n n n 3.()nnn nn21211+-∑∞= 五.判别在数集D 上的一致收敛性(每小题5分,共10分)1.()()+∞∞-===,,2,1,sin D n nnxx f n2.(][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R ,经过圆柱下底圆直径线并保持与底圆面030角向斜上方切割,求从圆柱体上切下的这块立体的体积。
(本题满10分) 七.将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。
(本题满分10分)八.证明:函数()∑=3cos nnxx f 在()∞+∞-,上连续,且有连续的导函数.(本题满分9分)2014---2015学年度第二学期《数学分析2》B 卷•答案一、 1.?2.?3.?4.?5.?6.?7.?二=tdt t tt cos sin 2sin cos ⎰=⎰tdt t sin 2-----------------------------------4分 =2cos 2sin t t t C -++=C ----------------5分四.判别敛散性(每小题5分,共10分)1.dx xx ⎰-121arctan解:()241arctan lim1arctan 1lim 012211π=+=---→-→xx xx x x x -------3分且121<=p ,∴由柯西判别法知, 瑕积分dx xx ⎰-121arctan 收敛-------------------------5分2.()∑∞=2ln ln 1n nn解:ln lim n ∞→ 有五.1.f n 又f n 从而故知该函数列在D 上一致收敛.-------------------------5分 2.]1,1[,3sin 2-=∑D x nn解:因当D x ∈时,()nn n n x x u ⎪⎭⎫⎝⎛≤=323sin 2--------------2分而正项级数∑⎪⎭⎫⎝⎛n32收敛,-----------------------------4分由优级数判别法知,该函数列在D 上一致收敛.-------------5分 3.()()∑+∞∞-=+-,,12D nx n解:易知,级数()∑-n1的部分和序列{}n S 一致有界,---2分 而对()n x x V D x n +=∈∀21,是单调的,又由于 ()()∞→→≤+=∈∀n nn x x V D x n 011,2,------------------4分六.(⎰=12V π=76π七.dW ==1250πν=12250π(千焦)-----------------------------------10分 八.设()() 2,1=n x u n 是],[b a 上的单调函数,证明:若()∑a u n 与()∑b u n 都绝对收敛,则()∑x u n 在],[b a 上绝对且一致收敛.(本题满分9分) 证明:()() 2,1=n x u n 是],[b a 上的单调函数,所以有()()()b u a u x u n n n +≤------------------------------4分又由()∑a u n 与()∑b u n 都绝对收敛,所以()()[]∑+b u a u n n 收敛,--------------------------------------7分 由优级数判别法知:()∑x u n在],[b a 上绝对且一致收敛.--------------------------------2013---2014学年度第二学期《数学分析2》A试卷一.5.若6.若an=7.若8.二.1.A⎰101dxxB⎰∞+11dxxC⎰+∞sin xdx D⎰-1131dxx2.级数∑∞=1nna收敛是∑∞=1nna部分和有界的()A必要条件B充分条件C充分必要条件D无关条件3.正项级数∑n u收敛的充要条件是()A.0lim =∞→n n u B.数列{}n u 单调有界C.部分和数列{}n s 有上界D.1lim1<=+∞→ρnn n u n4.设a a a nn n =+∞→1lim则幂级数()1>∑b x a bn n 的收敛半径R=()A.aB.ba 1C.a 1D.ba 11⎪⎭⎫ ⎝⎛5.6..A.三.2.3.-⎰114.四.(16分)判别下列反常积分和级数的敛散性. 1.⎰+∞+-1324332x x dx ;2.dx x x ⎰++1)1ln(113.∑∞=-21ln n nn n; 4.∑∞=1!n n n nn e 五、判别函数序列或函数项级数在所给范围上的一致收敛性(每题5分,共10分)1.),(;,2,1,)(42∞-∞∈=+=-x n n x x f n2.nn n n 1)1(21∑∞=-+;+∞⋃-∞-=∈,5.05.0,D x 六.1.7π(2.七已知f2013---2014学年度第二学期《数学分析2》B 试卷一、 1.对任何可导函数()x f 而言,()()C x f dx x f +='⎰成立。
数学分析考试库选择题
数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ). (A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ).(A )00)()(x x x f x f -- ; (B)xx f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()xf x f x ∆-→∆0lim; (D)()()x x x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设x x x f 1sin 1=⎪⎭⎫⎝⎛,则)(x f '等于 ( )(A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点.23.设xx f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。
《数学分析(一)》题库及答案
《数学分析(一)》题库及答案一.单项选择1、函数)(x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为_______。
A .]1,2[-B .]2,1[-C .[0,3]D .[1,3]2、函数)(x f 在0x x →时极限存在,是)(x f 在0x 点处连续的_______。
A .充分但非必要条件B .必要但非充分条件C .充分必要条件D .既非充分又非必要条件3、设函数⎪⎪⎩⎪⎪⎨⎧>=<-=1,11,21,1)(x xx x x x f ,则=→)(lim 1x f x _______。
4、设⎪⎩⎪⎨⎧≥+<=0,10,sin )(x x x x x x f ,则=→)(lim 0x f x ________。
A .-1 B .0 C .1 D .不存在5、已知)1ln()(a x x f += )0(>x ,则=')1(f ________。
A .aB .2aC .21 D . 1 6、若在区间),(b a 内,函数)(x f 的一阶导数0)(<'x f ,二阶导数0)(>''x f ,则)(x f 在),(b a 内是________。
A .单调减少,曲线上凸B .单调增加,曲线上凸C .单调减少,曲线下凸D .单调增加,曲线下凸二、填空题1、函数)43cos(π+=xy 的周期为________。
2、=+∞→x x x)21(lim ________。
3、设x y 2sin =,则='''y ________。
4、设,2xe y =则y '''=_______。
5、设,)(lim 0A x x f x =→则=→xbx f x )(lim 0_______。
6、曲线xy 1=的渐近线是_______、_______。
三、判断对错1. 设函数在)(x f (a 、b )上连续,则在)(x f [ a 、b ] 上有界。
数学分析试题与答案
2014 ---2015学年度第二学期《数学分析2》A 试卷一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()⎰dx x f 可表为()Cdt t f xa +⎰( ).2.若()()x g x f ,为连续函数,则()()()[]()[]⎰⎰⎰⋅=dx x g dx x f dx x g x f ( ).3. 若()⎰+∞adx x f 绝对收敛,()⎰+∞adx x g 条件收敛,则()()⎰+∞-adx x g x f ][必然条件收敛( ). 4. 若()⎰+∞1dx x f 收敛,则必有级数()∑∞=1n n f 收敛( )5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ).6. 若数项级数∑∞=1n n a 条件收敛,则一定可以经过适当的重排使其发散于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分)1.若()x f 在[]b a ,上可积,则下限函数()⎰ax dx x f 在[]b a ,上( )A.不连续B. 连续C.可微D.不能确定2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( ) A. ()x f 在[]b a ,上一定不可积;B. ()x f 在[]b a ,上一定可积,但是()()⎰⎰≠babadx x g dx x f ;C. ()x f 在[]b a ,上一定可积,并且()()⎰⎰=bab adx x g dx x f ;D. ()x f 在[]b a ,上的可积性不能确定.3.级数()∑∞=--+12111n n n nA.发散B.绝对收敛C.条件收敛D. 不确定4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑nu 一定收敛;B. 若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;C. 若1,1<>∃+n n u uN n N ,时有当,则级数∑n u 一定收敛;D. 若1,1>>∃+n n u uN n N ,时有当,则级数∑n u 一定发散;5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑nnxa 在收敛区间上各点是绝对收敛的; B. ∑nnxa 在收敛域上各点是绝对收敛的;C. ∑nn xa 的和函数在收敛域上各点存在各阶导数; D.∑nnxa 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分)1. ()()()n n n n n n n +++∞→ 211lim2. ()⎰dx xx 2cos sin ln四. 判断敛散性(每小题5分,共15分)1.dx xx x ⎰∞+++-021132.∑∞=1!n nnn 3.()nnn nn21211+-∑∞=五. 判别在数集D 上的一致收敛性(每小题5分,共10分)1.()()+∞∞-===,,2,1,sin D n nnxx f n2. (][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R ,经过圆柱下底圆直径线并保持与底圆面030 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
数学分析期末试题A答案doc
数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
福师《数学分析选讲》模拟试题及答案(一)
《数学分析选讲》试题一一、单项选择题1.设243)(-+=x x x f ,则当0→x 时,有( ).A .)(x f 与x 是等价无穷小B .)(x f 与x 同阶但非是等价无穷小C .)(x f 是比x 高阶的无穷小D .)(x f 是比x 低阶的无穷小 答案:B 2. 设函数111()1xx e f x e -=+,则0x =是()f x 的( )A .可去间断点B .第二类间断点C .跳跃间断点D .连续点 答案:C3. 22lim (1)n nn→∞+等于( ).A . 221ln xdx ⎰B .212ln xdx ⎰C .212ln(1)x dx +⎰ D .221ln (1)x dx +⎰答案:B4. (,)z f x y =在点(,)x y 处偏导数连续是(,)f x y 在该点连续的( )条件.A .充分非必要 B.必要非充分 C.充分必要 D.既不充分也不必要 答案:A5. 如果级数1n n u ∞=∑和1n n v ∞=∑均发散,则以下说法正确的是( ).A. 1()n n n u v ∞=±∑一定都收敛B. 1()n n n u v ∞=±∑一定都发散C. 1()n n n u v ∞=-∑可能收敛,但1()n n n u v ∞=+∑一定发散D. 1()n n n u v ∞=±∑都可能收敛答案:D6. 设232)(-+=x x x f ,则当0→x 时,有( )A .)(x f 与x 是等价无穷小 B. )(x f 与x 是同阶但非等价无穷小 C. )(x f 是比x 高阶的无穷小 D. )(x f 是比x 低阶的无穷小答案;B 7. 设arctan (),xf x x=则0x =是()f x 的( ) A. 连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点 答案:B8. 下列极限计算中,正确的是( )A .01lim(1)x x e x +→+= B. 01lim(1)1x x x +→+= C. 1lim(1)x x e x →∞-=- D. 1lim(1)x x e x -→∞+=答案:B9. 设函数)(x f 在0x 处可导,且2)(0'=x f ,则=--→hx f h x f h )()(lim000( )A. 21B. 2C. 21- D. -2答案:D10. 下列反常积分中收敛的是 ( ) A. 211x dx x +∞+⎰B. 1+∞⎰12011sin dx x x ⎰ D. 10ln xdx ⎰ 答案:D11. 函数()y f x =,若0000()(2)3,|limx x h f x f x h dy h=→--==则( )A. 32dx B.32dx - C.3dx D.3dx -答案:A12. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则下述四个选项中正确的是 ( ).A .点(0,0)不是(,)f x y 的极值点 B. 点(0,0)是(,)f x y 的极小值点 C. 点(0,0)是(,)f x y 的极大值点D. 根据所给条件无法判断点(0,0)是否是(,)f x y 的极值点 答案:A13. lim ln→∞n n等于( ) A. 1ln ⎰xdx B. 0ln +∞⎰xdx C. 1⎰xdx D. 0+∞⎰xdx .答案:A14.设)(x f 在],[b a 上连续,则[()]xd f t dt dx -⎰等于( ) A. ()f x - B. ()f x - C. ()f x -- D. ()f x 答案:A二、判断题:以下各题若正确请在( )内填“√”, 若错误填“×”. 1. 若{}n x 不是无穷大量,则{}n x 必存在收敛子列. ( ) 答案:√2.)(x f 在],[b a 上连续是⎰ba dx x f )(存在的充要条件 . ( )答案:×3. 若()f x 是初等函数,其定义域为(,)a b ,0(,)x a b ∈,则00lim ()()x x f x f x →= .( )答案:√4. 若(1,2)n n u v n ≤=,级数1n n v ∞=∑收敛,则1n n u ∞=∑不一定收敛.( )答案:√5. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则点(0,0)是(,)f x y 的极小值点. ( ) 答案:×6.若{}n x 不是无穷大量,则{}n x 任一子列均不是无穷大量. ( ) 答案:×7. 若函数()f x 在[,]a b 上可积,则()f x 在[,]a b 上也可积. ( )答案:×8. 当0x x →时,()f x 不以A 为极限,则存在00{},(1,2),()n n n x x x n x x n ≠=→→∞,使{()}n f x 不以A 为极限.( ) 答案:√9. 若lim 0n n u →∞=,则级数1n n u ∞=∑收敛但和不一定是0 . ( )答案:×10. 对),(y x f z =, 偏导数连续,则全微分存在. ( ) 答案:√ 三、填空题1、若20(23)0kx x dx -=⎰,则k 的值为 .答案:0或12、设21(2021)n n x ∞=-∑收敛,则lim n n x →∞= .答案:20213、级数1nn ∞=的收敛区间是 .答案:(2,4)或[2,4)4.设21(10)n n x ∞=-∑收敛,则lim n n x →∞= .答案:105.(,)limx y →= .答案:46.级数2nn ∞=_____________.答案:(1,3)7.广义积分2110k dx x π+∞=+⎰,则1k= . 答案:58.1lim 1+xx x →∞⎛⎫= ⎪⎝⎭. 答案:e9.设21,0()0,0x x f x x x e ⎧--⎪≠=⎨⎪=⎩,则(0)f '= . 答案:1 四、计算题1. 2+3200lim (sin )x x x t dtt t t dt→-⎰⎰.解 原式=++320026lim lim 12(sin )1cos x x x x x x x x x→→⋅==--2.求sin cos cos 2x x y x e π+=+ 的导数.解:cos sin ()'=-x x xe e esin sin ln sin sin ()cos n ()l ()'='=+xx x x xex x x x xcos 02'π⎛⎫= ⎪⎝⎭sin sin cos ln '()sin 所以+=-x x x xe xy x x x e . 五、综合题.1.241lim cos 1n n n n →∞-+!. (请说明理由)答: 原式=0(有界量乘以无穷小量) 2. 叙述一元函数可导,可微,连续的关系.答:一元函数可导与可微是等价的,可导推出连续,连续不一定可导。
(完整版)数学分析试题及答案解析,推荐文档
∑⎰ ⎰ ⎰ 2014 ---2015 学年度第二学期《数学分析 2》A 试卷一. 判断题(每小题 3 分,共 21 分)(正确者后面括号内打对勾,否则打叉)1.若 f (x )在[a ,b ]连续,则 f (x )在[a ,b ]上的不定积分⎰ f (x )dx 可表为x f(t )dt + C ( ).a2.若 f (x ), g (x )为连续函数,则⎰ f (x )g (x )dx = [⎰f (x )dx ]⋅ [⎰g (x )dx ().+∞+∞3.若 f (x )dx 绝对收敛, ⎰ g (x )dx 条件收敛,则aa+∞[ f(x )- g (x )]dx 必然条件收敛().a+∞ 4. 若f (x )dx 收敛,则必有级数∑ f (n )收敛( )1n =15. 若{f n }与{g n }均在区间 I 上内闭一致收敛,则{f n + g n }也在区间 I上内闭一致收敛( ).∞6. 若数项级数 a n 条件收敛,则一定可以经过适当的重排使其发散n =1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题 3 分,共 15 分)1. 若 f(x )在[a ,b ]上可积,则下限函数af (x )dx 在[a ,b ]上()xA. 不连续B. 连续C.可微D.不能确定⎰ ⎰∞⎰ ⎰ ⎰ ⎰ ∑ 2. 若 g (x )在[a ,b ]上可积,而 f (x )在[a ,b ]上仅有有限个点处与 g (x )不相等,则( )A. f (x )在[a ,b ]上一定不可积;B. f (x )在[a , b ]上一定可积,但是bf (x )dx ≠ bg (x )dx ;aaC. f (x )在[a , b ]上一定可积,并且 b f (x )dx = bg (x )dx ;aaD. f (x )在[a ,b ]上的可积性不能确定.∞3. 级数 n =11 + (- 1)n -1 n n2 A. 发散 B.绝对收敛 C.条件收敛 D. 不确定4. 设∑u n 为任一项级数,则下列说法正确的是( )A. 若lim u n →∞= 0 ,则级数∑u n一定收敛;B. 若lim un +1 = < 1,则级数∑u 一定收敛;n →∞ u nC. 若∃ N ,千D. 若∃ N ,千 n > N 千千n > N 千千千u n +1 n< 1,则级数∑u n 一定收敛; u n> 1,则级数∑u n 一定发散;5. 关于幂级数∑ a n x n 的说法正确的是()A. ∑ a n x n 在收敛区间上各点是绝对收敛的;B. ∑ a n x n 在收敛域上各点是绝对收敛的;C. ∑ a n x n 的和函数在收敛域上各点存在各阶导数;千 u n +1u n nx ⎰⎰ D. ∑ a n x n 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题 5 分,共 10 分) 1. lim 1n (n + 1)(n + 2) (n + n ) n →∞ n2. ln (sin x )dx cos 2 x四. 判断敛散性(每小题 5 分,共 15 分)1. dx 01 + + x 2∞∑2. ∑ n ! n =1 n n∞ 3. n =1(- 1)nn 2n1 + 2n五. 判别在数集 D 上的一致收敛性(每小题 5 分,共 10 分)1. f n(x )= sin nx n, n =1,2 , D = (- ∞,+∞)∑2. n D xn= (- ∞, - 2]⋃[2, + ∞)六.已知一圆柱体的的半径为 R ,经过圆柱下底圆直径线并保持与底圆面300 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
数学分析1期末考试试卷A卷
数学分析1 期末考试试卷(A 卷)一、填空题(本题共5个小题,每小题3分,满分15分)1、设 82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x , 则 =a 。
2、设函数)2(1)(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点是 。
3、设)1ln(2x x y ++=,则=dy 。
4、设)(x f 是连续函数,且dt t f x x f )(2)(10⎰+=,则=)(x f 。
5、xdx arctan 1⎰= 。
二、单项选择题(本题共5个小题,每小题3分,满分15分)1、设数列n x 与数列n y 满足0lim =∞→n n n y x ,则下列断言正确的是( )。
(A )若n x 发散,则n y 必发散。
(B )若n x 无界,则n y 必无界。
(C )若n x 有界,则n y 必为无穷小。
(D )若nx 1为无穷小,则n y 必为无穷小。
2、设函数x x x f =)(,则)0(f '为( )。
(A ) 1。
(B )不存在。
(C ) 0。
(D ) -1。
3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( )。
(A )0)(,0)(<''>'x f x f 。
(B )0)(,0)(>''>'x f x f 。
(C )0)(,0)(<''<'x f x f 。
(D )0)(,0)(>''<'x f x f 。
4、设)(x f 是连续函数,且⎰-=dt t f x F x e x)()(,则)(x F '等于( )。
(A )())(x f e f e x x ----。
数学分析考试库选择题
)
6.函数f(x)
在x=x0处的导数
f (x0)可定义 为(
(A)y 1
2 x 0; (B)
y 2x
1; (C)y
2x 3;
(D)
y 1 x.
9.若在区间
a,b内,导数
f x 0,
二阶导数f
x 0,
则函数
f x在区间内
是(
).
(A)单调减少,曲线是凹的
; (B)
单调减少,
曲线是凸的;
b)上的递增函数,则(x)
max{ f (x), g(x)}
b)上
(A)
递增函数;
(B) 递减函数;
(C)
严格递增函数;
(D)严格递减函数.13.limn源自n( n 1 n)()
(A)
1
; (B) 0;
2
(C);
(D)
14.极限
lim xsin1(x 0x
)
(A)
0 ;(B) 1 ;
(C)2 ;
(D)
(C)单调增加,曲线是凹的
; (D)
单调增加,
曲线是凸的.
10.函数f x
1x33x2
9x在区间
0,4上的最大值点为(
).
3
A)4; (B)0; (C)2; (D)3.
11.函数y f x由参数方程
5et
3et
确定,则dy
dx
).
A)
53e2t;(B)
3t
e;
5
(C)
3
5
(D)
3
5
12设f
,g为区间(a,
数学分析题库(
. 选择题
(A)
数学分析试题及答案解析
2014 ——-2015学年度第二学期《数学分析2》A 试卷学院 班级 学号(后两位) 姓名一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()⎰dx x f 可表为()C dt t f xa +⎰( )。
2。
若()()x g x f ,为连续函数,则()()()[]()[]⎰⎰⎰⋅=dx x g dx x f dx x g x f ( )。
3。
若()⎰+∞adx x f 绝对收敛,()⎰+∞adx x g 条件收敛,则()()⎰+∞-adx x g x f ][必然条件收敛( ). 4。
若()⎰+∞1dx x f 收敛,则必有级数()∑∞=1n n f 收敛( )5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ).6。
若数项级数∑∞=1n n a 条件收敛,则一定可以经过适当的重排使其发散于正无穷大( )。
7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( )。
二. 单项选择题(每小题3分,共15分)1.若()x f 在[]b a ,上可积,则下限函数()⎰ax dx x f 在[]b a ,上( )A.不连续 B 。
连续 C.可微 D 。
不能确定2。
若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( )A. ()x f 在[]b a ,上一定不可积;B. ()x f 在[]b a ,上一定可积,但是()()⎰⎰≠babadx x g dx x f ;C. ()x f 在[]b a ,上一定可积,并且()()⎰⎰=bab adx x g dx x f ;D. ()x f 在[]b a ,上的可积性不能确定.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。
35. 设}{n x 是无界数列,则 ( )(A) ∞=∞→n n x lim ; (B) +∞=∞→n n x lim ;(C) -∞=∞→n n x lim ; (D) 存在}{n x 的一个子列}{k n x ,使得∞=∞→k n k x lim36. 设f 在0x 存在左、右导数,则f 在0x ( )(A) 可导; (B) 连续; (C) 不可导; (D) 不连续。
37.设0)(0≠'x f ,记0x x x -=∆,则当0→∆x 时,dy ( )(A) 是x ∆的高阶无穷小; (B) 与x ∆是同阶无穷小; (C) 与x ∆是等价无穷小; (D) 与x ∆不能比较。
38.设n n y a x ≤≤,且0)(lim =-∞→n n n x y ,则}{n x 与}{n y ( )(A) 都收敛于a (B) 都收敛但不一定收敛于a (C) 可能收敛,也可能发散; (D)都发散。
39.设数列}{n x 收敛,数列}{n y 发散,则数列}{n n y x ( )(A) 收敛; (B) 发散;(C) 是无穷大; (D)可能收敛也可能发散。
40.设函数f 在),(δδ+-a a 上单调,则)0(+a f 与)0(-a f ( )(A) 都存在且相等; (B) 都存在但不一定相等; (C) 有一个不存在; (D) 都不存在 41.设f 在],[b a 上二阶可导,且0>''f ,则ax a f x f x F --=)()()(在),(b a 上 ( )(A) 单调增; (B) 单调减; (C) 有极大值; (D) 有极小值。