第九届希望杯-六年级-第2试试卷及解析

合集下载

希望杯九届至十一届试题分析及总结

希望杯九届至十一届试题分析及总结

希望杯九届至十一届试题分析及总结一:题目类型:第一试共20题填空题第二试前12题为填空题,后4道为解答题13年后,希望杯将增加两道附加题,有能力的同学可把它完成将有加分。

希望杯全国数学邀请赛六年级考查内容1.分数的意义和性质,四则运算,巧算与估算。

2.百分数,百分率。

3.比和比例。

4.计数问题,找规律,统计图表,可能性。

5.圆的周长和面积,圆柱与圆锥。

6.抽屉原理的简单应用。

7.应用题(行程问题、工程问题、牛吃草问题、钟表问题等)。

8.统筹问题,最值问题,逻辑推理。

二:题目分析(一)计算部分主要考察考生的计算能力,题目相对简单,容易得分,所以考生在这部分应拿满分。

09一试、09二试、10一试、10二试、11一试、11二试24分、10分、24分、15分、18分、10分所占的比例:12%-20%考察内容1、分数、小数、循环小数的混合运算、运算率的运用。

九届一试第一题、九届二试第一题、十一届一试第一、二题、十一届二试第一、二题、2、简便运算A、提取公因式九届一试第二题、十届一试第一题、十届二试第一题B、分数裂项十届一试第二题、十届二试第二题C、凑整思想3、估算---九届一试第四题求某式的整数部分---放缩法4、定义新运算九届一试第三题、九届二试第二题、十届一试第八题、十届二试第五题、十一届一试第六题基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

有时会涉及循环小数的小数部分化为分数。

把循环小数的小数部分化成分数的规则①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。

②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。

希望杯第六届六年级到第九届第二试试题

希望杯第六届六年级到第九届第二试试题

第五届小学“希望杯”全国数学邀请赛六年级 第2试一、填空题(每小题5分,共60分。

)1.小华拿一个矩形木框在阳光下玩,她看到矩形木框在地面上形成的影子不可能是图中的______。

2.气象台预报“本市明天降水概率是80%”。

对此信息,下列说法中正确的是______。

(填序号) ①本市明天将有80%的地区降水。

②本市明天将有80%的时间降水。

③明天肯定下雨。

④明天降水的可能性比较大。

3.将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,再展开正方形纸片,得到下图中的______。

(填序号)4.下图是华联商厦3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测4月份甲、乙、丙三种品牌彩电的销售量将分别增长5%,10%和2O %。

根据预测,甲、丙两种品牌彩电4月份的销售量之和为______台。

5.对于非零自然数a 和b ,规定符号⊗的含义是:ba ba mb a ⨯⨯+⨯=⊗2 (m 是一个确定的整数)。

如果3241⊗=⊗,那么=⊗43______。

6.112005+ 12006+ 12007+ 12008的整数部分是______。

7.在一次动物运动会的60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为5分钟。

请问,小鸭在这项比赛中用时______分钟。

8. 2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4×15天是星期______。

9.将16个相同的小正方体拼成一个体积为16立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有______个,最少有______个。

10.已知n 个自然数之积是2007,这n 个自然数之和也是2007,那么n 的值最大是______。

11.如图,三角形田地中有两条小路AE 和CF ,交叉处为D ,张大伯常走这两条小路,他知道DF =DC ,且AD =2DE 。

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.330.24 5.41.35⨯⨯=。

2.已知111116A116B16CC-=+++++,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=。

3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是。

六年级第九届希望杯部分培训题及答案

六年级第九届希望杯部分培训题及答案

六年级第九届希望杯部分培训题及答案(原创)1、有一个整数,用它去除160、110、70得到的三个余数之和是50,则这个整数是。

首先因为这三数除以未知数的余数必定都小于这个未知数,故未知数定大于50/3也就是17以上,其次三者之和减去50(也就是290)必定能整除这个数,所以只有29 58 和145,所以只有2970+110+160-50=290....这个整数的倍数由于三个余数的和为50,从而可知这个整数比50要小,再把290折成两个数的乘积,其中一个一定要小于50290=29*10故这个数为29.2、11+22+33+……+20020+20031除以7,余数是。

11+22+33+...20020+20031)/7=(11+20031)/2*20031/11/7=10021*1821/7=18248241/7=2606891 (4)3、有三个分子相同的最简假分数,化成带分数后为。

已知a,b,c都小10,则(a+b)÷c= 。

a=7,b=3,c=2 2+1=3,5+1=6,7+1=8 所以公共分子d再加1为3,6,8的公倍数设d+1=e 因为abc都小于10 所以e小于10*3=30 e只能取24 则d=23 易得a=7,b=3,c=2由题意可知,8c+7=6b+5 6b+5=3a+2 经过化简,得到:c=(3b-1)……①a=2b+1……②由②和abc都小于10知,b<5再由①,知:只有当b=3时符合题意。

此时,c=2,a=7由题意知,3a+2=6b+5=8c+7(abc是1-10之间的自然数)c=(3b-1)/4,所以3b-1是4-40之间的,且为4的倍数的自然数;a=2b+1,所以b是1,2,3,4中的一个。

(因a<10)分别代入3b-1中,只有b=3时,3b-1=8是4的倍数。

所以,b=3,a=7,c=24、分母是455的所有最简真分数的和等于。

分母是455的所有最简真分数的和等于?【最经典解析】:455=5*7*13455/5+455/7+455/13-455/(7*5)-455/(7*13)-455/(5*13)+455/(5*7*13)=91+65+35-13-5-7+1=167455-167=288而真分数是成对出现的,且每对的和是1,所以分母是455的最简真分数的和是288/2=144【解析2】455=5*7*13能被5整除的分子总和:5*[(1+7*13)*(7*13)/2]=20930能被7整除的分子总和:7*[(1+5*13)*(5*13)/2]=15015能被13整除的分子总和:13*[(1+5*7)*(5*7)/2]=8190同理:能被35整除的分子总和=3185 能被65整除的分子总和=1820 能被91整除的分子总和=1365 能被455整除的分子总和=455所以可约分的分子总和为20930+15015+8190-3185-1820-1365+455=38220所有分子之和:(1+455)*455/2=103740所以最简真分数之和为(103740-38220)/455=1445、将自然数从左到右依次写下来,得到一个数字串123456789101112131415……。

第九届小学希望杯6年级解析

第九届小学希望杯6年级解析

第九届小学“希望杯”全国数学邀请赛六年级第I试1.计算:=___________.【解析】这道题目考的是同门母的分数相加减。

2.计算:=__________.【解析】这道题目考的是提取公因数的方法分子和分母当中都能够提出6个2.3来,进行约分2.3(361816)2.3 4.5(127)⨯+⨯⨯⨯+==4.58644.528⨯+⨯()=1873.对于任意两个数x, y定义新运算,运算规则如下:x ♦ y=x × y – x ÷2,x y =x + y ÷ 2,按此规则计算,3.6 ♦ 2=_________,♦ (7.5 4.8) = __________.【解析】这道题目考的是定义新运算的方法,理解例题的算法就好算了,计算时注意细心。

4.在方框里分别填入两个相邻的自然数,使下式成立。

【解析】这道题目考的是利用放缩的方法当全都取1150时,整体的值就缩小了,这样等于1,所以原式的值大于1,当全都取1101时,整体的值就放大了,这样也没有到达2,所以原式的值小于25.在循环小数中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是__________.【解析】这道题目考的是周期的问题6.一条项链上共有99颗珠子,如图1,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,……则这条项链中共有红色的珠子_______颗。

【解析】这道题目考的是数列问题最小是2 下一个是4 在下一个是6 在下一个是8 10 12 14 16 18所以中间补上9个白珠子正好是99颗珠子7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是________。

【解析】这道题目考的是最大公约数与最小公倍数问题要求a和b的和最大只有最大公约是其中一个数另一个数是最小公倍数的时候140+5=1458.根据图2计算,每块巧克力_______元(□内是一位数字)。

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案(满分120分;时间120分钟)一、填空题(每题5分;共60分)1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根.解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根.4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________.(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66.(66可以表示成0到11的和)5、十进制计数法;是逢10进1;如141022410⨯+⨯=;15106103365210⨯+⨯+⨯=;计算机使用的是二进制计数法;是逢2进1;如22101111121217=⨯+⨯+⨯=;2231011001020212112=⨯+⨯+⨯+⨯=;如果一个自然数可以写成m 进制数m 45;也可以写成n 进制数n 54;那么最小的m =_______;n =________.(注:4434421an n a a a a a 个⨯⋅⋅⋅⨯⨯⨯=)解析:4m+5=5n+4;也就是说4(m-1)=5(n-1);如果m-1=5;n-1=4;则m=6;n=5;但此时n进制中不能出现数字5;如果m-1=10;n-1=8;则m=11;n=9;符合题意.6、我国除了用公历纪年外;还采用干支纪年;根据图2中的信息回答:公历1949年按干支纪年法是____________年.解析:干支纪年法60年一循环;1949+60=2009;而2009年是己丑年;所以1949年是己丑年7、盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球;为了保证有5次摸出的结果相同;则至少需要摸球__________次.解析:每次摸出的结果可能是两个球颜色相同;有3种可能;或颜色不同;也有3种可能;共6种可能.最不利情况是每种可能各出现4次;则再摸一次就保证有5次相同;6×4+1=258、根据图3中的信息回答;小狗和小猪同时读出的数是___________.解析:相当于分别从1和1002处以2:5的速度比进行相遇问题;(1002-1)÷7×2+1=2879、图4中的阴影部分的面积是__________平方厘米.( 取3)解析:分别连接两个正方形的"\"的对角线;发现它们平行;所以阴影部分的面积就等于一个扇形的面积;为15×15×3÷4=168.7510、甲、乙两人合买了n 个篮球;每个篮球n 元.付钱时;甲先乙后;10元;10元地轮流付钱;当最后要付的钱不足10元时;轮到乙付.付完全款后;为了使两人所付的钱数同样多;则乙应给甲________元.解析:总共价格为2n 元;最后乙付说明2n 的十位数字为奇数;所以个位为6;乙最后一次付了6元;应该给甲2元11、某代表队共有23人参加第16届广州亚运会;他们按身高从高到低排列;前5位队员的平均身高比前8位队员的平均身高多3厘米;后15位队员的平均身高比后18位队员的平均身高少0.5厘米.那么前8位队员的平均身高比后15位队员的平均身高多_______厘米.解析:前5位队员的平均身高比前8位队员的平均身高多3厘米;也就是说;加入第6~8名后;平均身高减少了3厘米;因此第6~8名的平均身高比前5名的平均身高少3÷3×8=8厘米.第9~23位队员的平均身高比第6~23位队员的平均身高少0.5厘米;也就是说;加入第6~8名后;平均身高增加了0.5厘米;因此第6~8名的平均身高比第9~23名的平均身高多0.5÷3×18=3厘米.因此;前8名的平均身高比第9~23名的平均身高多8-3+3=8厘米12、甲、乙、丙三人同时从A 地出发到B 地;他们的速度的比是12:5:4;其中甲、乙两人步行;丙骑自行车;丙可以带一人同行(速度保持不变).为了使三人在最短的时间内同时到达B 地;则甲、乙两人步行的路程之比是___________.解析:根据对称性;丙先带谁没有区别.设先带甲;返回接乙.设乙步行的路程为x ;丙骑车返回的路程为y ;甲步行的路程为z .乙比骑车从A 地到B 地多用时间(5x -12x );甲比骑车从A 地到B 地多用时间(4z -12z );丙比骑车从A 地到B 地多用时间122y .三人同时到达即这三个相等时;5x -12x =4z -12z =122y ;求得x :y :z =10:7:7;所求路程比为7:10二、解答题(每题15分;共60分)13、一辆汽车从甲地开往乙地;若车速提高%20;可提前25分钟到达;若以原速行驶100千米;再将车速提高%25;可提前10分钟到达;求甲乙两地的距离.解析:车速提高20%;也就是变成原来的56;则时间变成原来的65;减少25分钟;原定时间为25×6=150分钟;车速提高25%;也就是变成原来的45;则时间变成原来的54;减少10分钟;则这段路程的原定时间为10÷5=50分钟.因此;原速行驶100千米需要150-50=100分钟;距离为150÷100×100=150千米14、如图5;在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体;容器内盛有m 升水时;水面恰好经过圆柱体的上底面.如果将容器倒置;圆柱体有8厘米露出水面.已知圆柱体的底面积是正方体底面积的81;求实心圆柱体的体积. 解析:两次的空白部分体积相等;而第二次的空白部分的横截面积为第一次的87811=-;所以第一次的空白部分的高度为第二次的87;即7厘米.正方体的底面积为20×20=400平方厘米;所以圆柱体的底面积为400÷8=50平方厘米;高度为20-7=13厘米;体积为50×13=650立方厘米15、有8个足球队进行循环赛;胜队得1分;负队得0分;平局的两队各得0.5分.比赛结束后;将各队的得分按从高到低排名后发现:各队得分互不相同;且第二名的得分与最后四名所得的总分一样多.求这次比赛中;取得第二名的队的得分.解析:全胜的队得7分;而最后四队之间赛6场至少共得6分;所以第二名的队得分至少为6分.如果第一名全胜;则第二名只输给第一名;得6分;如果第二名得6.5分;则第二名6胜1负;第一名最好也只能是6胜1负;与题目中得分互不相同不符.所以;第二名得分为6分16、将两个不同的自然数中较大的数换成他们的差;称为一次操作;如此继续下去;直到这两个数相同为止.如对20和26进行这样的操作;过程如下:(20;26)→(20;6)→(14;6)→(8;6)→(2;6)→(2;4)→(2;2)(1)对45和80进行上述操作.(2)若对两个四位数进行上述操作;最后得到的相同数是17.求这两个四位数的和的最大值.解析:(45,80)→(45,35)→(10,35)→(10,25)→(10,15)→(10,5)→(5,5).这就是用辗转相除法求最大公约数的运算;所以两个四位数的最大公约数为17;9999÷17=588……3;所以最大的四位数是9999-3=9996;第二大的四位数是9996-17=9979;和为19975(祝各位同学学习进步!)。

希望杯六年级近五年真题汇编

希望杯六年级近五年真题汇编

欢迎来主页下载---精品文档希望杯目录真题希望杯简介 (Ⅰ)近三年真题分析 (Ⅱ)2014 第 12 届希望杯六年级第 1 试试题 (1)2013 第 11 届希望杯六年级第 1 试试题 (3)2012 第 10 届希望杯六年级第 1 试试题 (5)2011 第 9 届希望杯六年级第 1 试试题 (7)2010 第 8 届希望杯六年级第 1 试试题 (9)2014 第 12 届希望杯六年级第 2 试试题 (11)2013 第 11 届希望杯六年级第 2 试试题 (13)2012 第 10 届希望杯六年级第 2 试试题 (15)2011 第 9 届希望杯六年级第 2 试试题 (17)2010 第 8 届希望杯六年级第 2 试试题 (19)参考答案2014 第 12 届希望杯六年级第 1 试试题分析 (21)2013 第 11 届希望杯六年级第 1 试试题分析 (23)2012 第 10 届希望杯六年级第 1 试试题分析 (25)2011 第 9 届希望杯六年级第 1 试试题分析 (27)2010 第 8 届希望杯六年级第 1 试试题分析 (29)2014 第 12 届希望杯六年级第 2 试试题分析 (31)2013 第 11 届希望杯六年级第 2 试试题分析 (33)2012 第 10 届希望杯六年级第 2 试试题分析 (35)2011 第 9 届希望杯六年级第 2 试试题分析 (37)2010 第 8 届希望杯六年级第 2 试试题分析 (39)希望杯简介“希望杯”全国数学邀请赛的主办单位“希望杯”是由中国科学技术协会普及部、中国优选法统筹法与经济数学研究会、《数理天地》杂志社、中青在线、华罗庚实验室等主办的全国性数学竞赛.“希望杯”全国数学邀请赛的宗旨鼓励和引导中小学生学好数学课程中最主要的内容,适当地拓宽知识面;启发他们注意数学与其它课程的联系和数学在实际中的应用;激励他们去钻研和探究;培养他们科学的思维能力、创新能力和实践能力;树立他们为振兴中华而努力成才的自信.“希望杯”全国数学邀请赛的命题原则试题内容不超出现行数学教学大纲,不超出教学进度,贴近现行的数学课本,源于课本,高于课本.题目活而不难,巧而不偏;既大众化又富于思考性和启发性.力求体现科学思维之美,寓科学于趣味之中,将知识、能力的考察和思维能力的培养结合起来.“希望杯”全国数学邀请赛的参赛对象初、高中一、二年级学生和小学四、五、六年级学生.每年举行一次,为一届.每次举行两试,三月中旬第 1 试,考1.5小时;四月中旬第 2 试,考 2 小时.“希望杯”全国数学邀请赛的赛前准备杯赛的备考其实非常简单,做到以下两点,希望杯获奖轻松惬意:1.利用寒假做完希望杯 100 题和希望杯历年真题;2.春季再做一遍;3.结合一试的试题,有针对性的准备二试.希望杯全国数学邀请赛的评奖希望杯会设置全国奖项和深圳地区奖项其中含金量最高的是全国一二等奖,整个深圳市也就 20 个左右的名额;而全国三等奖就有好几百个,具体规则如下:根据希望杯的评奖规则,全国一二等奖在赛区内统一标准,按照初赛人数的约千分之三评定.全国三等奖按报名单位初赛人数和规定比例评定,由报名单位按照下述要求评定:1.各单位获奖总指标(一二三等奖):中学每满 30 人初赛给一个指标,不足 30 人不给;小学每满 20 人初赛给一个指标,不足 20 人不给.若评出人数多于计划指标,组委会将按照从后到前的顺序去掉多出指标.2.各单位评奖时应当按照复赛分数由高到低的原则,赛分数相同时按初赛成绩排序.3.各单位指标可在小学内部中学内部调剂使用,得在二者之间调剂.4.凡是列入全国一二等奖推荐名单的,提供该生的一试试卷和二试试卷,奖励等级由全国组委会统一确定.深圳地区奖项设置有特、一、二、三等奖,2014 年 2000 多名进入二试的学生中,有 120 个特等奖,400 个一等奖,所有进入二试的选手至少能获三等奖!!近三年真题分析“希望杯”题型涉及内容广泛,为了更好备战2015年“希望杯”,我们需要对历年考试情况有一个详细了解。

第九届全国小学六年级希望杯试题解答

第九届全国小学六年级希望杯试题解答

第九届希望杯数学试题原题1:小明从家出发去奶奶家,骑自行车每小时行12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追。

结果小明到奶奶家后半小时爸爸就赶到了。

小明家离奶奶家多少千米。

解析:作为一道压轴的题,这道题的难度显然是不大的。

它与培训题的第89题相对应,都是行程问题中的“不同时出发、不同时到达”类题型。

具体到该题,很明显我们可以看出,走这段路,小明比爸爸多用了(2.5-0.5=2)小时。

又知道两人的速度比是36:12=3:1,所以很容易算出爸爸在路上所用时间是1时间,所以,到奶奶家的距离是36千米。

这道题70%以上的同学都做对了。

原题2:一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天,则这批饲料可供多少只鸭子吃21天。

解析:这道题可用代入法来解。

(10鸭子+15鸡)*6=(12鸭+6鸡)*7得:1鸭=2鸡则这批饲料有:(12鸭+6鸡)*7=(12鸭+3鸭)*7=105鸭,105鸭/21=5(鸭)答:可供5只鸭吃21天。

原题3:有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞;蚂蚁甲说:我单独搬运要10小时,他们两个共同搬运要8小时;蚂蚁乙说:你们两个共同搬运要6小时;蚂蚁丙说:我们三个共同搬运,甲会比我多搬运24粒。

若甲、乙、丙三只只蚂蚁共同搬运粮食,那么,蚂蚁乙搬运粮食多少粒。

解析:这是一工程问题与连比问题的综合题,结合的非常巧妙。

对应培训题的第31、63题。

由第一句话知:甲的工效是十分之一,乙、丙的工效是八分之一;由第二句话知:甲、丙的工效和是六分之一。

根据以上条件,我们可以得出甲、乙、丙工效比是:12:7:8也就是说,当粮食搬运完成后,甲搬12份,乙搬7份,丙搬8份。

甲比丙多搬了4份。

从第三句话中我们又知道,甲比丙多搬了24粒,也就是1份为6粒,乙搬了7份,所以,乙搬了6*7=42(粒)原题4:某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有多少种。

六年级下册数学试题希望杯邀请赛第2试试卷通用版(含答案)

六年级下册数学试题希望杯邀请赛第2试试卷通用版(含答案)

六年级下册数学试题希望杯邀请赛第2试试卷通用版(含答案)六年级(特1) 第2试试题一、填空题(每题5分,共60分)1、2017=AAA +AAA +AA +AA +A +A +A +A +A +A +A +B,字母“A ,B”均代表一个非零数字,则B = 。

2、将一个两位数ab 的个位数字和十位数字交换,得到两位数ba ,若ba —ab =63,则满足条件的两位数ab 有 个。

3、如图1,一只青蛙从五边形ABCDE 的顶点A 出发顺时针跳跃,每步从五边形的一个顶点跳到另一个顶点,A B C D E,若这只青蛙第一次跳1步,第二次跳2步,……,第n 次跳n 步,则它在跳完10次时,到达顶点 。

4、按顺时针方向不断取图中的12个数,可组成不超过1000的循环小数x,如23.067823••,678.230678••等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x = 。

5、若A :B =213:546,C :A =125:233,则A :B :C 用最简整数比表示是 。

6、电视机厂接到生产一批电视机的订单,订单价每台2000元,预计可以获利30万元,实际上,由于生产成本提高了16,所以利润减少了25%,则此次订单需要电视机 台。

7、已知某些两位数,若把它分解成两个自然数的乘积可以有5种方法(a ×b 与b×a算一种方法),则这样的两位数有个。

8、A、B两个健步行走着,沿围绕旗杆的同心圆跑道行走,旗杆刚好位于两圆的圆心,沿外跑道走的人五分钟走完一圈,沿内跑道走的人三分钟走完一圈,如图3,O,A,B在同一条半径上,A,B反向而行,则他们下一次与旗杆又在同一半径上时,所需要的时间是分钟。

9、如图4,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF=厘米。

10、如图5所示的容器中放入底面相等且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体积是立方分米。

小升初数学专题训练——希望杯六年级考前热身—历年真题精讲(二)-数论 (含答案,全国通用)

小升初数学专题训练——希望杯六年级考前热身—历年真题精讲(二)-数论  (含答案,全国通用)

六年级考前热身—历年真题精讲(二)------数论(1)例题1:(08年·六年级1试第19题)有一群猴子正要分56个桃子,每只猴子可以分到同样个数的桃子。

这时,又窜来4只猴子。

只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子。

则最后每只猴子分到桃子___个。

例题2:(09年·六年级2试第5题)已知A、B两数的最小公倍数是180,最大公约数是30,若A=90,则B= ______。

例题3:(10年·六年级1试第12题)甲、乙、丙三人一起去钓鱼,他们将钓得的鱼放在一个鱼篓中,就在原地躺下休息,结果都睡着了。

甲先醒来,他将鱼篓中的鱼平均分成3份,发现还多一条,就将多的这条鱼扔回河中,拿着其中的一份鱼回家了。

乙随后醒来,他将鱼篓中现有的鱼平均分成3份,发现还多一条,也将多的这条鱼扔回河中,拿着其中的一份鱼回家了。

丙最后醒来,他也将鱼篓中的鱼平均分成3份,这时也多一条鱼。

这三个人至少钓到_____条鱼。

例题4:(11年·六年级1试第7题)自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是______。

例题5:(11年·六年级1试第8题)买72块巧克力共需□67.9□元,则每块巧克力______元。

(□内是一位数字)1、求各位数字都是7,并能被63整除的最小自然数。

2、在8264的左右各添一个数码,使新得到的六位数能被45整除。

3、两个数的最大公约数是6,最小公倍数是144,求这两个数。

4、两个数的最大公约数是18,最小公倍数是180,两个数的差是54,求这两个数的和。

5、小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:□11.4□元(□表示不明数字)。

你能帮助小马虎找出不明数字吗?1. 解:能被63整除,因为63=7×9,所以既能被9整除,又能被7整除。

各位数字都是7,显然能被7整除,所以只需要满足被9整除即可。

2020年第九届小学数学“梦想杯”全国数学邀请赛试卷(六年级第2试)

2020年第九届小学数学“梦想杯”全国数学邀请赛试卷(六年级第2试)

【解答】解:45m=4m+5;
第 5页(共 12页)
54n=5n+4; 那么: 4m+5=5n+4 即:4(m﹣1)=5(n﹣1), 如果 m﹣1=5,n﹣1=4,则 m=6,n=5,但此时 n 进制中不能出现数字 5; 如果 m﹣1=10,n﹣1=8,则 m=11,n=9,符合题意. 即 m 最小是 11,n 最小是 9. 故答案为:11,9. 6.(5 分)我国除了用公历纪年外,还采用干支纪年,根据图 2 中的信息回答:公历 1949 年按干支纪年法是 己丑 年.
第 3页(共 12页)
2011 年第九届小学“希望杯”全国数学邀请赛试卷(六
年级第 2 试)
参考答案与试题解析
一、填空题(5&#39;&#215;12=60&#39;)
1.(5 分)计算:3.625+
﹣=

【解答】解:3.625+
﹣,
=+﹣,
=+﹣,
= ﹣( ﹣ ),
=﹣,
=.
2.(5 分)对于任意两个数 x 和 y,定义新运算◆和⊗,规则如下:
头号新闻网:## 头号新闻网为您及时提供科技、互联网、房产、家居、美食等相关领域的新闻资讯,方便大家的生活。
金马医药招商网:## 金马医药招商网是专业提供医药代理招商的资讯信息发布平台,医药代理招商网即医药视频招商网或 医药火爆招商网这里提供专业的医药代理招商服务。
16.(15 分)将两个不同的自然数中较大的数换成他们的差,称为一次操作,如此继续下去, 直到这两个数相同为止.如对 20 和 26 进行这样的操作,过程如下: (20,26)→(20,6)→(14,6)→(8,6)→(2,6)→(2,4)→(2,2) (1)对 45 和 80 进行上述操作. (2)若对两个四位数进行上述操作,最后得到的相同数是 17.求这两个四位数的和的最 大值.

2024年希望杯六年级竞赛数学试卷培训题+答案

2024年希望杯六年级竞赛数学试卷培训题+答案

2024年希望杯竞赛六年级数学培训题1 .计算: .2 . 计算: .3 .计算: .4 .计算:.5 .等式中的和都是自然数,.6 . .7 .的积不到,里最大填 .8 .以表示不超过的最大整数,若要,则自然数的最小值是 .9 .如果正整数使得,则为 .(其中表示不超过的最大整数) 10 .的整数部分是 .11 .不等式,时的解为 ,时的解为 ,时的解为 .12 .甲、乙两个两位数,甲数的等于乙数的,这两个数的和最大是 . 13 .一个三位数加或者乘的结果都是完全平方数,这个三位数是 . (注:一个自然数与自身相乘的积叫做完全平方数.) 14 .已知是数字到中的一个,若循环小数,则.15 .下面竖式中,相同的图标表示相同的数字,不同的图标表示不同的数字.那么,., .17 .将至填入右图的网格中,要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍,已知左右格子已经填有数字和,问:标有字母的格子所填的数字最大是 .18 .各位数字均不大于,且能被整除的六位数共有 个. 19 .八位数(中的数字可重复出现)是的倍数,这样的八位数共有 个.20 .把的所有自然数连写在一起,可以得到这样的一个多位数,它是 位数.21 .某日,可可到动物园里去观赏动物,他看了猴子,熊猫和狮子三种动物,这三种动物的总量在到只之间,根据下面的情况: ①猴子和狮子的总数要比熊猫的数量多, ②熊猫和狮子的总数要比猴子的两倍还多, ③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.22 .儿童节的早上,方玲去图书馆看了一会儿书后到游泳馆游泳.她每天去一次图书馆,每天去游泳一次.方玲下一次既到图书馆看书,又到游泳馆游泳的时间是 月 日.23 .五名选手在一次数学竞赛中共得分,每人得分互不相等且都是整数,并且得分最高的选手得了分,那么得分最低的选手至少得 分,至多得 分. 24 .被除余,被除余,被除余的最小两位数是 。

第九届希望杯数学竞赛六年级二试试题及答案

第九届希望杯数学竞赛六年级二试试题及答案

2011年第九届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题 5分,共60分)。

4 1.计算:3.625 0.45-1=。

112.对于任意两个数 x 和y ,定义新运算和:,规则如下:2x + y x y =—x +2y2 122=12 2。

1由此计算,0.36 (4 • 1丄)= _______2成的图形中,若最下面一层有 15个正方形,则需火柴 _____________ 根。

4.若自然数N 可以表示3个连续自然数的和,也可以表示成 11个连续自然数的和,还可以表示成 12个连续自然数的和,则 N 的最小值是 ____________ 。

(最小的自然数是 0)5.十进制计数法,是逢 10 进 1,如:24(10 二 2 10 4 1 , 365(10)= 3 102 6 10 5 1 ;计算机使用的是二进制计数法,是逢2进1 ,如:7(10)= 1 22 1 2 1 1 =111(2, 12(10)= 1 23 122 0 2 0 1 =1100(2;如果一个自然数可以写成 m 进制数45(m ),也可以写成n 进制数54(n ),那么最小的m= ____________ , n= __________。

(注:a n =a a a …a )n 个a6. 我国除了用 公历纪年夕卜,还采用 干支纪年。

将天干的10个汉字与 地支的12个汉字对应排列成如下两行:甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳…… 同一列上下对应的两个汉字就是一个干支年年号。

现在知道公历2011年是辛卯年,公历 2010年是庚寅年,那么,公历1949年,按干支纪年法是如:13.用4根火柴,在桌面上可以拼成一个正方形;用 13根火柴,可以拼成四个正方形;…如图所示,拼_____________年。

7. 盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球。

希望杯六年年级二试试题及答案

希望杯六年年级二试试题及答案

第十一届小学“希望杯”全国数学邀请赛六年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 计算:()()()()()÷⨯÷⨯÷⨯⨯÷⨯÷=32435420122011201320122. 计算:1+++=1.5 3.1657.05123. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。

某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点千米。

(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有袋。

5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。

如:27333,33327=⨯⨯++=+,即27是史密斯数。

那么,在4,32,58,65,94中,史密斯数有个。

6. 如图1,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是。

7. 有两列火车,车长分别时125米和115米,车速分别是22米/秒和18米/米,两车相向行驶,从两车车头相遇到车尾分别需要秒。

8. 老师让小明在100米的环形跑道上按照如下的规律插上一些棋子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备多少面旗子?9. 20132013201320132013++++除以5,余数是。

(注:2013a表示2013个a相乘)1234510. 从1开始的n个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是152,7那么去掉的数是。

11. 若A、B、C三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人。

希望杯六年级决赛真题集锦

希望杯六年级决赛真题集锦

六年级希望杯2试——真题集锦第十一届小学“希望杯”全国数学邀请赛六年级第2试 (2)第十届小学“希望杯”全国数学邀请赛六年级第2试 (5)第九届小学“希望杯”全国数学邀请赛六年级第2试 (9)第八届小学“希望杯”全国数学邀请赛六年级第2试 (14)第七届小学“希望杯”全国数学邀请赛六年级第2试 (18)第六届小学“希望杯”全国数学邀请赛六年级第2试 (23)第十一届小学“希望杯”全国数学邀请赛 六年级 第2试一、填空题(每题5分,共60分)1. 计算:()()()()()=÷⨯÷⨯⨯÷⨯÷⨯÷2012201320112012453423 .2. 计算:=+++∙05.7121561.35.1 .3. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒. 某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点 千米.(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出420袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有 袋.5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”.如:33327⨯⨯=,72333+=++,即27是史密斯数.那么,在4,32,58,65,94中,史密斯数有 个.6.如图1,三个同心圆分别被直径AB ,CD ,EF ,GH 八等分. 那么,图中阴影部分面积与非阴影部分面积之比是 .7.有两列火车,车长分别是125米和115米,车速非别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要 秒.8.老师让小明在400米的环形报道上按照如下的规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止. 则小明要准备 面旗子.图19.2013201320132013201354321++++除以5,余数是 .(注:2013a 表示2013个a 相乘)10.从1开始的n 歌连续的自然数,如果去掉其中的一个数后,余下各数的平均数是7152,那么去掉的数是 .11.若A 、B 、C 三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A ,6个B ,20个C ,则学生最多有 人.12.如图2,从棱长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体表面积是 ,体积是 .(π取3)二、解答题(每题15分,共60分.) 每题都要写出推算过程.13.快艇从A 码头出发,沿河顺流而下,途径B 码头后继续顺流驶向C 码头,到达C 码头后立即反向驶回到B 码头,共用10小时.若A 、B 相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B 、C 间的距离.14.王老师将200块糖分给甲、乙、丙三个小朋友,甲的糖比乙的2倍还要多,图2乙的糖比丙的3倍还要多,那么甲最少有多少块糖?丙最多有多少块糖?15.欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了支持票,每位评委只能投一票. 如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?16.如图3,3个相同的正方体堆成一个“品”字,每个正方体的六个面上都分别标有“小”,“学”,“希”,“望”,“杯”,“赛”六个汉字,并且每个正方体上的汉字的排列顺序完全相同.问:正方体中,“希”,“望”,“杯”三个汉字的对面分别是哪个汉字?写出推理过程.图3第十届小学“希望杯”全国数学邀请赛 六年级 第2试一、填空题(每小题5分,共60分。

希望杯六年年级二试试题及答案

希望杯六年年级二试试题及答案

第十一届小学“希望杯”全国数学邀请赛六年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 计算:()()()()()÷⨯÷⨯÷⨯⨯÷⨯÷=32435420122011201320122. 计算:1+++=1.5 3.1657.05123. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。

某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点千米。

(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有袋。

5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。

如:27333,33327=⨯⨯++=+,即27是史密斯数。

那么,在4,32,58,65,94中,史密斯数有个。

6. 如图1,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是。

7. 有两列火车,车长分别时125米和115米,车速分别是22米/秒和18米/米,两车相向行驶,从两车车头相遇到车尾分别需要秒。

8. 老师让小明在100米的环形跑道上按照如下的规律插上一些棋子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备多少面旗子?9. 20132013201320132013++++除以5,余数是。

(注:2013a表示2013个a相乘)1234510. 从1开始的n个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是152,7那么去掉的数是。

11. 若A、B、C三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九届小学希望杯全国数学邀请赛六年级第2试 一、填空题(5'
×12=60')
1、计算:=-+••11
41
54.0625.3________________.
2、对于任意两个数x 和y ,定义新运算◆和⊗,规则如下: x ◆y =
y x y x 22++,x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯,1⊗2=511563
2121==+⨯, 由此计算••63.0◆=⊗)2114(__________. 3、用4根火柴,在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…,如图1,拼成的图形中,若最下面一层有15个正方形,则需火柴__________根.
4、若自然数N 可以表示城3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示成12个连续自然数的和,则N 的最小值是_________.(注:最小的自然数是0)
5、十进制计数法,是逢10进1,如141022410⨯+⨯=,15106103365210⨯+⨯+⨯=;计算机使用的
是二进制计数法,是逢2进1,如22101111121217=⨯+⨯+⨯=,2231011001020212112=⨯+⨯+⨯+⨯=,
如果一个自然数可以写成m 进制数m 45,也可以写成n 进制数n 54,那么最小的
m =_______,n =________.(注:
a
n n a a a a a 个⨯⋅⋅⋅⨯⨯⨯=) 6、我国除了用公历纪年外,还采用干支纪年,根据图2中的信息回答:公历1949年按干支纪年法是____________年.。

相关文档
最新文档